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ABSTRACT

This research focuses on the analysis and classification of multicomponent non-
stationary signals of arbitrary duration. The proposed classification approach has
potential applications in areas like moving target detection, object recognition, oil
exploration, and speech processing. The wavelet transform is used as the basis for
the analysis. The classification technique is based on novel scale energy density func-
tions, called pseudo power signatures, which are independent of signal length, and
which can be used to characterize the time-scale energy distribution of the signal.
These signatures allow for fast classification of signals regardless of their length.

Two approaches to determine pseudo power signatures are presented in this work.
The first approach is based on a singular value principal component analysis tech-
nique, which, though computationally simple, is not very sensitive to signal charac-
teristics. The second is a more sophisticated approach, and is optimal in a weighted
least mean squares sense. The latter technique involves solving an inverse projection
problem arising from a nonlinear infinite dimensional minimization, and generates
good quality signatures with excellent discriminating capability. An algorithm, with
fast convergence, for application to discrete data sets is developed, and a complete
analysis of the computational complexity is obtained. Several simulation examples
are presented to illustrate the methodology, and its application to practical classifi-

cation problems. Finally, suggestions for further work in the area are given.

xi



CHAPTER 1

INTRODUCTION

Signal classification is an area of great importance in a wide variety of applications.
Representative applications include system identification, moving target detection,
oil exploration, and pattern recognition. In these applications, the signals are gener-
ally nonstationary in nature; i.e., their statistical properties vary with time. Conse-
quently, nonstationary signal classification is an area of active research in the signal
and image processing community. The research in the area usually takes one or

both of the following forms :

e The determination of good quality characteristic representations, often called

signatures, for a signal class.

e The determination of efficient and reliable techniques that use the signatures

to perform classification.

In this work, both the above issues are addressed. The main contributions of this
work are the introduction of a new concept of signatures for signal classes, called
pseudo power signatures, which are essentially independent of the signal length,
the determination and complete analysis of these signatures, and their application
to general classification problems. The notion of a signal class in this analysis is
based on the energy spread in the time-frequency plane. Since the pseudo power
signatures are independent of the signal length, they can be used to characterize
arbitrary segments of signals in a class, using the same characteristic representa-

tion. More generally, the pseudo power signatures allow for the representation of



nonstationary signal classes in a manner that is completely independent of time. At
present, no reliable techniques exist which provide for signatures for nonstationary
signals that have the time independence property. The importance of this property
becomes apparent when one considers a typical application of nonstationary sig-
nal classification, which was a motivation for this research, namely, the subsurface

classification problem.

1.1 NEED FOR TIME INDEPENDENT SIGNATURES

Subsurface classification is essentially a stratigraphic analysis problem. The ob-
jective is to identify, and thus classify, subsurface strata like sand, clay, silty clay,
or solid rock. Traditional approaches to performing this classification are mostly
invasive, involving drilling operations, and a manual (visual) classification. In ad-
dition to being costly, subjective and time consuming, the traditional approaches
can introduce negative environmental effects such as creating paths for contaminant
migration through the drilling operations, and may not always be feasible.

The modern approach to stratigraphic analysis attempts to develop non-invasive
subsurface exploration methods. The approach that motivated this research is an
example of a non-invasive technique which uses electromagnetic signals. The prin-
ciple behind the non-invasive techniques is that electromagnetic signals behave dif-
ferently when they propagate through different media. Hence, an electromagnetic
signal that has propagated through the subsurface should contain information about
its structure. This information is recorded in the reflected echoes of the electromag-
netic signals. Consequently, one could study the experimental data obtained from
the recorded echoes to establish features that are characteristic of the various subsur-

face strata, and use the presence of these features in a recorded echo of unclassified



strata, to infer the subsurface composition. Further, by either knowing or estimating
the signal propagation speed, one could relate the time of occurrence of the features
in the echo to the depth (spatial location) of the associated strata.

The problem with the subsurface analysis using the recorded echoes of propagated
electromagnetic signals, is that subsurface strata classification presents difficulties
which limit the applicability of conventional processing techniques. Layers can be
located at any depth, and can be of any thickness, or even be missing. However,
it is reasonable to expect that propagation through, say, a sand layer of a certain
thickness and depth, will affect the electromagnetic signal in a manner quite differ-
ent from a similar propagation through a layer of clay of the same thickness and
depth. In other words, the propagation of the electromagnetic signal through a layer
produces changes in it that are characteristic of the layer itself, and independent of
the depth or thickness of the layer. Implicitly, one is postulating that in each layer,
there exist intrinsic characteristic properties which are (ideally) independent of the
location and thickness of the layer. This assumption is supported by experimental
evidence. Specially trained expert geologists can infer subsurface composition by
analyzing the electromagnetic echoes from the subsurface. The analysis though, is
very time consuming and has a strong subjective component. There is therefore a
need to formulate tools that can automate the entire classification process.

