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Abstract

A major drawback of the truncated Volterra series or “Volterra filter” for system identification is the
large number of parameters required by the standard filter structure. The corresponding estimation problem
requires the solution of a large system of simultaneous linear equations. Two methods for simplifying the
estimation problem are discussed in this paper. First, a Kronecker product structure for the Volterra filter
is reviewed. In this approach the inverse of the large correlation matrix is expressed as a Kronecker product
of small matrices. Second, a parallel decomposition of the Volterra filter based on uncorrelated, symmetric
inputs is introduced. Here the Volterra filter is decomposed into a parallel combination of smaller orthogonal
“sub-filters”. It is shown that each sub-filter is much smaller than the full Volterra filter and hence the parallel
decomposition offers many advantages for estimating the Volterra kernels. Simulations illustrate application
of the parallel structure with random and pseudorandom excitations. Input conditions that guarantee the

existence of a unique estimate are also reviewed.
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1. Introduction

The truncated Volterra series or “Volterra filter” is an attractive nonlinear system represen-
tation because the parameters of this model are linearly related to the output. Thus, given the
system input and output, the Volterra filter parameters are estimated by solving a system of linear
equations. The Volterra filter is also a very general nonlinear system representation. It has been
shown recently [15] that the truncated (or “doubly finite”) Volterra filter provides a uniform ap-
proximation of the infinite Volterra series on a ball of bounded inputs for a large class of systems.

One important issue regarding the use of Volterra filter models for system identification is
the conditions that the input must satisfy in order to guarantee that the filter parameters are
uniquely determined. Such conditions, known as persistence of excitation (p.e.) conditions, have
been studied for Volterra filters driven by random inputs [2, 13]. It has been shown that a class of
deterministic signals known as pseudo-random multilevel sequences (PRMS) are p.e. for Volterra
filters and are particularly well-suited for identification experiments [13].

A major limitation of the standard Volterra filter model is that it has a large number of pa-
rameters for even modest nonlinearity orders and memory lengths. This leads to an estimation
problem that requires the solution of a very large system of linear equations, and consequently
presents a very large computational burden. Furthermore, this system of linear equations is often
ill-conditioned [13]. Simplifications are possible if the input is Gaussian [7], but only for quadratic
systems. Such difficulties have prompted several authors [1, 8, 9] to consider orthogonalized Volterra
filter structures. Orthogonal structures for the Volterra filter, however, require exact knowledge
of the moments of the input distribution or employ sub-optimal, numerically intensive algorithms.
Also, orthogonal structures do not give direct estimates of the Volterra kernels. Another approach
is based on lattice filter structures [11]. This approach also involves transformations of the input
and does not yield direct estimates of the Volterra kernels.

In this paper, two alternative approaches are presented that offer many advantages over exist-
ing filter structures. First, a Kronecker product structure for Volterra filters is reviewed [13]. This
structure is used to develop an efficient identification algorithm based on uncorrelated or PRMS
excitations [14]. Second, a new parallel decomposition Volterra filter (PVF') structure is presented
for problems involving uncorrelated, symmetric input signals. Here the standard Volterra filter is
decomposed into a parallel structure of smaller “sub-filters” that are obtained directly from the
standard Volterra filter structure and require no transformation or orthogonalization. Moreover, it

is shown that the sub-filters are orthogonal to each other in the mean-square sense provided the in-



put is uncorrelated and symmetric. The exact size of each sub-filter is derived and is generally much
smaller than the total number of parameters in the Volterra kernels. Hence, the PVF structure
dramatically reduces the computational burden associated with estimation of the Volterra kernels.
It also generally improves the conditioning of the estimation problem.

The PVF structure is appropriate for the class of random inputs that are uncorrelated, symmet-
ric, and satisfy the p.e. condition. This class includes Gaussian white noise. The PVF structure
can also be used with symmetric PRMS. Unlike their stochastic counterparts, PRMS provide the
desired orthogonality over finite data records. This makes PRMS extremely useful for practical
identification experiments.

