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Abstract

This paper completely solves the optimal Weighted Least Mean Square (WLMS) design problem
using sums of separable terms. For any fized number of separable terms (less than or equal
to the rank of the unconstrained solution), the problem is solved as a sequence of separable
filter approximations. An efficient computational algorithm based on mecessary conditions is
presented. The procedure allows a high degree of flexibility in the choice of filter orders and the
number of separable terms, but it may converge to a local minimum. An improved approzimation
can be obtained by computing more terms than required and then performing a truncation of
the coefficient matriz using a singular value analysis. A significant computational advantage
is that the procedure requires neither the solution of the unconstrained WLMS problem nor the

singular value analysis of the ideal filter.



1 Introduction

The design of fast-acting 2-D FIR digital filters is a much researched area in Digital Signal
Processing. Several authors (see for example [1], [20], [26], [29]) have proposed new algorithms
to achieve good quality designs with reduced computational complexity. A good quality design
is obtained by finding the optimal filter coefficients that satisfy a given constraint. Reduced
computational complexity is obtained by eliminating redundant operations, making acceptable
approximations and by putting to use the inherent symmetry properties in the desired filter
response. Unfortunately, good quality and reduced complexity are, normally, conflicting in
nature, and there is a trade-off between them in any standard design technique.

With the advances in VLSI technology and the advent of high speed processors which allow
a high degree of parallelism, there is new interest ([3]-[8]) in digital filter design algorithms
which readily lend themselves to a parallel architecture. Such algorithms provide for a fast
implementation without deterioration in filter quality by allowing for several operations to be
performed concurrently, thus reducing the trade-off inherent in the standard design techniques.
This paper integrates quality of the filter and parallel implementation by approzimating a
desired filter with sums of simpler and faster filters. The 2-D filtering action is now accomplished
by several pairs of 2-D separable filters, all acting concurrently on the image. The transfer

function of the k th such separable FIR filter is then given by

Ny Ny
Hy(z1,22) = Z Z ag(n1)bg(ng)zy "2y (1)

n1:—Ni n2:—Né

[3],[4] give the details of one approach to design such filter pairs. This approach entails the
use of the Singular Value Decomposition (SVD) of the desired response to find the optimal
separable responses. These responses are then approximated by 1-D FIR filters, using standard
design algorithms (like for example, the Remez algorithm ([30])). In a second stage, the SVD
of the filter coefficient matrix is used to reduce the number of parallel channels. The main
drawback of the SVD design procedure is that it involves an approximation by FIR filters,
once the optimal 1-D frequency responses are determined. This leads to a final design which is
suboptimal. There is, therefore, a need to formulate an algorithm to design truly optimal 1-D
FIR filters and avoid the need for a double SVD.

This paper develops a parallel decomposition in terms of separable components by setting
the filter design problem as a constrained Weighted Least Mean Square (WLMS) problem in
the coefficients. Separability of each component is imposed by constraining the coefficients of
2-D filters to be rank one matrices. The technique is shown to be equivalent to an SVD with a
different measure of orthogonality.

Notation can become very cumbersome and cloud some developments with unnecessary
complexity. For this reason, the next section states the problem in the conventional way and

then simplifies the notation by introducing an operator based notation which encompasses both



discrete and continuous cases. This general formulation is solved in section three for the case
of one separable filter and extended to a sum of separable filters. Section four presents design

results. The final section contains conclusions.

2 Problem Statement

Consider a linear shift invariant 2-D filter with frequency response D(wq,ws). This filter must

be approximated by an FIR filter of the form

H(wla w2) = Z h,(kl, kQ)e_j(k1w1+k2w2)
(k17k2)61z

The merit index for the design is the cost function

'R‘ T
7 :/ / W|D — H|*dwrdws

™ ™ .
= / / W(wl,w2)|D(w1,w2) — Z h(k‘l,kg)e_J(k1w1+k2w2)|2du)1dQJ2
e (k1,k2)€l,

The index set I, is a subset of the integer numbers and normally is a rectangular region. In
this case the collection {h(k1,k2)} can be arranged as a matrix. The function W(w1,ws) is a
non negative function that can be used to assign more weight to performance in certain regions
of the frequency domain.