One approach to classification involves obtaining mathematical models that accu-
rately characterize the associated physical phenomena. However, this approach is
very cumbersome and is still in need of basic research to understand all the phenom-
ena involved in the electromagnetic propagation through various media. A signal
processing approach to classification appears to be a more attractive alternative.

Consequently, many modern automated classification methods use signal processing



analysis techniques to perform the classification. In the classification approach us-
ing signal analysis techniques, every layer corresponds to a signal class, and the
trace of the recorded echo of the electromagnetic signal propagated through the
associated layer constitutes a member of the class. Representative members of the
different classes are used to generate signatures or characteristic representations
for each signal class. The signatures can then be used to classify a composite signal
containing components that are members of any of the signal classes, having any
arbitrary duration, and located in any random order. For this purpose, one can
easily see that the signatures are required to be time independent, both in terms
of location and duration of the component signal. The need for signatures which
are time independent is not specific to the stratigraphic analysis problem, but is
common to several other applications as well. Applications such as moving target
detection, sound recognition, and underground mine detection also require charac-
teristic representations that are essentially independent of time. A simple example
is the recognition of the letter “A” as spoken by a person on several different oc-
casions in different forms (words). One can clearly see that neither the location
of the letter nor the duration remains unchanged in each occurrence. However, a
good quality characterization should be capable of identifying the sound regardless
of when and for how long it occurs. Thus, the general framework used to develop
time independent signatures is very useful in several problems, and contributes to

an increased quality of classification algorithms.
1.1.1 MODERN CLASSIFICATION APPROACHES

Current research in classification essentially focuses on the determination of good

quality signatures. For the classification involving nonstationary signal classes, most



modern classification approaches use time-frequency representations to characterize
the signal classes. The representations are derived using suitable time-frequency
distributions or TF Ds ([18]), as it is commonly accepted that T'F Ds are best suited
to characterize and study nonstationary signals ([25]). In the current literature,
there exist several classification schemes which use time-frequency representations
to perform the classification. One scheme uses signal expansion techniques with spe-
cially chosen basis functions ([21],[6],[13],[22]). The main emphasis in this approach
is the selection of a basis for a particular signal class, such that the elements of
the signal class are well represented using an expansion in terms of the basis. This
implies that the defining features of the particular signal class are enhanced when
elements of the class are projected onto the basis elements. The basis is then used
as being representative of the class. Thus, a signal from a different class cannot
be well represented by the basis functions, and, in effect, exhibits a poor ‘match’
with the basis elements. The degree of ‘match’ then is the defining criterion for
the classification. This approach is very similar to the matched filtering concept
commonly used for signal detection. Another scheme uses kernel function design
techniques ([8],[9],[10]), where the main principle is the choice of an appropriate
kernel to characterize the TFD of a signal class. It was shown by Cohen in [18]
that every T'F'D can be represented as a generalized distribution associated with a
specific kernel. The choice of the kernel thus critically determines the properties of
the associated TF'D. When used as a classification tool, the kernel is designed for
a signal class such that the associated T'F'D for the class is clearly distinguishable
from the associated TF'D of any other class, using the same kernel. In this case,
the kernel is representative of the signal class. Other approaches include principal

component analysis techniques ([11],[24]), where the principal components of the



TFD of the signal class are extracted, usually using some form of a singular value,
or eigen value analysis, and used to characterize the signal class, and significant
feature extraction and mapping techniques ([3],[25]), where a set of well defined
measures is used as being representative of the class. Such measures include projec-
tions onto predefined convex sets, projections onto eigenspaces, etc. There are also
approaches which combine the use of the T'F' Ds with other methods like statistical
processing ([12],[23]), and neural networks ([2]) to achieve a better classification. In
the first instance, signal classification is achieved based on the statistical properties
like second order moments, covariances, etc, as determined from the T'F'D of the
signal. In the neural network approach to classification, the characteristic param-
eters associated with a signal class, which are determined from the corresponding
TF D, are used to train a neural network to identify components of the class. Each
of these techniques provides signatures which are essentially time-frequency repre-
sentations, and are optimal in the context of the specific problem motivating their
formulation. However, their applicability to problems where one requires intrinsic
representations which are not functions of time, is limited. Hence, even though the
individual approaches work very well for specific problems where signal length is a
known parameter, there is a very real need to establish a methodology to determine

time independent signatures that can be applied to general classification problems.