The paper is organized as follows. Section 2 describes the standard Volterra filter structure
and contains a brief review of the Kronecker product structure for the Volterra filter. Persistence
of excitation conditions for the Volterra filter are given in section 3. The theoretical development
of the PVF structure is given in section 4. Section 5 contains a numerical study demonstrating
the performance of the PVF structure using random and pseudo-random excitation sequences. A

summary is provided in section 6.

2. The Volterra Filter

Consider a single input, single output, discrete time-invariant system with nonlinearities of

polynomial order N and memory length M. The system is described by the Volterra filter
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where {Yj}rez is the observed output sequence associated with the input sequence {Xy}rez (Z
is the set of integers). In equation (1), A} . ;. ji,...,Jn € {1,..., M}, is referred to as the n-th
order Volterra kernel. Note that the Volterra kernel can be assumed symmetric without loss of
generality. We will refer to (1) as the standard Volterra filter structure.

Let E(-) denote the expectation operator. For system identification experiments, the input

sequence { X} is often chosen to be a random sequence satisfying the following two conditions:



Al - 2N-th order stationarity:

M
E(]] X;i;41) isindependent of k

=1

for n; € {0,1,...,2N}, i = 1,..., M, satisfying Ef\il n; < 2N.

A2 - Uncorrelated up lo order 2N :

(i) E(X})< oo, which guarantees all necessary cross moments exist,

(“) E(H£1 Xgii-l—l) = Hf\il E(X;jii-l—l)

for n; € {0,1,...,2N}, i =1,..., M, satisfying "M, n; < 2N.

Under assumptions A1l and A2 estimates of the Volterra kernels may be computed in several ways
[12].

A Kronecker product structure for the Volterra filter is introduced in [13]. This representation
exploits the input conditions Al and A2 and results in a simple method for computing the Volterra

kernels. Define the vector X; = [1, X;, X2, ..., XN]T and the p = (N 4+ 1)™ dimensional vector
XEC = Xp @Xpo1 @@ Xp—m41, (2)

where @ is the Kronecker product operator [5]. All products of the input data values necessary
for the evaluation of (1) are included as elements of XECM]. The Volterra filter output is a linear

combination of these products; hence we rewrite the Volterra filter as
v, = 7xtM (3)

where the elements of the p-dimensional vector @ correspond to the elements of the Volterra kernels.
Note that XECM] contains additional high order “cross-term” products that are not required for the
evaluation of (1). Exact equivalence between the N-th order systems described by (3) and (1) is
obtained by setting the elements of @ corresponding to the surplus products equal to zero.

Now if {X}} satisfies A1 and all necessary cross moments exist, the optimal estimate of @ in

the mean square sense is found by solving the system of linear equations

e Ne = Bx{My), (4)



An elegant simplification is obtained if the input is sufficiently uncorrelated. First, the uncorrelated
assumption A2 is slightly strengthened because of the additional higher order terms included in

the Kronecker product structure.

A2 For n; € {0,1,...,2N}, i=1,..., M,
M M
E(HXgl—i+1) = HE(Xgl—i+1)'

Note that, assuming the required cross moments exist, an i.i.d. sequence satisfies A1, A2, and A2'.

The correlation matrix is given by

EXPIXPN) = B (Xe @ ® Xpempn) (Xe ® @ Xmaren)D). (5)

EXNX, ) =Ccg---0C, (7)

M times

where the matrix C = E(XzX1)is an (N + 1) x (N + 1) Hankel matrix of the form

1 my my -e- MmN
my My ms ot MN41
C=|m mg my o MN42 (8)
my MNy1 MNy2 - TN

and m; is the ¢-th moment of the sequence {X;}. Assuming E(X&M](XECM])T) is invertible, using

the Kronecker product inversion property [5] it is readily apparent that
Ht=cte--@ch (9)

Hence, solution (4) only requires the inversion of an (N + 1) X (N + 1) matrix C rather than the
inversion of the (N 4+ 1)M x (N 4+ 1) matrix E(XECM](XECM])T). Also note that E(XECM](XECM])T) is

invertible if and only if C is invertible. The input conditions that guarantee the invertibility of C



are studied in the following section.

