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ABSTRACT

Volterra filters have been applied to many nonlinear system
identification problems. However, obtaining good filter es-
timates from short and/or noisy data records is a difficult
task. We propose a penalized least squares estimation al-
gorithm and derive appropriate penalizing functionals for
Volterra filters. An example demonstrates that penalized
least squares estimation can provide much more accurate
filter estimates than ordinary least squares estimation.

1. INTRODUCTION

Volterra filters have been applied to many nonlinear
system identification problems (see [2, 3] for a sum-
mary of applications). It is well known that polynomial
regression models, such as the Volterra filter, often suf-
fer from severe ill-conditioning [5]. Consequently, least
squares Volterra filter estimates obtained from noisy
data are often very poor. In this paper, we describe a
estimation algorithm based on the method of penalized
least squares (PLS) [1, 6]. PLS is a well known method
for regularizing the LS estimator and is shown to sig-
nificantly improve Volterra filter estimates. The main
contribution of this paper is the design of appropriate
penalizing functionals for the Volterra filter estimation
problem.

2. VOLTERRA FILTER IDENTIFICATION

The output of a pth order Volterra filter with memory
m in response to a real-valued input {z(k)}recz is given

by

o(k) = E E hi(ky, ... k)

i=1 kq,...
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where hj, referred to as an jth order Volterra kernel,
is deterministic and is real-valued!. Note that certain
products are unnecessarily repeated in (1), and hence
we may assume that the kernels are symmetric. Let
x(k) be a column vector whose elements are the unique
products in (1), and let 85, be the column vector of the
unique kernel parameters (accounting for symmetries)
so that (1) is rewritten as

v(k) = x(k) 8. (2)

One of the most important aspects of the Volterra
filter is that the kernel parameters are linearly related
to the output. Therefore, given the filter input and
output, identifying the kernel parameters is a linear
estimation problem. In a typical identification exper-
iment, we have a finite number of input and output
measurements. In most cases, it is assumed that the
output measurements are contaminated by an additive
1.i.d. observation noise. This noise may represent er-
rors due to mismodelling, sampling, quantization, or
sensor noise. The observed output is given by y(k) =
v(k)+n(k), where n(k) is the observation noise. Given
a finite set of input {z(k) : k = —m,...,n — 1} and
noisy output {y(k) : £ = 0,...,n — 1} measurements,
estimates of the Volterra kernels can be obtained using
least squares (LS). Let y = [y(0),...,y(n — )], n =
n(0),...,n(n — D]¥, and X = [x(0),...,x(n — 1)]T;
then y = X8, + 1. Assuming that the matrix X7X is
invertible, the unique least squares estimate of 83 is

0, = (XTx)"'xTy, (3)
and @h minimizes the residual sum of squared errors

1
—lly — X613 (4)

1Tt is not necessary that the input to the Volterra filter be a
time sequence. For example, the m input samples may be pix-
els in an image or measurements from an m-dimensional sensor
array.



3. PENALIZED LEAST SQUARES

In general, Volterra filter identification is “ill-posed”.
A standard approach to ill-posed inverse problems is
known as the method of regularization. A simple regu-
larization procedure for LS problems is the method of
penalized least squares (PLS) [1, 6].

In PLS, the square error criterion (4) is augmented
with a penalizing functional to form a new criterion
function given by

1
~lly = X645 +AT(8h),  A>0. (5)

The penalizing functional J is chosen to reflect par-
tial prior information that may be available regarding
the unknown @j. J is non-negative and is chosen to
weight undesirable or unlikely solutions more heavily
than desirable or likely solutions.

The parameter A in (5), called the regularization or
smoothing parameter, controls the trade-off between
the fidelity to the data, measured by the squared error
lly — X762, and the penalty J(6;). Regularization
reduces the estimator variance at the expense of pos-
sibly introducing a bias. There are many automatic
procedures for choosing a good regularization parame-
ter A. Theoretical and empirical evidence shows that
such methods often provide very good results [1, 6].

The critical issue in PLS is designing an appro-
priate penalizing functional J. As mentioned above,
this choice should reflect prior information that may
be known about the problem at hand. If J is chosen
wisely, then the bias of the penalized estimator will be
negligible. In many applications, a reasonable penaliz-
ing functional is expressed as a quadratic form; for a
general penalized least squares problem J(6) = TR,
where R is a positive semidefinite matrix. The next
section examines the design of R for the Volterra filter
identification problem.