1.2 OVERVIEW OF WORK

This research formulates and solves a general classification problem for signals whose
length is unknown. In order to establish the generalized framework, the classifica-
tion to be performed can be formulated as the following general event detection

problem, henceforth referred to as the problem P :



P There is a known class of events, {Ex;k = 1,...,n}, which may appear
in a given scene for a variable time interval. One has collected data from the scene
as a signal z(t); € <t < ty, and it is known that only one event is present at
any given time. Then there is an unknown partition P, = {t; < t; <ty...<t, <
tri1... < tp}, of transition times marking the start and end times of an event.
The goal is to determine the transition times and the events occurring in each time
interval. This process is called classification of the signal z(¢).

Chapter 2 provides a brief review of common time-frequency distributions, and de-
velops the notion of pseudo power signatures.

Chapter 3 gives a solution, using a discretized matrix singular value analysis, to the
generation of the pseudo power signatures, and demonstrates through examples, the
effectiveness and limitations of this approach.

Chapter 4 discusses the theory, problem formulation and the solution procedure
of an approach using orthogonal projections in the space of wavelet transforms, to
generate the signatures.

Chapter 5 develops a computational algorithm to determine the projection signa-
tures, and illustrates, through examples, the applicability to a general classification
problem.

Chapter 6 summarizes the results obtained, and offers suggestions for future work.



CHAPTER 2

PsEuDO POWER SIGNATURES

This chapter presents a methodology to determine signatures, for nonstationary sig-
nal classes, to meet the requirements of the classification problem P. The problem
requires the determination of signatures for nonstationary signal classes which are
essentially independent of time. Since the underlying theory behind the genera-
tion of signatures for these classes involves the use of time-frequency distributions
(TFDs), a brief review of some commonly used TF Ds, their relative merits, and
their applicability to the classification problem P, is first provided. The problem of
determining time independent signatures is then addressed, leading to the formula-

tion of the concept of pseudo power signatures.

2.1 TIME-FREQUENCY DISTRIBUTIONS (T'F D)

Traditional signal analysis has usually been performed in the frequency domain
by the use of Fourier techniques. The idea was to separate out the signal into
its different frequency components using the Fourier Transform (FT). The signal
spectrogram (energy spread of the signal in the frequency domain in terms of the
square of the magnitude of its F'T") was used to determine the significant frequency
components of the signal, which were then used to characterize the signal. How-
ever, since the spectrogram did not provide any localization of time events, the time
varying information of signals was completely lost when using conventional Fourier
techniques. Effectively, a change at any one point in time, was spread out over the

entire frequency range. Thus, conventional Fourier analysis was very ineffective for



signals which were nonstationary in nature; i.e., signals whose statistical character-
istics varied over time.

Over the past few years, extensive attention has been given to the subject of time-
frequency distributions for the analysis of nonstationary signals. Cohen, in [1],
presents a review of these distributions and their applications. In the most general
case, they allow description of the energy distribution of the signal in a partic-
ular time-frequency region. For the problem P, every event under consideration
is regarded as a component of the nonstationary signal z(¢). A component of a
nonstationary signal is defined as that part of the signal that has a high energy
concentration in a localized time-frequency region, which is usually represented by
a peak in the time-frequency plane. It follows then that a signal which shows a
high energy concentration in a particular region has a significant component in that
particular time-frequency region. The different components of a multicomponent
signal can then be readily detected by the presence of several well localized peaks
in the time-frequency plane. In general, for the analysis of multicomponent non-
stationary signals, the choice of any one T'F'D over another in a given situation is

mainly determined by their comparative resolution capabilities ([14]).
2.1.1 THE WIGNER DISTRIBUTION

One of the most widely used time-frequency distributions is the Wigner Distri-
bution ([15, 16, 17]). This was originally developed for problems in quantum me-
chanics, and has since been generalized for use in signal processing by Ville, and
is often referred to as the Wigner-Ville distribution in signal processing literature.

The Wigner Distribution (WD) of a signal z(t) is defined as

W,(t, f) = / z(t + %)x(t - g)e—ﬂfffdf
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The signal energy over the time-frequency plane is obtained by integrating the W D

over the entire plane as

B = | /f Wi (t, f)dtdf

Similarly, the signal energy over a given support R is defined as

(B) _
E( / /(tyf)eRWz(t, F)dtdf

The energy concentration of the signal in R is then given by

Ry _ B
E,

This value is used as being representative of the presence of a component of a signal
in a given time-frequency region, and is a criterion to identify the components of a
signal in the different regions of the time-frequency plane ([5]). If the energy con-
centration in a particular time-frequency region exceeds a specified threshold, one
can classify a signal component as being present in the region.