The index is clearly a function of the FIR filter coefficients. Its minimization will determine
the optimal coefficients. This is the standard WLMS problem. With the obvious modifications,
one can set the problem in the discrete frequency domain, or extend it to m-D filters. For
simplicity, the presentation is concentrated on the 2-D case, with appropriate extension to the
general m-D case. If one wishes to restrict the minimization to the class of separable filters,

then the coefficient matrix must be of rank one.

Remark 2.1 It is well known that the general formulation can be simplified, from a computa-
tional point of view, if one makes use of symmetry conditions [25], [26]. However, as long as the
filter is linear in the coefficients and the cost function is quadratic, one can always manipulate

the design problem to the general formulation discussed below.

2.1 The General Formulation

We offer here a formulation of the WLMS problem which applies to both discrete and continuous
frequency cases and general m-D filters. The main goals are to reduce notational complexity, to
highlight the common aspects of the problem, and establish conditions applicable to all cases.

The filter to be designed is an element of a ’filter space’, F, which is required to be a Hilbert
space. For the continuous m-D case this space is L%[—x, 7]™ while for the discrete case it will

be a Euclidian space with dimension depending on the number of frequency points.



The filter is determined by a set of coefficients which are elements of a ’coefficient space’,
C, which will also be a Hilbert space. If the coefficients are required to be real, this space is a
Euclidian space, otherwise it can be taken as a space of complex numbers. If ¢ € C is a set of
coefficients then a feasible filter solution can be represented as H = F(c), where 7 : C — F is

a given map describing the filter in terms of its coefficients. For FIR filters, this map is linear.

Remark 2.2 In the unconstrained 2-D case , the parameters are normally arranged in a matriz,
C. Since N1 x Ny matrices can also be considered elements of a Hilbert space, ENVN> | with
inner product < A, B >= tr{A*B}, A, B € ENM*N2; one can formulate the problem directly in
terms of the matriz. For this, one can use the ’stacking’ isometry S : EN*Ne —y pNiN2 - [f
C € EN1XN2 s gn Ny x Ny matriz, the vector ¢ = S(C) € EN1N2 s obtained by stacking the
columns of C following a left to right order. It follows easily that the ’de-stacking operator’ is
actually the adjoint S* : EN1N2 s ENiXNe gng that S*S is the identity transformation. For
example, if the filter is of the form

H(z1,2) Z Z h(ni,n9)z; "zy "2, (2)
nl_—N ng_—N’

(where Ny = 2N] +1, No = 2Ny +1),

one can define the matriz of coefficients
C = [h(k1, k2)]; —N] < k; < N}; i=1,2. (3)
The definition of the operator FS is then
Z’ Z h(n1,ng)el (Mwitnaws)
n1=—N] ng=—N},

Clearly, the same type of representation can be established for the general m — D case.

The ideal filter is an element D € F, while the WLMS cost function is a weighted distance
in F and can be written in the form
J(c) = W(D - F(¢),D — F(o)p

For all cases of practical interest, the map, W, describing the weighting function can be assumed
to be self-adjoint and positive semi-definite. The optimal WLMS design consists in determining
the coefficient ¢ € C which minimizes the cost function J(c).

Using conventional properties one can write
J(c) = W(D), D)g — (FW(D),c)c — (¢, FFW(D)) ¢ + (&, FWF(c)) ¢
where the notation (-)* denotes the adjoint of the corresponding operator.
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Remark 2.3 Since one must work with different spaces, one should use different symbols to
denote inner products and norms in the various spaces. Thus (-,-)c denotes inner product in
the coefficient space. For the sake of simplicity, in the rest of the developments, distinctions

are not made when the underlying spaces are clear from context.
One can use standard variational techniques and derive necessary and sufficient conditions

for optimality. Specifically one has the standard result

Theorem 2.4 The parameter ¢ € C is an unconstrained solution to the WLMS problem if and
only if it satisfies
F*WF(é) = F*W(D)

Remark 2.5 It is also a standard result that the cost function can be written in terms of an

optimal solution as

J(c) = W(D),D) — (¢, F*WFé) + (¢ — ¢, FFWF (¢ — ¢)) (4)
Hence, minimization of J(c) is equivalent to the minimization of
Je(c) = (6 — ¢, FFWF (¢ — c)) (5)
This expression will be useful in developing a better understanding of the solutions.

