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Abstract

In an earlier work, we introduced a new form of signal representation called the pseudo power sig-
nature (PPS) that was essentially independent of the duration of the signal. The signatures were
obtained based on the continuous wavelet transform, and were shown to be reliable and discriminat-
ing for classification purposes. In this paper, we take a fresh look at the problem of obtaining PPS
by carrying out our analysis in the frequency domain. The main advantages of this approach over
our earlier one, are that it is more versatile, permits the development of efficient computational al-
gorithms, offers a solution to some unresolved uniqueness problems in our original formulation, and
allows the study of the effect of the choice of analyzing wavelet to better aid the classification process.
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1 Introduction and previous work

The classification of nonstationary signals of unknown duration is of great importance in areas like
oil exploration, moving target detection, and pattern recognition. Consider the following classifi-
cation problem (common in non-intrusive subsurface exploration):

Signals are obtained by propagating electromagnetic waves through several layers of different classes
of materials. The goal is the determination of the various classes present and the thickness of each
layer. The presence of a particular class is equated to the occurrence of an event.

In the current literature, there exist several classification schemes which use time-frequency repre-
sentations to perform the above classification ([1],[2]). While each of these approaches works well
for the specific problem motivating their formulation, their applicability to the classification prob-
lem under consideration, where each event may have an unknown time support, is limited. This

drawback (owing to the signal length dependent nature) of conventional classification techniques



using time-frequency distributions ([2]), led us to explore the possibility of obtaining representations

which are intrinsically independent of time.

1.1 Notation

To simplify understanding, we first establish the notation followed in the paper.

wavelet 1 (t) € L?(R) satisfying the admissibility condition

oo |\ 2
Cy = / () dw < 00
—0o0

|l

and the family of its translations and dilations

walt) = = (270)

We have two function spaces that are used in addition to the L?(R) space:

H:{ab w//| 2dadb oo}
A = {s(a);c;/a|s(a)|2a—2<oo}

We have some

We know that # = A ® L?(R) and that the space of the continuous wavelet transforms (CWT)

is a proper closed subspace, M C H. Moreover, the continuous wavelet transform is the map

[ : L?(R) — H defined by

cy = Tlz; r € LA(R)

cpla,b) = <z,%w >row)

= /a:(t)\/iazp (t ; b)dt




The adjoint transformation, I'* : H — L?(R), has the definition

z¢ = TI[c;ceH
= Clzl/(l/bc(a,b)\/iaw (t;b) dng

1.2 Pseudo Power Signatures

In our earlier work ([4],[5]), we introduced the concept of time-independent signal representations
called pseudo power signatures (PPS) which had the following properties:

(1) They were independent of signal length, location, and magnitude.

(2) They were reliable and fairly robust.

(3) They were discriminating.

(4) They had few parameters and lent themselves to fast classification routines.

For z € L?(R) with CWT, ¢y, € H, where 1 is an admissible wavelet, we approximated ci(a, b) by

a separable element of the form

cy(a,b) = sy (a)ry,(b)

where s, € A, and rj, € L?(R). The normalized function sy, then corresponds to the PPS
of z. We showed that these signatures essentially characterize the scale power distribution in a
manner independent of time, and hence, are invariant to time shifts. An important consequence
is that pieces of signals are all characterized by the same signature. In [5], we showed that the
best separable approximation obtained is the element s ® r € H that orthogonally projects onto
¢y € M C H. The problem of determining the PPS then was reduced to solving the following

minimization problem P:



For a given o, € M, find the decomposition sy € H that minimizes the index
I(s,m) =] ¢, = Kls ® ] II3, (4)

where K : H — M is the orthogonal projection operator defined as

K [h] (a,b) = cwl/a/ﬂcgab(a, ﬁ)h(a,ﬁ)dﬁa#, VheH (5)
At that point, there was no known result concerning the uniqueness of solution and the problem
was regularized by adding a term X || s ® r || to the cost function. For analysis purposes, we
set A = 1, and presented a technique using the redundant wavelet transform to compute these
signatures ([5]). While this approach was shown to work well for classification, it suffered from the
following two drawbacks: (a) It was computationally expensive; (b) It did not yield the ‘true’ PPS

due to the addition of the regularizing term. In this paper we address both of these issues.

1. First, we formulate the entire problem in the frequency domain, which helps to solve the

regularized problem in a very efficient way.

2. Next, we use this same approach to present a strong argument that the minimization problem
without the regularizing term has, in general, multiple solutions. However, we show that
for band-limited signals, we can create PPS even for the non-regularized problem using a

practical, and efficient algorithm.

3. Finally, we present a technique that permits the study of the effect of wavelet selection on

the classification problem.