The WD is widely used as a basis for classification since it has very desirable prop-
erties, such as a high time-frequency concentration which allows a signal component
to have a clearly distinguishable peak in the time-frequency plane. However, when
dealing with multicomponent signals, as in the problem P, the W D has some very
serious limitations. In most cases, the WD is incapable of resolving two compo-
nents in a signal due to the presence of excessive cross-terms ([7]). One needs very
high resolution in order to distinguish two closely spaced components, which brings
up another problem in that at high resolutions, the W D produces negative values
which are difficult to interpret in energy terms. Thus, the W D is a poor candidate
for the decomposition of multicomponent nonstationary signals, and hence is not

very useful for solving the problem P.
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2.1.2 THE SHORT TIME FOURIER TRANSFORM

Since the F'T is such a widely used tool in signal processing, it was attempted to
integrate the time-frequency dependency characteristic into the F'T" by a suitable
modification. This led to the Short Time Fourier Transform (STFT), which effec-
tively is the F'T of the signal over a suitable time window g(¢). The STFT of a

signal z(t) is defined as
STFT(t, f) = Fu(t. f) = [ o(r)g(r — D) *m"dr

The STFT can be viewed as the filtering of the signal at all times with a bandpass
filter having as impulse response the window function modulated to that frequency
([19]). Thus, the STFT can be viewed as a modulated filter bank.

The energy distribution in the time-frequency plane obtained from the STFT is
given by the spectrogram(SP), and is defined in terms of the magnitude of the
square of the STF'T. Formally,

SP,(t, f) =| Fu(t, f) |?

The signal energy over a given support R is defined as

(R) _
E( / /(t,f)eRSPw(t’ F)dtdf

The spectrogram associated with the ST FT can be used to provide very effective
representations, even in situations where the WD fails, namely, the resolution of
multicomponent signals. It has little cross-term interference, and always assumes
only positive values, providing for an unambiguous interpretation. However, the
STF'T is limited by the fixed time resolution it affords. The time resolution is effec-
tively determined by the shape of the window function used, which is constant at all

times. Hence, two time events not separated by an interval larger than the window



12

length cannot be effectively isolated by the STFT. For this reason, though the
STFT has much wider applicability than the F'T'] it is not an attractive candidate
for the problem P, where the distance between the signal components is unknown,

and the determination of the transition times is very important.
2.1.3 THE CONTINUOUS WAVELET TRANSFORM

To overcome the resolution limitation of the STF'T, one can imagine letting the
resolution vary continuously over the time-frequency plane so that one obtains a
variable resolution analysis ([19]). Intuitively, when viewed as a filter bank (similar
to the STFT case), this provides continuously increasing time resolution with in-
creasing center frequency of the band pass filters in the analysis section. In other
words, the frequency responses of the analysis filters no longer have constant band-
width as in the case of the ST F'T, but they have instead, bandwidth proportional
to their center frequency. This effect is shown in Figure 2.1. Effectively, this im-
plies that, for a band pass filter with center frequency, say fy, and bandwidth, say
BW,, the relative bandwidth, given by % = ¢, where ¢ is some constant. Band
pass filters, that have this property are referred to in signal processing literature as
constant - () filters.

The constant - @ filtering effect is exactly the effect of the Continuous Wavelet
Transform (CWT), which can be viewed as another class of TF Ds. Wavelet Trans-
form Theory is a recently developed area and is now being used widely for nonsta-

tionary signal analysis. The CWT of a function z(t) € L?(R) is defined as

¢ (a,b) = (T, Vap)y = / Zx(t)¢a,b(t)dt (2.1)
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Constant bandwidth for the STFT

5 BW, - - BW, -
A = - o
fo afo f
Constant relative bandwidth for the CWT
J cBW, - caBW, -
A > < >
fo afo f

Figure 2.1: Frequency domain coverage by the STFT and the CWT
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where 1), is a shifted and dilated version of the basic function ¢ (¢) € L*(R), and

is defined as

t—>
a

Yap =] a |77 ¥

) (2.2)

The basic function () is called the ‘mother wavelet’ function. Formally, the CWT
can be represented as a mapping I' : L?(R) — H = L*(R?, C’Jl%) with range M,
where M is a closed subspace of H ([26]). The inverse CWT operator ™" : M —
L*(R) is defined as follows :

T =05 [ [ b)%,,,(t)%, ¢ (a,b) € M (2.3)

where Cy = 27 [%7 %dw with U(w) representing the F'T of ¢ (t). This implies
that the CWT is invertible whenever Cy < oo, unlike the F'T" which has stronger
constraints for a valid inversion. This condition for inversion is called the admissi-
bility condition.