Clearly, the unconstrained solution to the WLMS problem will be unique if the operator F*WF
is positive definite. Notice that the map F*WUF is a linear transformation in the parameter
space. For the FIR case, even for the general m — D case, this is a finite dimensional space; the
cost function becomes a simple quadratic function in the coefficients; and the solution could, in
theory, be obtained using matrix inversion techniques. Particularly for m-D filters, this is not a
practical approach and researchers have developed many different approaches (see for example
[25, 26]).

2.1.1 The separable 2 — D case

The constraint that the filter be a single separable term is easily stated in terms of the matrix

of coefficients, C. One must have
C=ab"; a€ ENt pe EN

It is then clear that the vector of coefficients obtained by stacking the columns of C' is nothing
more than the Kronecker product a®b € EN1M2 (ie., a®b = S(ab’)). The vectors a € EN b €

E™2 are unconstrained. The cost function can be put in the form
J(a,b) = W(D),D) — (FW(D),a®b) — (a®@ b, FW(D))+ (a @b, FFWF(a®b)) (6)

The optimal design of the one-term separable filter corresponds to the minimization of the cost

function in eq.(6) with respect to the unconstrained parameters a, b.



Remark 2.6 The m-D separable case follows exactly the same model. The filter coefficients
will also be arranged in a rank one matriz, which now will be of the form C = a1 Qa2 ®...Q ayp,.
Each vector ay, contains the coefficients of the k—th 1-D filter. Their dimensions are determined

by the required order in that filter.

In order to gain insight into the minimization, one can reformulate the problem in terms of
the unconstrained solution. Following remark 2.5, the cost function in Eq. 6 can be rewritten
as

J(a,b) = W(D),D) — (¢, FWFé) + (¢ —a @b, F*WF(é—a®b)) (7)

In a similar manner, the constraint that the filter must consist of k£ parallel, separable terms,

requires a matrix of coefficients
k
Cr=>_ ab;; a€ ENt pe EN
i=1
In terms of the vectors obtained by stacking columns, a k— terms approximation is a vector
k
Ckzzai®bi§ aiEENl; biEEN2
i=1

where the vectors a; ® b;; 1 = 1,2,...,k, form a linearly independent set. It should be clear
that the number of separable terms must be at most equal to the rank of the unconstrained

solution, and must satisfy the constraint k£ < min{Ny, No}. The cost in this case has the form

k k
J(ck) = (W(D), D) — (&, F*WFé) + <c =Y ai @b, FWF(E—> a;® b,-)> (8)

i=1 i=1
Remark 2.7 Finding the best k terms separable approximation is then equivalent to the ap-
prozimation of the unconstrained optimal, ¢ using a weighted inner product. In particular, if

F*WIF is the identity operator, one must solve the minimization problem

k
J(ar, by, ak,be) = =D a; @b; ||?
i=1

Using the ’de-stacking’ operators, the cost can be rewritten in terms of matrices as

k
J(G,l, bl, ey ALy bk) :H C- Zazsz ||2
i=1
The solution of this problem is known and can be expressed in terms of the k largest singular
values, and corresponding singular vectors, for C. However, for an arbitrary matric F*WEF,

the conventional SVD will not, in general, yield an optimal k terms representation.



3 The Optimal Filter with Separable Components

This section contains the main theoretical results, establishing the existence of optimal approx-
imations with a specified number of separable terms. The development examines the case of

one term and then uses those results to establish the general result.

3.1 Optimal Separable Filter

In the context of the present development, this case is referred to as the one term separable
filter. In fact it solves the WLMS problem with the additional constraint that the solution must
be a separable filter.