A similar result is also obtained for PRMS inputs. In [13] it is shown that the sample correlation
matrix corresponding to a g-level PRMS (¢ > N + 1) of degree m > M is equivalent to the M-fold
Kronecker product

k+D
S xMxIMYT = vwwlg...g vv? (10)
n=k

M times

where I' = ¢™ and V is the ¢ X (N + 1) “extended” Vandermonde matrix generated by the level

values i i
1Llg - 1Y
1 1 ... N
vV = ! ! (11)
1t 1Y

For a more detailed discussion of the Kronecker product structure see [13, 14].

The main drawback of the Kronecker product structure is the inclusion of additional high-order
cross-term products. Accurate estimates of the expected value of such products may require an
extremely large amount of raw data. The use of PRMS circumvents this problem. However, in
practice the Kronecker product structure is only useful for systems with relatively short memory

lengths because it contains (N 4 1) parameters.

3. Persistence of Excitation Conditions for Volterra Filters

In this section, we review the persistence of excitation conditions for Volterra filters. Let X be a
vector composed of the products of the input { X} necessary for the evaluation of (1). For example,
if N =2and M = 2 then X = 1, Xk, Xp1, X2, XpXeo1, X2_,]T. Also, let @ be a vector
composed of the elements in the Volterra kernels so that ¥, = 87 X. The ordering of products in
X is not important in this section provided it corresponds to the order of kernel elements in 8.

The input sequence is said to be persistently exciling (p.e.) if the vector X persistently spans
the parameter space. Following the definition of p.e. inputs for linear filters, a similar definition is
applied to the Volterra filter.

Definition 1: If the correlation matrix E(.if'.if’T) exists and is non-singular, the sequence { X}
is said to be p.e. of degree M and order N or p.e.(M,N).

Note that satisfation ot the p.e. condition guarantees a unique MSE estimate of the Volterra

kernels.



3.1 Random Excitation Sequences

As noted in the previous section, under assumptions Al and A2’, the correlation matrix
E(XECM](XECM])T) corresponding to the Kronecker product structure is invertible if and only if C
(8) is invertible. Since the standard Volterra filter structure (1) is a special case of the Kronecker
product structure (3), the invertibility of C is sufficient to guarantee that E(.if.if’T) is invertible.
Also notice that C is a submatrix of E(;Y.if'T). Hence, the invertibility of C is necessary as well.
The following lemma gives a neccesary and sufficient condition for the invertibility of C.

Lemma 3.1: The matrix C is singular if and only if the random variable X} takes on at most
N distinct values with probability 1. O

Lemma 3.1 and its consequences have been discussed in various forms [2, 6, 13] and originates
in the Hamburger moment problem [16]. The proof of the lemma is elementary and follows by
noting that the singularity of C implies that there exists a vector b € IRN*! such that b’Cb =0
or E[(bTX})?] = 0. Obviously this is equivalent to b? X, = 0 with probability 1. Now b? X is a
degree N polynomial in the random variable X and has at most N distinct zeros with probability
1.

Lemma 3.1 indicates that common inputs for system identification such as Gaussian white noise
(GWN) [12] and random multilevel sequences (RMS) [13] are p.e. for Volterra filters. RMS are par-
ticularly desirable because they are relatively easy to generate. An RMS is defined as follows.

Definition 2: Let {X;} be an i.i.d sequence taking on a finite number of distinct values
{lo,l1,...,l;-1} C IR with corresponding positive probabilities pg, py, .. .,pq_l,zg;é p; = 1. The
sequence { X} is called a ¢-level RMS.

Note that an RMS satisfies A1, A2 and A2’ since it is i.i.d. and the level values are finite.
Lemma 3.1 indicates that a ¢-level RMS is p.e.(N, M) for all finite M if and only if ¢ > N + 1.

3.2 Pseudo-random Excitation Sequences

Pseudo-random binary sequences (PRBS) are widely used for linear system identification be-
cause of their many desirable properties and the fact that PRBS can be easily generated using shift
registers [17]. Unfortunately, PRBS are not p.e. for Volterra filters of polynomial order N > 2.
Pseudo-random multilevel sequences (PRMS) share many of the desirable properties of PRBS and
can be used for Volterra filter identification. We define a ¢-level PRMS as follows.