The energy spread of the CWT in the time-scale plane is defined by the energy
distribution called the scalogram ([20]). The scalogram of a function z(t) with

CWT c;(a,b) is defined as
SC3(a,b) =) (a,b) |

The signal energy over a given support R is defined as

dbda
EI(R) = _1// T b)—
v Cy (a,b)eRscw(a, ) a?

The shifted and dilated wavelets 1, provide a natural localization of a given func-
tion z(t) € L*(R) (finite energy signals) in time and frequency through the use of
the time index parameter b and the frequency index parameter a, more commonly

referred to as the scale parameter. In general, the scale a is inversely proportional
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to the frequency ([20]), which implies that large scales correspond to low frequencies
in the signal, and vice versa. Thus, one can visualize the CWT as the extracting
of the signal information at higher and higher frequencies (as the scale reduces),
with the time localization of this information given by the corresponding b i.e. a
variable windowing of the signal information with the window shape being deter-
mined by t,5. Note that 1, can be viewed as the impulse response of a band
pass filter with the constant - () property. Due to the inherent trade - off between
time and frequency resolutions, as determined by the Uncertainty principle !, the
CW'T has good spectral and poor temporal resolutions at low frequencies which is
useful for analyzing low frequency components of long duration, and good temporal
and poor spectral resolutions at high frequencies which is useful for analyzing signal
components of high frequency and short duration. Since most nonstationary signals
encountered in practice are of these forms, the CWT provides a very good repre-
sentation for these signals. Figure 2.2 represents pictorially the variable windowing
(varying time resolution) effect of the CWT, as compared to the fixed windowing
(constant time resolution) effect of the STFT. Thus, the CWT can clearly isolate
two high frequency signals placed close together if a sufficiently high time resolu-
tion is used. This excellent localization capability of the CW'T is extremely useful
for solving the problem P, since one can then accurately determine the transition

times between events.

!Uncertainty principle (Heisenberg inequality)([19)]) :
If At, and Af, represent the time and frequency resolutions respectively, then their product is
bounded below; i.e., the time-bandwidth product = AtAf > ﬁ.
This effectively implies that the resolution in both time and frequency cannot be arbitrarily small.
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g |

a: Spectrogram with square window
b : Spectrogram with long window

¢ : Spectrogram with short window
d: Scalogram (variable window)

Figure 2.2: Variable windowing of the CWT

A complete generalization to the entire class of time-frequency distributions was
given by Cohen ([18]) and is often referred to as the Cohen class of distributions.

The Cohen distribution for a function z(t) is given by

drdv
2T

Colt, fi1) = [ [Walr)hlr = t,v = )

where h(t, f) is an arbitrary time-frequency characterization function, often referred
to as the kernel function. Thus, the Cohen class of distributions is effectively the
2 — D correlation of the W D of any function z with the kernel function A. When
viewed as a member of this class, the spectrogram associated with the STFT can

be represented as

drdv
27

SPy(t, f) = //Wm(f, DWW, (T —t,v— f)
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where ¢ is the analyzing window function. Similarly, the scalogram associated with
the CWT can be obtained as

T—0b drdy
SC(a0) = [ [ Walr, n)Wo("—=,av)

The approach to classification using specially designed kernels which was mentioned
in Chapter 1, attempts to design a kernel function A(t, f) for each signal class such
that C,(t, f; h) provides a desired energy characterization for that class. To meet
the specific requirements of the classification problem P, the generalized TFD of
choice is C; = SCj which is obtained from the CWT, and corresponds to the
kernel h = W,,. It has the properties of excellent time localization which is desirable
for detecting the transition times, and efficient computation techniques using filter

banks.

2.2 TIME INDEPENDENT SIGNATURES

This section introduces a methodology for determining characteristic representations
for signal classes that are essentially independent of the actual duration of each
signal component. The methodology uses the concept of spectral energy distribution
and develops a representation that allows one to define an “instantaneous energy
distribution” which is called the pseudo power signature. Owing to the excellent
localization capability of the CWT discussed earlier, it is the T'F'D chosen as the
basis for this analysis.

Consider any r € L*(R) with CWT, cg(a,b), where ¢ is an admissible wavelet. The
scalogram SCy associated with ¢j, can be interpreted as a time-scale energy density

function since one can write

[latpar=c,* [ [ scia b)%
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Hence, the function

SCy(a,b) = |cj(a, b)|*

can be viewed as the corresponding time-scale power function and the function
SCy(-,b) as the “scale power distribution at time b”. From the Mean Value Theorem
for Integrals 2, one can estimate this function as follows :

Consider any interval [b; by over which SCj(a,-) is continuous. Then, there exists
by € [b1 by] such that

b2 |cZ (a, b)|?
Sc:;(a,bo)z/ G

o (b2 —bi)
If the wavelet has compact support, then as the scale decreases, the value of SCy, (a,bo)
is essentially independent of the values of z(t) outside the interval by <t < by. Thus,

the scale power distribution can be estimated by the scalograms of small segments

of the signal, and, for low scales, it would be essentially independent of the length

of the record. The lower the scale that one can use, the smaller the segments that

are required.