For the one term separable filter, the cost function is given by eq. (6). In order to determine

an optimal solution, one can use the identity
a®b: (G/®IN2)b

Replacing in the expression for J(a, b) (eq. (6)), and using the property, < z, Ay >=< A*z,y >,

one obtains

J(a'a b) = <W(D)5D> - <(a* ®IN2)'7:*W(D)7b> -

<b, ((I,* ® IN2).7:*W(D)> + <b, (a* ® IN2)f*WF(a ® IN2)b> (9)

For fixed a € EM, the previous equation is a conventional quadratic cost problem in the
vector b € EN2. The problem will have a unique solution b(a) if and only if the matrix
(a* @ In,) F*WF(a ® In,) is positive definite. The following result shows that this is indeed

the case whenever the unconstrained problem has a unique solution.

Lemma 3.1 For any non zero vector a € EN | the matriz (a* Q@ In,) F*WF(a®Iy,) is positive
definite if and only if F*WUF is positive definite.

The proof is immediate because (b, (a* ® In,)F*WF(a ® In,)b) = (a ® b, F*WF(a ® b)).

The unique solution is
b(a) = [(a* ® In,) F*WF(a ® In,] '(a* ® In,) F*W(D) (10)
This expression for b can be replaced in the cost function defining

Jo(a) = J(a,b(a))

= (W(D), D) — (F*W(D), (a ® In,)[(a* & In,) F*WF(a ® In,)] " (a* ® In,) F*W(D))
(11)
It is immediately apparent that this cost function is independent of the magnitude of the

vector a; hence one can restrict its minimization to the unit ball, B, = {a € EM :|| a ||= 1}.
Since the unit ball, B, is compact, the existence of a global minimum can be established by
showing that Jy(a) is a continuous function on B,. For this purpose, one can use the following

steps



1. If the unconstrained WLMS problem has a unique solution, then F*WJF > 0. Hence

(a)
FWEF = A2

(b)
Mmin | 2 1P< (Ap, Ap) < Aoy Il 2 |I%; Vp € BN (12)

2. Define X(a) = Aa ® In,, Q(a) = X*(a)X(a). Using Eq( 12) establish

(a)

Amin ” a ||S|| X((J,) ||< Amaz || a H

(b)
A2uin 10 11P< (b, Q(a)b) < A2pp | b 1|75 VB € EN?;a € B,

(c)
e 101°< (6,Q7"(a)b) < A2, 1B 1% Wb € ENa € B,

min
(d) If ay,a9 € B,, and da = ay — a then,
| da [|°< 2| da |I;
Q(a2) — Qa1) = X™(a1)X (da) + X*(da) X (a1) + X™(da) X (da)

and
| Qaz) — Q(a1) |I< 4X54, || ba ||

3. Since Q7 '(a1) — Q' (az) = Q7 (a1) (Q(az) — Q(a1)) Q' (az)

1 Q7 (a1) — Q7 (a2) IS 4 5iuMmas |l da |I; Vay, a2 € By

4. Since FW(D) = F*WF(¢), the cost function, J,(a), can be written as
Jo(a) = (W(D), D) = (X*(a)A(€), @~} () X" (a)A())

Therefore

,_.
—
Q
=
N—
e
g
—~
Q
)
N—
-
—
O
N—r
N
+

Jo(a1) — Jp(az) = (X*(a2)A(e),(Q " (a2) — Q™
<X*(a1)A(é)7 Q_l
(X*(6a)A(e), Q7"

5. Taking the absolute value, one can see that every inner product in the right hand side

can be bounded by || da ||. Hence the function is continuous.



Remark 3.2 Notice that
To(@) < J(a,b(a)) < J(a,b),V(a,b)

Hence this method indeed computes the globally optimal (one term) separable filter.
It is also clear that if for some collection of nonzero vectors {qi,q2,-..,qr}, one imposes
the additional constraints
(a,q1) =0;i=1,2.....k

the resulting domain is the intersection of the unit ball with a collection of subspaces. This is also
a compact subset of the unit ball, and the constrained minimization will have a globally optimal
solution. This result will be useful in establishing the existence of an optimal decomposition

with a given number of terms.