Definition 3: Let S, = {ly, 1, ..., l;—1} C IR be a set of ¢ distinct level values. Let {X}

be a sequence with elements taken from the set 5, and the m-fold Cartesian product of 5, with



itself be denoted as @™ 5,. If there exists a finite observation interval I' such that for every k,
each ordered m-tuple in @™ S, occurs sequentially in the collection {X,,}**! then {X;} is called
a g-level PRMS of degree m.

Note that there are ¢™ distinct m-tuples in the set @™ .S,.

Lemma 3.2: A ¢-level PRMS of degree m is p.e.(M, N )if m > M and if and only if ¢ > N + 1.

The proof follows from the Kronecker product form of the correlation matrix (10) by noting
that the invertibility of the matrix VV? guarantees the invertibility of the correlation matrix. For
details see [14].

A useful class of PRMS are known as maximal length sequences (MLS) [10, 12]. One important
property of MLS is known as the window property.

Property 1 - The Window Property: If a window of width M is slid along a g-level maximal
length sequence of degree M, all but one of the ¢™ M-tuples is seen exactly once over one period
(length M — 1) of the sequence. The sequence is easily augmented with the remaining M-tuple.

The window property is particularly important for system identification since it implies that an
(N 4 1)-level MLS of degree M is periodically p.e. for an N-th order filter of memory length M,
with period I' = (N + 1)M.

A detailed study of random and pseudorandom sequences for Volterra filter identification is

given in [14]. The condition of the corresponding system of linear equations is also examined.

4. Parallel Decomposition of the Volterra Filter

In this section an alternative approach is suggested which offers many advantages over existing
filter structures. A parallel decomposition Volterra filter (PVF') structure is derived, assuming the
input is uncorrelated and symmetric, by decomposing the standard Volterra filter into a parallel
structure of smaller “sub-filters”. The sub-filters are obtained directly from the standard Volterra
filter structure and require no transformation or orthogonalization. Moreover, it is shown that the
sub-filters are orthogonal to each other in the mean-square sense provided the input is symmetric
and uncorrelated. The size of each sub-filter is much smaller than the total number of parameters
in the Volterra kernels. Hence, the PVF structure circumvents the computational burden associ-
ated direct kernel estimation methods. It also generally improves the condition of the estimation

problem.



4.1 Theoretical Development of Parallel Decomposition

Recall that the output Yj described by (1) is simply a linear combination of products of the

input
M
ITXe (12)
=1
where
M
n; €4{0,1,....,N}, i=1,..., M, and an < N. (13)

=1
The parallel decomposition is obtained by grouping the products (12) into sets that are orthogonal

when the input {Xj}recz satisfies A1, A2, and the symmetry condition:

A3 - 2N-th order symmelric process:

E(X) =0, p=0,1,...,N -1,

A broad class of signals satisfy A1, A2, and A3 including Gaussian white noise and random multi-
level sequences with levels symmetric about the origin.

Since stationarity is assumed (A1), we simplify the notation by arbitrarily fixing £ = M. Hence,
the set of random variables (r.v.’s) {X;}, represents the input sequence.

Let X denote the set of all products of the {X;} necessary for the evaluation of (1), that is,

M M
X2 [Ix" > ni<N, nef{0,1,...,N}}. (14)

Now X is decomposed into smaller subsets that are orthogonal to one another in the mean square
sense. Assumption A2 and the symmetry assumption A3 guarantee that the expected value of
any product containing at least one r.v. raised to an odd power is identically zero. The desired
decomposition is accomplished by appropriately grouping elements of X according to r.v.’s raised
to odd powers.

Let S be the set of all subsets of {X;}, and denote these subsets as {Ij}ifl with I; £ ¢.
Each a € & is a product of r.v.’s raised to even and odd powers where the power 0 is considered
an even power. Let a® be the factor of a consisting of r.v.’s raised to odd powers. For example, if
a = X$X2X5, then a° = X3P X5.