The ideal situation would arise if one could define a wavelet such that for a given

class of signals the corresponding wavelet transforms are separable, i.e.

Ci (a,b) = St (a)rfp(b)

2Mean Value Theorem for Integrals : If a function f(-) is continuous on an interval [a,b],
then there is a number p € [a,b] such that

b
F)b—a) = / F(t)dt
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The scale power distribution at time by would then be given by
b |ry(b)[?
b1 (bg — bl)

It is apparent that the normalized distribution would essentially be independent

SC;Z(G, b()) = ‘Si(d”z db; by € [bl bg]

of by. Thus, the scale function Si(a), suitably normalized, could be used as the
power signature to characterize the corresponding signal class in a manner that
is independent of duration.

The feasibility of this concept is strengthened by the fact that if one moves away
from L?(R) signals, one can find functions whose ‘formal’ CWT is separable. For
example, consider the power signal x(t) = Ae9%. If 9)(¢) is an admissible wavelet

with Fourier transform, ¥(w), the function

Glad) = [ o) S0

is defined for all values of a # 0,5 € R. Observe then that

cy(a,b) = Ava T (ah)e’?” = s(a)r(b)

A natural question that arises based on this result is the following :
Can one determine an admissible wavelet function ¢ € L?(R) that admits a similar

result for functions in L?(R)?
2.2.1 APPROXIMATE POWER SIGNATURES

The answer to the question posed at the end of the last section can be obtained

from the Theorem stated below.

Theorem 2.1 Given any nontrivial function x € L*(R), and an admissible (non-
trivial) wavelet 1 € L*(R), the space of CWTs of x with respect to 1 does not con-
tain any element of the form given by c%(a,b) = s(a)r(b), where s € L*(R,C;'%),
and r € L*(R, db).
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PROOF. Let H = L*(R?, C;' %) and s € S = L*(R,C,'%), r € R = L*(R, db).
The space H = S ® R (]|27]), and hence, it trivially follows that s ® » € H. Now,
S ® R is isomorphic with the space (S X R, Cwl‘i“ ® db), which implies that there
exists a unitary operator U such that U(s ® r) = sr. Hence, the element sr € H.
Let M be the space of the Continuous Wavelet Transforms. Then, M is a closed
subspace of H ([26]). Let ¢, € M denote the CWT of z € L?(R), where ¢ € L*(R)
is some admissible wavelet. Using a proof by contradiction, one can show that this
function cannot be of the form s(-)r(-).

By the definition of the CWT,

cilad) = [a0Zzu( D

Assume that cf(a,b) = s(a)r(b). Then,

s(@)r ) = [a(0—=o( =Ly

Keeping a fixed, taking the Fourier Transform on both sides, and using Fubini’s

Theorem? to interchange integrals, one gets

s(a) /b r(b)edh = / / b)dt —jb

s(@R) = Aawﬂcgw
- /t 2(t)v/a Tlaw)e “tdt
= Va Y(aw) t:c(t)e_j“’tdt
= Va Taw)X ()

)e_j “bdbdt, (Fubini)

3Fubini’s Theorem : If fw[fy | f(z,y) | dyldzr < oo, then, [ [ f(z,y)dzdy =
LU, f@y)dylde = [ [, f(z,y)dz]dy
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Fix w € Q, where (2 is the support of X (w), and let p(w) = %. Then,

= Y(aw)

sa) pda | U(aw) ?
[pw) =2 P2 = [ =5
2 pda _ Oy
@) P [ s = 2
C
2 _ v
@) Plslls = 5°

The above implies that | p(w) | is a constant function for all w € Q. This results in
the condition | X (w) |= L | R(w) |, where L = ,/2%01;1 | s ||s. Thus,

s(a) |
LJa

which implies that | ¥(aw) | is constant for all w € Q. Consider wy,wy € Q with

=| ¥(aw) |, Yw € Q, Va (2.4)

wy < wy. From Equation 2.4,
| U(awy) |=| ¥(aws) |, Va (2.5)
Let o = aw;. Let A = £2 > 1. Equation 2.5 can then be rewritten as

| ¥(a)

=[ V() |, Vo

Define a map T[¥](a) = ¥(Aa). Then, || T[] [[= % || ¥ |. Thus, || T |= L < 1,

i.e. there is a strict contraction here. By the Contraction Mapping Theorem *, the

only fixed point of this transformation is ¥(a) = 0 a.e. By the Parseval’s Identity,
1o (=27 | ¢ 3

which implies that ¢ (t) = 0 a.e., thus providing the contradiction. O

‘Let T : X — X be defined on a complete metric space X, with metric d. Let o satisfy
0<a<l,and d(T(z),T(y)) < ad(z,y), for all x,y € X. Then, T has a unique fixed point Z.
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The theorem thus establishes the need to obtain a separable approximation to a
given CWT'. The corresponding “instantaneous energy distribution” given by sﬁ(a),

suitably normalized, is then referred to as a pseudo power signature.