Now that the existence of the optimal solution has been established, it is possible to de-
velop necessary conditions which will be useful for the development of computationally efficient
algorithms. For this, let d,B be an optimal solution and a,b any other pair of vectors. Using

simple algebraic manipulations, one can write
J(a,b) = J(a,0) = (a®b—a®@bFWFa@b—a®h)+
¢—a@b FWFagb-a®h)+(a@b—agb FWF(E—-aob).
By selecting suitable variations one can determine several useful necessary conditions.
Taking a ® b —a ® b = aa @ b one has

0<o?(a@b FWFaeb)+a(c—a®h FWFaeb) +a(a®b FWF(E-aoh).
Using the conventional argument, for small values of «, the sign of the right hand side would

be determined by the terms linear in «. If they are non zero, one could contradict the condition

that @, b are optimal. Hence one must have
<a—a®z§,f*wm®i>> =0
Taking now a ® b = 4 ® b, and using the identity a ® b = (a ® Iy, )b, one can write
J(a,b) = J(@,0) = (a® In,(b—b), FWF(a® In,(b— b)) +
E—a@b FWF(@®In(b—b)) +(a® In,(b— b), FWF(e —a®b)).

The vector b — b can be completely arbitrary in EN2. Repeating again the small variation

arguments, one now can establish the condition
@ @ InyF*WF(E—a®b) =0

In a similar way, taking now a @ b = a ® b and noting that the vectors a ® b and b ® a are

related by a simple permutation; i.e.,
a®b=PsbQ a,

one can write a new necessary condition. These results are summarized in the following theorem



Theorem 3.3 The optimal pair d,l; satisfies the necessary conditions

1.
<e—a®13,f*wm®z3> =0

2,
0" @ In,FWF(e—a®b) =0

3.

b* @ IN, PLF*WF(é—a®b) =0

Remark 3.4 It is easy to see that the first necessary condition can be derived from any of the
other two. For the sake of clarity, it has been kept separate since its shows the orthogonality
characterisitic of all LMS solutions.

This theorem will be used to establish a numerically simple computational procedure. More

details will be presented in section 4, Development of a Computational Algorithm.

3.2 The Optimal Approximation with Several Separable Terms

According to remark 2.7, an optimal approximation in terms of k separable terms is equivalent
to the determination of a singular value decomposition by using a weighted inner product to

determine orthogonality. The following result makes this statement more clear.

Theorem 3.5 Assume that the unconstrained optimal ¢ can be written in the form

3

0
oi0; @ b;
1

[oH
Il

~.
Il

with o1 > 09 > ... > oy > 0.
Assume further that the terms are F*WIF conjugate; i.e.,

<a,~ ® by, FWFa; ® sz} =0; i (13)
and are normalized so that
(@ @by, FWFa; @b;) =13 i = j (14)

Then, for 1 <k < my
k
ék = Z O'ia/i ® bz
i=1
is the best k terms approzimation, in the sense that any other coefficient matriz C of rank less
than or equal to k yields a vector ¢ = S(C) such that J(&) > J(é).

10



(Note: The normalization condition in Eq (14) is simply a convenience and can be easily
removed.)

Proof: If the operator F*WUF is positive definite, the operation

(p1,p2) oy = (P1, FWFp2) ,p1,p2 € C

defines a new inner product in the space C and consequently induces a new definition of
orthogonality.

Any collection of nonzero vectors pi,pa, ... ,px such that (p;, F*WFp;) = 0; i # j are nec-
essarily linearly independent, since they are orthogonal in the new inner product. In particular

if p; = a; ® b;; Vi, then the matrix
k
Ck = Z ainT
=1

must be exactly of rank k.
If the vectors a; ® b; satisfy the normalization condition in equation (14), they form an

orthonormal basis (in the new inner product) for the subspace
Vi = span{a; ® bj; 1 <i <k}

Moreover, the vector ¢ — 0;a; ® b; is clearly orthogonal (in the new inner product) to the vector
00 ® b;. Hence, the vector ¢, = Zle o;a; ® b; will be the orthogonal projection of ¢ onto this
subspace V.
Let now C be a coefficient matrix, and é = S (é) be the corresponding vector of coefficients.
Assume that
(¢ —¢, FWF(é—¢)) < (¢— gy FWEF(¢— ¢))
Since ¢ is the orthogonal projection of ¢ onto Vj, the previous inequality implies that the

vector d = ¢ — ¢ cannot belong to subspace Vj.