4. PENALIZING FUNCTIONALS FOR
VOLTERRA FILTER IDENTIFICATION

The derivation of penalizing functionals is accomplished
in three steps. First, we introduce a tensor product
representation of the Volterra filter. With this rep-
resentation, the relationship between kernel penalties
and filter response is easily described. This relation-
ship allows us to construct meaningful and useful kernel
penalizing functionals. The third step transforms the
kernel penalizing functionals into penalizing function-
als for the underlying parameter vector 8. To simplify
the presentation, throughout this section we will con-
centrate on the pth order homogeneous Volterra filter
(i.e., the Volterra filter involving only p-fold products

of the input). Extensions to the general Volterra filter
are straightforward.

4.1. Tensor Product Representation

In the pth order homogeneous case, equation (2) relates
the output v(k) to the unique parameters of the pth
order kernel h,. An alternative vector representation
using the tensor (Kronecker) product [4] is useful for
interpreting the relationship between the kernel and
the input. We use the following notation throughout
the paper. For any matrix or vector A, let A(®) denote
the p-fold tensor (Kronecker) product of A with itself.

The tensor product representation of the Volterra
filter is derived as follows. First, let

d(k) = [x(k),...,z(k—m+ 1)]T,

a vector of the input samples needed to compute the
Volterra filter output v(k). Note that the tensor prod-
uct dP)(k) contains all p-fold input products involved
in the Volterra filter. The Volterra filter may be written
as

v(k) =hld®)(k), (6)

where h,, is an m? x 1 vector containing all elements
of the Volterra kernel h,. The difference between (2)
and (6) is that the symmetries inherent in the Volterra
filter are not accounted for in (6). The advantage of
(6) is that the output is related directly to the kernel
rather than the parameter vector 8. This is crucial to
the derivation of appropriate penalty functionals.

4.2. Kernel Penalizing Functionals

The goal of the penalizing functional is to penalize so-
lutions that are unlikely or undesirable. The input re-
sponse of the Volterra filter characterizes its perfor-
mance. Therefore, a useful penalizing functional for
the Volterra filter is one that penalizes response behav-
ior that is unlikely or undesirable. Specifically, assume
that prior information suggests that it is unlikely or
undesirable for the unknown Volterra filter to produce
a strong response to a specific subspace of the input
space. This subspace is called the penalized subspace.
Penalizing functionals for the Volterra filter are de-
rived from the penalized subspace as follows. Let P
denote the m x m orthogonal projector corresponding
to the penalized subspace and for any matrix or vector
A, let A(P) denote the p-fold tensor (Kronecker) prod-
uct of A with itself. Using some simple tensor product
identities [4] the Volterra filter v(k) = hgd(p)(k’) may

be decomposed as follows:

v(k) = (P(p)hp)Td(p)(k) + ([I(p) _ P(p)]hp)Td(p)(k’),
(7)



where T is the m x m identity matrix. It is easily shown
that _ _ _
(PWh,)"d®) (k) = h! (Pd(k))®).

Hence, (P(p)hp)Td(p)(k) is the filter response to the
input component in the penalized subspace. P(p)hp is
called the penalized kernel and is simply the projection
of the original kernel h, onto the p-fold tensor product
of the penalized subspace.

Now consider a penalizing functional of the form

J(hy) = hIPWh,. (8)

The decomposition (7) shows that (8) weights the pe-
nalized kernel only. This penalizing functional is easily
generalized to

J(h,) =h! RP)h,, 9)

where R is a symmetric, positive semidefinite matrix
whose dominant eigenvectors (associated with the large
eigenvalues) span the penalized subspace. The gener-
alization (9) allows one to weight the relative amount
of penalization applied to the Volterra kernel. A con-
crete example of Volterra kernel penalizing functional
is given in the example of Section 5. The choice of pe-
nalizing functional is closely related to the problem of
Volterra filter approximation [4]. Many of the results
in [4] are directly applicable to the choice and design
of appropriate penalizing functionals.

The tensor product representation suggests a use-
ful way of constructing penalizing functionals for the
Volterra kernels. However, the PLS problem is formu-
lated with the kernel parameter vector 6, rather than
the kernel h, itself. Therefore, the Volterra kernel pe-
nalizing matrix R(®) must be modified to apply to the
parameter vector 8.

4.3. Penalizing Functionals for 6,

To obtain a penalizing functional for the parameter vec-
tor we need to construct transformations relating h,
and 6. Linear transformations T, and U, satisfying
8, = T,hy, and h, = U,60; are easily determined ac-
cording the symmetries of the kernel h,. Each p-tuple
(41, ...,1) corresponds to an element hp(i1,...,4,) of
the kernel and for every permutation o(1),...,o(p) of
1,...,p we have
hp (i1, ...

,ip) = hp(ia(l), R Z'U(p)).

Hence, with each p-tuple we identify its unique gener-
ating p-tuple (41,...,1p), where i1 < iy < ---<ip,. Let
{gk}ﬁzl be the set of unique generating p-tuples, where
L= (p+’;_1), the binomial coefficient.