CHAPTER 3

THE MATRIX SVD APPROACH

This chapter presents an approach to generate pseudo power signatures for differ-
ent signal classes using Principal Component Analysis. First, the general solution
approach for signals in L?(R) is addressed. Then, it is shown that the technique
can be reduced to the Singular Value Decomposition (SV D) of finite dimensional
matrices, when applied to finite discrete time signals. The approach is applied to
some artificially generated signals, and its merits and limitations are discussed. The
methodology is based on a principal component analysis technique, and is derived
from the decomposition of the CW'T of a signal as a sum of separable terms. This
decomposition is the natural extension of the SV D analysis, and effectively deter-
mines the closest separable approximation, in the least mean squares sense, to the

CWT given by cj(a,b) € M C H. This analysis is based on the following result

([29]).

Proposition 3.1 The CWT can always be expressed as

cy(a,b) = Zaisi(a)ri(b)

where s;(a) € S = L*(R,C;'%), and r;(b) € R = L*(R, db) for each i. The function

a2
sets {s;}i, {ri}i are complete in S and R respectively.
The principal component of cy, denoted by PC[cg], is given by o1s1(a)ri(b). The
function s; can then be used to define the pseudo power signature for the associated

signal z.

23
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In theory, the space H = S ® R, and the functions s;, and r; satisfy the coupled

integral equations given by

si(a) = %<ci,ri>R
ri(b) = Gii<ci,si>s

The pseudo power signature s; can then be determined by solving the above coupled
equation system. One can easily deduce that the principal component satisfies the

following equation :

dfBda

2

PCIG)(a,b) = ousi(@n(®) = 65" [ [ GlaHcs(at) @n
It is worthwhile to note that the concept of obtaining pseudo power signatures using
the principal component of the SV D is not limited to the CWT. Any TF D can be
represented as the sum of separable components of the form shown in Proposition 3.1
([29]), and hence, it is feasible to obtain pseudo power signatures using any TF D.
For the specific problem P, better performance can be obtained using the CWT,
owing to its excellent localization capability. However, for classification problems

with different requirements, the use of some other TF' D to generate the pseudo

power signatures might be more appropriate.

3.1 COMPUTATION OF THE SV Dj;; SIGNATURE

The last section presented a technique to determine the pseudo power signatures
for signals in L?(R). For computational purposes, however, one usually deals with
finite discrete time signals. It is thus necessary to determine the nature of the
decomposition given in Proposition 3.1 when applied to finite dimensional discrete

signal sets.
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In essence, Proposition 3.1 provides a decomposition of the CWT function c, (a,b) €
M as a sum of separable terms, with the o;s representing the weights associated
with each term. This decomposition is very similar to the more commonly known
SV D ! applied to finite dimensional matrices. If one can reduce the problem of the
determination of the pseudo power signatures for finite discrete signal sets, using
principal component analysis, to a standard matrix SV D problem, then one can
use any one of the existing standard, and efficient, algorithms for the computation
of the SV D. From the SV D, one can extract the principal component, and thus
determine the pseudo power signature. Since the signature is obtained from the
matrix SV D analysis, it is referred to as the SV Dy, signature.

In order to reduce the problem to a standard matrix SV D problem, one needs to
make a link between a continuous time function in L?(R) whose samples are given by
the finite discrete signal under consideration, the CWT of this continuous function
and its discrete equivalent, and the relation between the discrete equivalent to the
CWT and the discrete signal itself. Effectively, assume that for some z(t) € L*(R)
with CWT given by cfj, the discrete signal z(n) € 12 is obtained by sampling z(¢).
Then, one would need to find a discrete equivalent to ¢ which can be obtained
from xz(n), and which completely represents the original signal z(¢). Finally, one

would need to find a way to represent the discrete equivalent to the CWT as a finite

!The SV D applied to finite dimensional matrices is defined as follows. Given a matrix X €
CE*N the SV D of X is given by

X =U%Vv*

where U € CF*L and V € CV*V are unitary matrices, and & € RE*N is a positive semidefinite
diagonal matrix. The diagonal entries of ¥, o1 > 02 ... > 0, are referred to as the singular values
of X. If u;,v; denote the ith columns of the unitary matrices U and V respectively, then the
rank one matrix given by ojujv] determines the principal component of X.