2 Frequency domain formulation

The frequency domain optimization of the cost function, J(s,r), introduced in Eq.(4), is is based

on the following (see [3]):

Lemma 2.1 The orthogonal projector K defined in Eq (5) satisfies

K=TIT*

where T is the wavelet transform operator defined in Eq(1). Moreover, one has

T = Iap)

Using this result the cost function in Eq(4) becomes J(s,r) =| T'[z] — TT*[s ® r] ||%,. Hence,

J(s,r) = [z =T [s@r] 1>

The map I'* has a well defined structure.

Ms@r] = C,pl/(L/bs(a)r(b)\/%w (t;b) dng

Let z°" = T*[s ® r] € L2(R). For its Fourier transform it is possible to write

X (w) = /w o / /b s(a)r(b)\/iazp (t;b> dz;’be—jwtdt

(10)



Interchanging the order of integrations and rearranging, one obtains

X (w) = / fqzawd“() (11)

This last equation permits the definition of a map U as follows

Ulsl(w) = / a)va¥(aw) d (12)
= <5,\Ila>A (13)

where ¥, = y/a¥(aw). Using conventional manipulations, one can prove
Lemma 2.2 The map U satisfies the following properties:
1. |U[s)(w)| < |l slla, Yw, Vs € A.

2. For each s € A, the function Uls](w) € L*(R), and hence has a unique inverse Fourier

transform given by

vl = 6" [t zv (1) %

— (s¥a), where do=—v ()

3. Under mild conditions ( v/t (t) € L2(R)), for each value of time, Uls](t) is a well defined

inner product in A, since 1, € A.



2.1 Optimal signatures using frequency domain formulation

The determination of optimal signatures requires the minimization of the regularized cost function,

introduced in Eq (8). This cost function, transformed to the frequency domain becomes

J(s,;r) = || X~ UIsIR [Zo) +A 1l s Il R 1122y (14)

Using Calculus of Variations, we obtain the two necessary conditions for optimality. Taking varia-

tions with respect to R(w) yields the first necessary condition

X(@U[s)w) = (0@ +A]s %) Bw) (15)

Taking variations with respect to s gives the second condition. This process is somewhat more

involved and requires the use of

Oisl) = o' | 55(a)\/ElIJ(aw)Z—g

The resulting expression is

[ X@R@Wat(w)ds = [ Ols)@)|R@)PVaBlawido + A || R [ st@)  (16)

The effect of the regularizing term in providing a unique solution is evident since it guarantees that
the first necessary condition always has a unique solution for R for any non-zero s € A. Similarly,

for any non-zero R € L%(R), we have a unique solution for s from the second necessary condition.

Remark 2.3 It is apparent that for a fized s € A, the cost function is quadratic in the variable

R(w) € L?(R). Thus, we can establish the ezistence of a unique minimizing solution R*(w) from the



necessary condition in Eq (15). Likewise, the second necessary condition can be used to establish
the existence of a unique s®(a) € A for each choice of R € L2(R). If s is constrained to a unit ball,

then we can use the argument in [3] to prove the ezistence of a minimizing sequence.

2.1.1 An efficient numerical algorithm to compute the PPS

For numerical computations it is standard procedure to restrict s(a) to a subspace of the form

s@) = Y owla) (17)
k

Thus, determination of the signature s(a) is equivalent to the determination of the vector o =
col{o}. The continuous frequency domain is also discretized using the set {wn; n=1,2,...}.
Instead of discretizing the necessary conditions it is more convenient to introduce the discretization
in the formulation of the cost function and re-derive the necessary conditions as shown below.
Assuming a discrete frequency set {wp; n = 1,2,...}, the function R(w) is replaced by the vector

Ry = col{R(wp)}. In a similar manner, the error function E(w) = X (w) — U[s](w)R(w) will be

replaced by a vector E4. The expression for U in Eq (12), becomes

which can be expressed in compact form as a vector

col{Uls](wn)} = Ugo (18)

Ua(n,k) = Ulvg](wn) (19)



Using the Hadamard product e (element-by-element matrix multiplication), we get the following

compact representation:

Eq = X4—(Ugo)e Ry (20)

The discrete cost function is then

Ja = || Xa— (Uao) ® Ry 2 +X || o ||| Ra | (21)

Applying variations to this cost function one obtains the two necessary conditions

Xq (Ugo) = [Uso e (Ugo)l® Ra+A| o |lf, Ry (22)

Ui(Xa®Ra) = Ujl(Uso) @ |Ral’] + X | Ralli2 0 (23)

Let D, = diag(|Rq|?) be the diagonal matrix with the entries of |Ry4|? along the main diagonal.

One can easily see that

(Ugo) o |[Rg)*> = D,Uso

Hence the second necessary condition becomes

Uj(Xa®#Rq) = UjDyUgo +A| Ry lpo o (24)



The observations in remark 2.3 also apply to this discretized case. Hence, a similar argument can

be used to establish the existence of a minimizing sequence when ¢ is constrained to the unit ball.