The matrix T, is constructed as follows. Let ny
be the number of distinct permutations of g;. For ex-
ample, if g = (1,1,2,5), then ny = %:1, = 12. Let
J1ks- -5 Jnek denote the positions in h, of h,(gz) =
hp(i1k, ..., 4 ) and the identical kernel elements as-
sociated with the n; — 1 permutations of g;. Notice
that the positions ji z,...,Jn,r are dictated by the
tensor product formation of d?)(k). Now let the ele-
ments in kth row of T, take the value 1 at the positions
J1ks -, Jng,k and 0 elsewhere. It is easily verified that
6, = Tph,.

The transformation U, is easily constructed from
T,. First, divide each row of T, by its sum (= number
of 1’s in the row) to obtain a matrix ’fp. Then U, =
¥

To illustrate the construction, consider the simple
case of a quadratic kernel (p = 2) with memory m = 2.

In this case, hy = [ha(1, 1), ha(1,2), h2(2,1), ha(2,2)]T,

1 0 0 0
T, =0 1 1 0],
0 0 0 1

and Hh = Tghg = [hg(l, 1), 2h2(1,2), hz(?,?)]T The

matrix Uy is given by

1 0 0
0 05 0
U2 =14 05 0
0 0 1

Continuing, recall that the kernel penalizing func-
tional takes the form

J(h,) = h’R"h,, (10)

where R(?) is a positive semidefinite matrix as defined
in (9). Replacing h, by U,8), produces

J(0r) = (U,0,)TRPU,H,,

6, (U'R"U,)8,. (11)

Equation (11) provides the form of the parame-
ter vector penalizing functional. Given an appropri-
ate kernel penalizing matrix R(P) a parameter vector
penalizing matrix is obtained by the transformation
UgR(p)Up. Hence, the PLS Volterra filter criterion
function is

1
;IIy—X9h||§+A9§(U§R<p>Up)eh, A>0. (12)

Assuming that (XTX +n A Ug R(P)U,) is invertible, it
follows from Theorem 2 in [1] that the unique minimizer
of (12) is given by

6,(\) = (XTX +nAUTRPU,) X Ty,  (13)



Remark: Note that invertibility of X7 X guarantees
that (XTX +nA UgR(p)Up) is invertible. However,
(XTX+nA Ug R(P)U,) can be invertible even if X7X
is singular. This observation is very important for iden-

tification from short data records, a situation in which
XTX often fails to be invertible [5].

5. NUMERICAL EXAMPLE

In this section we illustrate the PLS identification of a
quadratic Volterra filter. The quadratic kernel of the
unknown filter is depicted in Fig. 1 (a). Visual inspec-
tion shows that the true kernel is fairly smooth and
hence a roughness penalty is appropriate. In practice
the true kernel is unknown. However, we may deduce
the underlying smoothness of the Volterra kernel in a
number of ways. For example, if the frequency con-
tent of the filter output is sufficiently lowpass, then a
roughness penalty is in order. Further characterization
is possible by applying special test inputs to “probe”
the unknown system prior to complete identification.

In our example, we choose a kernel penalizing ma-
trix of the form R(?) = (I—8)(?) where S is the projec-
tion onto a low dimensional subspace spanned by the
discrete prolate spheroidal sequences (DPSS) [7] cor-
responding to the cutoff frequency fy. The DPSS are
the optimal sequences of length m that concentrate the
largest fraction of the total energy in the lowpass band
[—fo, fo) C [-1/2,1/2). The parameter vector penal-
izing matrix is obtained via the transformation in (11).

To demonstrate the performance of PLS compared
to LS we simulate a system identification experiment.
The input {z(k)} is generated i.i.d. N(0,1). The cut-
off frequency for the smoothing matrix is fy = % and
rankS = 10. The observation noise {n(k)} is i.i.d.
N(0,0.1). For the simulation, we use n = 2000 in-
put and output observations. Fig. 1 (b) shows the
LS estimate. The squared error of the LS estimate
is 0.0421. The smoothing parameter for the PLS es-
timate is A = 3.98; A is determined using the method
of generalized cross validation [1]. The PLS estimate is
depicted in Fig. 1 (¢). The squared error of the PLS es-
timate is 0.0063, nearly an order of magnitude smaller
than the squared error of the LS estimate.

6. CONCLUSIONS

This paper demonstrates the utility of PLS for obtain-
ing good Volterra kernel estimates from noisy data.
Prior information can be used to derive appropriate pe-
nalizing functionals for the problem at hand. General-
ized cross validation automatically adjusts the amount
of penalization and therefore the estimates are not un-
duly constrained by the prior information.
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Figure 1: Quadratic system identification: (a) Unknown
kernel (b) LS estimate (c) PLS estimate