We now define the orthogonal subsets of X. For each j = 1,2,...,2M let

Xi={ackx :o’= [[ X piefo1,..}}. (15)
X:€el;

10



In words, X'; contains products with all r.v.’s in set /; raised to odd powers and all other r.v.’s
raised to even powers. Observe that if N < M, which is often the case, some of the sets {Xj}?fl

are empty. It is easily verified that
X=X,U---UX;yu. (16)

The following proposition shows that these subsets are orthogonal to one another.
Proposition 5.1: If o € X' and 8 € Ay, then
>0 ifj=k
E(aB) = (17)
0 ifj#k
Proof: Notice that if 7 = k, then a°3° contains only even-order r.v.’s. Thus, in this case, the
product af contains only even-order r.v.’s and E(af) > 0 almost surely (a.s.). If j # k then af
contains at least one odd-order r.v. Hence, A2 and A3 imply E(af)=0 a.s. O
Note that the condition F(af) = 0, in the case j = k, implies a degenerate random process
equal to zero a.s. Therefore, in practice, the inequality in (17) is written as a strict inequality. The
importance of the Proposition 5.1 is that the Volterra filter (1) can be decomposed into a parallel
structure of smaller, orthogonal filter banks.
Of practical interest is the number of products in each “sub-filter”, since the number of products
corresponds to the number of kernel parameters associated with each sub-filter. For any set B,
let cardB denote the cardinality or number of elements in the set. Also, let the number of r-

combinations of an n-set be denoted as

n!

C(n,r) = A (18)

The following results are derived in Appendix A. The number of elements in X is cardX =
C(M + N, M), including the zero-order product 1. For each sub-filter, if I; contains k r.v.’s, then

the number of products in &'; is given by

C(M+[X=£], M), f0<k<N
o _ | core o)
0, itk>N
where [] is the integer part of the argument. Clearly, the largest sub-filter size is C(M + [§], M).
Comparing this to cardX = C(M + N, M) it is clear that a significant reduction in size is obtained.
N
For large M and relatively small N, the largest sub-filter size is roughly (’)(M) while the full

Bl
Volterra filter is (’)(]\JJV—J,V)

11



4.2 Vector Representation and Optimal Volterra Kernels

The number of non-empty sub-filter sets is s = E?Zg(M’N) C(M,1). For each 1 < j < s, define
X ;j to be a column vector composed of the products in the set X ;. The order of products in each

sub-filter vector .if'j is arbitrary. Define the vector

x 2l al L xh (20)

The optimal Volterra kernels in the mean squared error sense are obtained by solving the system

of equations

E(xx")e = EXY), (21)

where Y is the output of (1) and  is a vector of estimated elements in the Volterra kernels. Due to
the orthogonality between sub-filters, the matrix E(.if'.if’T) is block diagonal, and hence the large

system of equations in (21) is reduced to a solving s small systems of equations having the form

E(X;X])0; = B(X;Y), 1<j<s, (22)

where éj is a vector of the estimated elements in the Volterra kernels that correspond to the

products in .if'j.

4.3 Example : Third-Order Filter

To illustrate the previous developments, consider a third-order (N = 3) Volterra filter. Accord-
ing to the construction developed in section 5.2, the sub-filter vectors have the following forms.

The sub-filter vector corresponding to the set I; = ¢ has all even powers and
i'l = [17 ‘X127 X227 R X]%4]T (23)

The other sub-filter vectors have three forms. One form has a single r.v. raised to an odd power.

For example, if Iy = {X;} then
Xy =[X1, X1X3, XiX3, ..., X1 X3, X7 (24)

Another form has pairs of r.v.’s raised to odd powers. For example, if I3 = {X;, X3} then the

sub-filter X3 has one element,

X3 = [X1X). (25)
The last form has triples of r.v.’s raised to odd powers. If Iy = { X, X3, X3} then
X4 = [X1 X2 X3). (26)

12



The size of each sub-filter vector is given by (19) and the size of the largest sub-filter vector is
M + 1. Hence, for the third-order case, the complexity of the parameter estimation problem for the

largest sub-filter is that of an order M 4 1 FIR filter. The savings in this case is significant since

(M+3)!
M1 3!

the total number of elements in the Volterra kernels is R~ MTS for large M. For example, if
M = 12, then the largest sub-filter has only 13 parameters whereas the full Volterra filter has 455
parameters. The computation of the optimal Volterra kernels using the sub-filter structure requires

solving several systems of 13 or fewer simultaneous equations (22) while the standard Volterra filter

requires solving one system of 455 simultaneous equations (21).