In terms of the coefficient matrices, one has

k
C = Z (Alzi)? +D
i=1
where the matrix D cannot be expressed as a linear combination of the rank one matrices a; lA)zT
Hence, the rank of the matrix C must be strictly larger than k. Therefore, C), defines the best
approximation with rank k. The theorem is established.
Since the cost function for the WLMS design (Eq. 4)

J(c)= (W(D — Fe),D — Fc)
= (W(D),D) — (¢, FFWFé) + (¢ — ¢, F*WF(¢ — ¢))

one can easily derive

11



Corollary 3.6 The first term in the decomposition, o1a; ® IA)l, is the optimal separable filter

(determined in the previous section,).

The theorem is constructive and provides sufficient conditions for an optimal decomposition
of the unconstrained solution of the WLMS problem. The following argument shows that one
can always construct an optimal sequence. Hence, it is possible to establish a constructive tech-
nique to compute the optimal k terms approximation as a sequence of one term optimizations.

Consider an approximation of the form

Cky1 = Zf;rll a; @ b;
=3 4 ®bi+ agi1 ® by
=cCp + agt1 ® bry1

Assume that, ¢, the optimal approximation with k terms is known (this is the case for

k =1). Assume further that the minimization problem

min  J(é, + agy1 ® bri1) (15)
agp41,bk41

with the constraints
<ak+1 ® b1, FFWFi; @ b> —0;1<i<k

admits a nonzero solution (see remark 3.2 ).

It is apparent that if the method is continued until the one term minimization does not
permit any improvment, then one has actually constructed a sequence of terms that satis-
fies the conditions of the theorem (3.5) and has, therefore, computed the optimal solution.
Moreover, the optimal solution can be determined sequentially with the one term constrained
minimizations.

A severe limitation of many filter design tools is their computational complexity. The de-
composition into a sequence of smaller problems has definite advantages. However, the one
term minimization is a nonlinear programming problem which could still be considered com-
putationally challenging. On the other hand, the results in the previous section show that the
unconstrained one term solution always exists. Such a solution must yield a cost which cannot
be larger than the constrained case. Hence, it is clear that the optimal solution coincides with
an unconstrained one. Moreover, it must coincide with the global optimal.

This argument is attractive because it suggests that the optimization with k terms could be
solved with a sequence of unconstrained one term minimizations. Its limitation lies in the fact
that when using unconstrained minimizations, one does not insure the orthogonality conditions
and may end up with suboptimal results. The next section explores this issue and develops an

efficient algorithm for the one term minimization.

12



4 Development of a Computational Algorithm

The previous section establishes sufficient conditions for the existence of an optimal approxi-
mation with a specified number of separable terms; the solution can be obtained as a sequence
of one term optimizations. This is a significant result; however, from a computational point of
view, the one term minimization is still a complicated procedure. This section will develop an
efficient algorithm for its solution, based on the necessary conditions in Theorem 3.3.

The equations of interest here are

~

@@ InyF*WF(@E—a®b) =0
b* @ In, PEF*WF(@E—a®b) =0

The dependence on the unconstraineed solution ¢ is eliminated by the use of the identity (see
Theorem 2.4)
F*WF(é) = F*W(D)

Using also the identities a @ b = (a ® Iy, )b,a ® b = Pxb ® a, one can write
(0" @ In, FWFa @ In,) b= a* @ In,F*W(D) (16)
(b* ® In, PLF*WFP.b @ Iy, ) a = b* @ In, Py F*W(D) (17)
The proposed algorithm uses the following steps
1. Select an arbitrary unit vector ag € EM
2. Given the unitary vector a, € EM

(a) Compute b(ay) as the solution.of Eq (16), which is a linear equation of size Ny

Remark 4.1 An equivalent procedure is to minimize the cost function with respect
to b for a fizred a,. Since this is a quadratic cost function, a conjugate gradient

guarantees convergence in at most No steps.

(b) Given the vector b, = b(ay), compute a(by,) by solving equation (17) (or by using a

minimization procedure).