2.2 Existence of multiple signatures

The function U[s|(t) introduced in lemma 2.2 offers a good insight into the problem of uniqueness.

Consider the following result:

Theorem 2.4 If the wavelet ¥ (t) has compact support, it is possible to select an infinite number
of functions s(a) such that U[s]|(t) has compact support.

Proof

Assume that the wavelet 1(t) has support, Sy, C (0, Ty). It is clear that for any a > 1 the support

of p(at) is also contained in the interval (0, Ty).

In the expression for Ul[s](t), suppose we make a change of the integration variable as a = %

Letting s'(a) = s(1/a), (this is an L?(0, 0o) function) we can write
Ulslt) = [ s'(@)vay(at)da

If s' () is any L?(0, oo) function with support outside the interval (0, Ty) then it follows that
st(a)varp(at) = 0; Vi>1

and therefore U[s](t) = 0; Vt > [0 1]. |

Let z € L?(R) be an arbitrary signal with Fourier transform, X (w). Consider z°"(t) = I'*[s ® 7](t).

If U[s](t) has compact support, then U[s](w) is non zero on any interval of non zero length. Hence,

10



for the non-regularized problem, for almost all frequencies one can write

Since one can build functions U[s](w) that are nonzero on any interval using infinitely many func-
tions s € A (from Th. 2.4), it would appear that there are infinitely many signatures producing
a perfect match. The problem is that even if U[s](w) is always nonzero, one cannot assure that
R(w) will correspond to an L?(R) signal. Thus, even though this result is not a formal proof of
the existence of multiple signatures, it gives a strong indication that there will exist cases with

non-unique signatures. This has been borne out by experimental simulations.

3 Signatures for band-limited signals

For classification purposes it appears highly convenient not to use the regularization term and,
thus, have a ‘true’ PPS. We determined that when signals are band-limited, this is indeed possible.
Hence, it is useful to consider this class of signals in more detail. If the signal, z(t), is band-limited,
its Fourier transform X (w) has compact support, ;. In this case, one can always define R to be

band-pass on the support of X

R(w)=1; Yw € Q, and 0 elsewhere

The function, R(w), is guaranteed to be an L?(R) signal. The determination of the signature

requires the solution for s(a) of the equation

11



= / a)va¥( aw)

Numerically, this equation is replaced by the set of equations

da
X(wp) = C’w / (a)va¥ (awy,) 2;7?,=1,2,...N

A simple way to obtain a signature, s(a), for this case is by selecting
N S —
= oxVa¥(awy)
k=1
The determination of the signature requires the solution of the linear equation
Xq = Gyo (25)

where G is the Grammian matrix of the set of functions {\/aV¥(awy)} and ¢ = col{o}}. This
solution, however, is a vector of high dimension and not very convenient for fast classification
methods. A more compact “matched signature” can be obtained by selecting a subset of frequencies
and solving Eq. (25) using pseudo inverses. Experimental results show that this approach produces
very discriminating signatures. Moreover, the wavelet affects only the Grammian matrix and its

effect can be easily analyzed.

3.1 Simulation results and wavelet selection issues

The experimental results included here are preliminary. Because of its flexibility, there are yet
unresolved issues in the frequency domain approach. Unless explicitly stated, the wavelet used is

Daubechies’ Db2. The first set of results explores the difference between the optimal signatures

12
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Figure 1: Complex Valued Test Signals

and the suboptimal signatures developed in the bandlimited approach. The signals used are chirp
signals shown in Fig (1). Two of them, z1,z9, are very similar. The results in Fig (2) show very
clearly that the optimal signatures are quite distinct, even for the signals that are similar. The
suboptimal signatures are distinct but show less discrimination. The suboptimal approach has also

been tested with speech signals. Figure 3 shows the signatures obtained by processing records of

the letters a,b,c with 4096 points each for both a

capability of the signatures is apparent.

We also used this example to explore the issue of wavelet selection. The signatures in Fig (4)

were obtained using the wavelet Db8. A tentative

sharper for the higher order wavelet.

4 Conclusion and future work

In this paper, we have formulated an efficient frequency domain approach to determine PPS, and
shown through an example using band-limited signals, the excellent discriminating capabilities of

this class of signatures. Currently, we are in the process of studying the wavelet selection issues, and
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male and a female speaker. The discrimination

conclusion is that the difference in signatures is
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Figure 2: Signatures for Test Signals
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Figure 3: Signatures for Letters Using Db2

refining the computational algorithm. Due to the efficiency, reliability and discrimination afforded
by these signatures, this technique has good potential in applications like speech recognition and

target detection. The actual application in such a problem will be considered in a future paper.
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