4.4 Estimation from Finite Data Records

The PVF structure is derived assuming the sub-filters are orthogonal to each other. In practice
exact orthogonality will not be obtained with random sequences and finite data records because
the expectation is replaced by a finite sum. That is, assuming ergodicity, the true correlation
matrix is replaced with a sample estimate. The lack of orthogonality introduces an error in the
parameter estimates. This error is avoided by using maximum length PRMS. In this case, the
exact correlation matrix is obtained over one period of the sequence. If the PRMS level values are
chosen symmetrically about the origin, then A3 holds in a deterministic sense and the sub-filters
are exactly orthogonal to each other over one period.

For example, a third-order filter with memory M requires a four-level MLS of degree M to
satisfy the p.e. requirement. A symmetric sequence is obtained by choosing the four levels as +a,
-a, +b, and -b for a,b € IR. The length of one period of the MLS in this example is I' = 4™,

While exact orthogonality is obtained over one period of an maximum length PRMS, for large
memory Volterra filters the required sequence length may be prohibitively long. In this case a
shorter or truncated PRMS often yields acceptable estimates. However, as in the random sequence
case, errors result from lack of orthogonality between sub-filters.

Another issue is the ill-conditioned nature of the Volterra estimation problem [14]. Ill-conditioning
can lead to numerical difficulties as well as erroneous estimates if observation noise is present. The
condition number! of the correlation matrix E(XX T) grows as the memory and order of non-
linearity increase. Unlike a linear filter driven by white noise inputs, when N > 1 the condition

number depends on the memory length of the filter. In general, the ill-conditioning is even worse

!Note that the calculation of the condition number is greatly simplified if the input is uncorrelated and symmetric.

If {Xx} satisfies A1,A2, and A3 then conds [E(.;Y/'YT)] = max;<;<s conds [E(.}Y].}Y]T)].

13



when E(.if'ji'T) is replaced by sample estimates obtained from finite data records. Ill-conditioning
problems are often much less severe in the PVF structure because the sub-filter correlation matrices

E(X;X ;F) are much smaller than the full Volterra filter correlation matrix.

5. Numerical Study

Second and third-order Volterra filters are simulated and identified using Gaussian white noise
(GWN), symmetric RMS, and symmetric PRMS excitation sequences to demonstrate application
of the PVF structure. These examples also serve to illustrate the errors associated with the use of
finite data records. In all simulations the input power is chosen so that the power delivered to each
kernel is approximately equal.

First, a second-order filter with memory length 30 is simulated. This second-order filter contains
496 unique kernel parameters. However, the largest sub-filter size in the PVF structure is only 31.
An input excitation of length 1 x 10* and average input power 0.66 is applied to the Volterra filter.
Table 1 lists the normalized squared error for between the true and estimated kernels for GWN,

RMS, and PRMS input sequences. For the n-th kernel, the normalized squared error is defined as

” 2
2 _ Zivenin |50 in = PGy in | .
S S T 27)
Jtseendn 1700150000
where 5?1,...4'” is the estimated kernel. Fig. 1 depicts the estimated first and second-order Volterra
kernels.

Next, a third-order filter with memory length 12 is simulated. This third-order filter has 455
unique parameters and the largest sub-filter size is 13. An input excitation of length 2 x 10* and
average input power 0.33 is applied to the Volterra filter. The true and estimated kernels obtained
using GWN, RMS, and PRMS input sequences are shown in Fig. 2. Table 2 lists the normalized
squared errors for each case.

Inspection of the results given in Tables 1 and 2 and Fig. 1 and 2 shows that useful estimates
are obtained using the PVF structure with relatively short data records. The errors present in the
kernel estimates are due to non-orthogonality between sub-filters that results from using relatively
short data records. While these errors are eliminated by using a full period of a PRMS, the required
sequence lengths of 33Y and 4'2 in the second and third order examples, respectively, are excessively
long. In this simulation, little difference is evident between the estimates obtained by the different
excitations. The results for the second-order filter are very good. Better results in the third-order

case are expected if a longer data record is used.