(c) Define

| &

(bn)
Optl = ———
" a0
If | an — ant1 ||> tolerance
set an := an4+1 and repeat iteration.
3. else
stop

end

13



It is clear that at every step, one is reducing the cost function. Moreover, the sequence of
vectors a, lies on the unit ball in EV1, which is a compact set, and consequently it must, at
least, have a convergent subsequence.

In practice, numerous examples with discrete frequency response cases show that the algo-
rithm converges very rapidly to a solution. Moreover, the algorithm appears to be insensitive to
the selection of the starting point. However, as is common in nonlinear programming problems,

there is no guarantee that it converges to the global optimum.

Remark 4.2 The application to the discrete frequency case was analyzed in detail in [31]. It
turns out that it is possible to characterize the cases where only real valued separable filters are
necessary. For the cases where complex valued vectors are gemerated, one can constrain the
formulation and force only real valued vectors. However, the erperimental results showed that
constraining the optimization produced slow convergence of the algorithm. It was also established
that if a term a ® b was a solution to the necessary conditions for a half plane symmetric filter,
then the conjugate vector a® ® b was also a solution. For these filters, in cases where complex
valued vectors were generated, the method forms a component filter with real coefficients using
Fla®b+a®® be).

4.1 Numerical Examples

The operators F, W have been explicitly evaluated in [31] for the case of discrete frequencies
2k; +1

2M;
The ideal filter D is represented by an (2M; + 1) x (2M3 + 1) matrix. The approximating FIR
filter has the form

Wik, =T k’iz—Mi,...,Mi—l;i=1,2

)

H = 0abTQF
with
_]W(?kﬁ—l),€2
Qi(kl,kg) =€ 2M; ; (18)
ki=—-M;,....M; —1,ky = —N{,...,N{,i =1,2.
Hence

Fla®b) =0 ® Wa®b=0Qab" QL
The weighting function is defined by an (2M7 +1) x (2Ms + 1) matrix , W, with nonnegative

entries and the operator W is defined as a Hadamard, or entry-by-entry matrix product, and
denoted here by e; i..e,
W(D) =W eD

The numerical examples included here divide the frequency range in 128 points (i.e., My =
M, = 64) and specify filter matrix coefficients of size N{ = Nj = 22. Thus the nonseparable
case requires 2N{Nj + Nj + N4 + 1 = 1013 coefficients while each separable filter requires only
2N| + 2N) + 2 = 90 coefficients. The cases shown below are:
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1. A one quadrant fan filter (Figures 1, 2). This is a good example of an ’almost separable’
ideal filter. In this case, the one term approximation yields a very good approximation.
In fact, the figure shows one can obtain a very good quality response, comparable to the
optimal non-separable response, using only very few (9%) coefficients. The maximum
error between the exact filter and the one term approximation is less than 2%. In this
case the algorithm required 180 iterations which is much smaller than the unconstrained

number of parameters.

2. A filter whose support is a rotated ellipse. The ideal response and a computed approx-
imation are shown in Figures 3 and 4 respectively. This filter has axes of .7w and .37
and an external transition band of width of .17. It is rotated 30° counterclockwise about
the w; axis. The filter is highly non-separable, but [31] established that the solutions
to the necessary conditions are always real. One can obtain an approximation with a
maximum error of 17% with a relatively small number of terms (11 in the case shown
in Fig 4). The evolution of the cost function with the number of terms is also examined
and shows a steady decrease in the error as the number of terms increases (see Figure 5).
This last figure also shows the number of iterations required for convergence for each of

the separable filters.

Remark 4.3 In order to interpret properly the 17% error, one must consider the fact
that the unconstrained solution with the same weighting function also has a very high
error. In fact, the corresponding 11 terms approximation derived using SVD analysis of

the unconstrained case has a mazimal error of 21% (see [31]).

3. A filter with triangular support having axes of .657 and .55, with an internal transition
band of width .1w. This is a half-plane symmetric filter, similar to the one quadrant
fan filter, but is also highly non-separable similar to the rotated elliptical. Figure 6
displays the ideal filter and Figure 7 the approximation with 14 separable terms yielding
a maximum error of 6.5%. The cost function and the number of iterations as functions of

the number of terms are displayed in Figure 8.