14



Lastly, a third-order filter with memory length 8 is simulated. This third-order filter has 165
unique parameters and the largest sub-filter size is 9. An input excitation of length 4% ~ 6.5 x 10*
and average input power 0.33 is applied to the Volterra filter. In this case, one full period of a
4-level maximum length PRMS is used. The true and estimated kernels corresponding to GWN,
RMS, and PRMS are shown if Fig. 3. Table 3 lists the normalized squared errors for each case.

Table 3 and Fig. 3 demonstrate that exact results are obtained by the PVF structure with
one full period of a PRMS in the absense of observation noise. The errors present in the kernel
estimates in the random input cases are once again a result of non-orthogonality between sub-filters

due to the finite data record.

6. Conclusions

In this paper, two methods for estimating the Volterra kernels are discussed. In general, the
optimal estimate of the Volterra kernels requires the solution of a large system of simultaneous lin-
ear equations. If the input sequence is sufliciently uncorrelated, the estimation problem is greatly
simplified using the Kronecker product structure filter because the inverse of the large correlation
matrix is expressed as a Kronecker product of small matrices.

Assuming the input sequence is sufficiently uncorrelated and symmetric, a parallel decomposi-
tion of the Volterra filter is derived that reduces the large estimation problem to a set of parallel
sub-problems. Fach sub-problem is significantly smaller than the original estimation problem and

is easily computed. Simulations demonstrate the utility of this method.

Appendix A.

In the following, the number of r-combinations of an n-set is denoted as C'(n,r) as defined in
(18). For illustration, first consider the number of unique products in the N-th order Volterra kernel
of memory length M. That is, the number of products of the form H£1 X" with the constraint
Ef\il n;=N,n; > 0,1 <i¢< M. This number is simply the number of N-selections of an M-set
which is well-known to be equal to C(N + M — 1, M — 1) [4]. The total number of products in all
kernels up to the N-th order is determined by requiring Zf\il n; < N. It is easily verified that this
is equivalent to the constraint Ef‘ii"l n; = N, where n; > 0 for 1 <7 < M + 1. Hence, the total
number of products in an N-th order Volterra series with memory M is C(N + M, M).

Now consider the problem at hand. A’; is a set of products containing exactly cardl; = k

r.v.’s raised to an odd power. Recall I; is the set of r.v.’s raised to odd powers. Let I; denote the
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remaining set of r.v.’s raised to even powers. Fach a € X'; is written as
_ 2n;+1 2n
a= [T X II X, (28)
Xi€l; X €]
with the constraint

> @2ni+1) + > 2m < N, (29)

i:X €1, LXe]
where n;,n; > 0 for all indices. Since there are exactly k r.v.’s in the set /;, the last constraint is

equivalent to

M
Z 2n; + Z 2n; = ZQTLZ' < N -k (30)
X €15 lleEf] =1

Dividing both sides by two gives
M
=1
where [] is the integer part of the argument. Hence, the discussion earlier shows that

card¥; = C(M + [#],ﬂ/[). (32)
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TABLE 1

Normalized Squared Error of Estimates for 2nd-Order Filter with Memory 30

kernel | GWN error | RMS error PRMS error
1 0.020 0.026 0.001
2 0.014 0.020 0.010
TABLE 2
Normalized Squared Error of Estimates for 3rd-Order Filter with Memory 12
kernel | GWN error | RMS error PRMS error
1 0.073 0.168 0.036
2 0.068 0.014 0.026
3 0.073 0.084 0.102
TABLE 3
Normalized Squared Error of Estimates for 3rd-Order Filter with Memory 8
kernel | GWN error | RMS error PRMS error
1 0.020 0.058 0.000
2 0.001 0.003 0.000
3 0.014 0.029 0.000
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Figure 1. True and estimated kernels for 2nd-order Volterra filter with memory length 30.
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Figure 2. True and estimated kernels for 3rd-order Volterra filter with memory length 12.
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Figure 3. True and estimated kernels for 3rd-order Volterra filter with memory length 8.

21



Figure Captions:

Fig. 1. True and estimated kernels for 2nd-order Volterra filter with memory length 30.

Fig. 2. True and estimated kernels for 3rd-order Volterra filter with memory length 12.

Fig. 3. True and estimated kernels for 3rd-order Volterra filter with memory length 8.

22