Remark 4.4 Fach of the cases shows that the cost function varies rapidly for the first
few terms and then shows only marginal improvement for each additional term. This
property suggests the concept of critical number of terms which appears to be related to

the singular value structure of the weighted ideal filter.

Remark 4.5 An examination of the data on convergence, shown in Figures 5 and 8,
shows that, on the average, the algorithm converges in a number of iterations equal to
the order of the separable filter. This speed is comparable to that of the best quadratic

algorithms.
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4. The optimality of the approximations is also examined for the last two filters. The pro-
cedure is the following:
First one computes an approximation with a number of terms greater than the critical
number, n.. The resulting matrix of coefficients is analyzed for its singular values and a
new coefficient matrix is determined using the largest n. singular values.
The above procedure produces a remarkable reduction in the number of terms required
for the filter with triangular support. As can be seen from the Figure 9, one can get a very
good approximation with just the first 4 terms taken from the SVD decomposition of the
coefficient matrix computed from the 14 terms originally used. An analysis of the singular
values of the matrix shows that the remaining singular values are less than 10% of the
highest singular value, and hence do not contribute much to the filter response. For the
rotated elliptical filter however, almost no reduction is achievable using this procedure,
even though the singular values of its coefficient matrix (computed from the original 11
terms), after 5 terms, are less than 10% of the maximum value. Reduction in the number

of terms is not achieved in this case since the originally computed filter has a high error

( 21%).

Remark 4.6 The experimental results show that the algorithm does not compute an op-
timal approzimation. In both cases, the approrimation obtained by truncating with the
SVD analysis presents superior filter characteristics and smaller error (see for example
Figures 9 and 10). However, the cost function for the one-term obtained using the al-
gorithm is always lower than that for the one-term filter obtained from the SVD-based
reduction. This has been observed regardless of the number of terms computed prior to
the SVD analysis. The conclusion is that the algorithm based on necessary conditions
does converge to an optimal solution, but the algorithm builds up numerical errors as the

number of terms is increased.

It is also interesting to point out that the separable filters obtained by SVD reduction
yield a large cost but look smoother and have better appearance than the optimal one-term
solution. This fact is a reflection of the acknowledged limitations of the mean square

criterion.

5 Conclusions

The paper completely characterizes the optimal solution of the WLMS problem using separable
terms. The characterization is supplemented with a fast numerical algorithm based on necessary
conditions. For any fixed number of separable terms (less than or equal to the rank of the
unconstrained solution), the problem is solvable as a sequence of separable filter approximations.
Extensive numerical results indicate that the algorithm builds up errors as the number of terms

increases. However, the technique permits a clear estimation of the number of terms required
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for a good approximation to a given filter. An improved approximation can be obtained by

computing a few more terms than required and then performing a truncation of the coefficient

matrix using a singular value analysis. A significant computational advantage is that the

procedure requires neither the solution of the unconstrained WLMS problem nor the singular

value analysis of the ideal filter.

Some of the experimental results yield filters with poor characteristics. This is attributable to

the known limitations of the LMS criterion. Better designs may be obtained by varying the

weighting function, for example using Lawson’s type updates ([25, 29]).
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Figure 1: Ideal magnitude frequency response

of 2-D quadrant fan filter Figure 3: Ideal magnitude frequency response

of 2-D rotated elliptical filter

= \\
l/l!/mmmm’i:/'ii‘i\‘m‘i\i\\\\\\\\\\\\\\\\\u\\\\\

iy il

I
4 ‘m\\\%{\‘&\}h\\\\m\m\\ 0

Figure 2: Magnitude frequency response of the

optimal 1-term separable FIR quadrant fan fil- Figure 4: Magnitude frequency response of the

ter optimal 11-term separable FIR rotated ellipti-
cal filter

Figure 5: Performance variation with number
of terms for the 11-term separable FIR rotated
elliptical filter
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Ideal magnitude response of .65/.55 triangular FIR filter
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Figure 6: Ideal magnitude frequency response

of 2-D triangular filter
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Figure 9: Magnitude frequency response of the

Magnitude response of 14 conjugate pair FIR separable filter:N1=N2=22
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Figure 7: Magnitude frequency response of the

optimal 14-term separable FIR triangular filter
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