26

dimensional matrix, and determine an efficient way to compute it. This is exactly

the motivation of the next section.
3.1.1 FRAMES AND FRAME OPERATORS

The aim is to obtain a suitable discretization of the CWT so that it affords no loss of
information, and can be obtained from the finite discrete signal under consideration.
The discretized CW'T coefficients can then be represented as a finite dimensional
matrix. The discretization is achieved by the application of the concept of frames

and frame operators in Hilbert spaces ([26]).

Definition 3.1 A family of functions {e;}cz in a Hilbert space X is called a frame

if there exist A > 0, B < 0o, such that,
Allw X< Bjez | (z,e5)x P<Blla|k, VoeX
A and B are called the frame bounds.

Definition 3.2 If {e;},cz is a frame in o Hilbert space X, then the frame operator
F is a linear operator from X to I*(Z) = {c = (¢j)jez; || ¢ |[*= Zjez | ¢; [*< oo},

defined as follows :
(Fx)=1c; = (z,€j)y, VZ€X

The adjoint frame operator F* is then given by
Frc = Yjezcje;

The application to the discretized C'W'T' arises by noting that, under certain con-

ditions ([26]), one can select the mother wavelet 1y € L?*(R), such that with the
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discretization {a;};, {bn}n, the collection of functions {;,}, where (from Equa-

tion 2.2)

t— b,
ay

Vi =| o \7% (

)

constitutes a tight frame (A = B). Note that in this case, the CWT operator
acts as a frame operator. Moreover, if one can choose a;, b, such that the frame
bounds A = B =1, and || ¢i, |2= 1, then, the collection {t;,};, constitutes
an orthonormal basis (ONB) for L*(R) ([26]). For several commonly used wavelet
functions, the choice a; = 2!, b, = n2!, results in the generation of an ONB for
L*(R). In this case, given any z € L?(R), the discretized set of CWT coefficients

{cin = (25, n2") }i, defined by

Cin = F[.T](l, n) = <~T,'¢1l,n>2

provides a complete non-redundant representation of x in the sense that x can be
recovered from this discretized set using the adjoint frame operator. Also, by using
finitely many of the discretized coefficients, one can approximate x to any arbitrary
precision.

One can represent the finitely many discretized CWT coefficients ¢, = ¢ (2!, n2')
as a matrix C' = [¢;,]. The problem with this representation is that the principal
component of the SV D of the matrix C' is not really separable in time and scale
in the true sense. The time, represented by the variable n, in ¢;,, is dependent on
the associated scale, represented by the variable [. In order to obtain a truly sep-
arable approximation, one must have complete independence in the time and scale

parameters. This independence can be achieved if one considers the discretization

Cln = ci(?l, n)
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Such a discretization is redundant, providing an overcomplete representation of x.
It has been shown by Shensa in [30], that under certain constraints, this redundant
discretization also constitutes a frame.

For most practical applications, ¢, has near compact support in the time-frequency
plane. For a signal of finite time support, and a suitably chosen 1, (where v has
compact time support), it can be well approximated using finitely many discretized
CWT coefficient values ¢;,,. This implies that there exists L, N such that ¢, ~ 0,
for all I > L and for all n > N. One can represent this using a finite dimensional
matrix Cj = [¢; ] of dimension L x N. Applying the SV D to this finite matrix Cy,

one obtains
qu =UxV*

and hence,

Ci(l,n) = ou(l)vi(n)
i

The principal component is then obtained by extracting the rank one matrix
o1u1v], where the vectors u;, v, are truly separable in time n and scale . It is
shown below that, under certain approximations, the unit vector u, is the discrete
approximation to the pseudo power signature of x.

The simplest discrete approximation to the pseudo power signature would be the
vector obtained from its samples. However, for a general measurable function, there
is no guarantee that its samples are bounded, and offer a stable reconstruction. In
order to ensure boundedness, and guarantee a stable reconstruction, one can define

an approximation to the sampling operator as shown. Let 7 denote the operator

defined as

2l p2l4e pndte
T[c](l,n)=2—/ / c(a,b)@ ceH, ¢>0
2 n

4€2 Joi_¢ —€
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With this definition, observe that for ¢ > 0,

16¢* . 2lde rnte dbda ,
g | TAEm P = | [ [0 elat) 5 |
2lte pndte dbda
2
< [ [ elab) P25
2lte pndte
16t | L) < [ ab|2dbda
22 2l —¢
Tle(n) 5 2l4e rnte dbda
= 16X g < 2/2 [ Tetay 22
Tle(l,n
= 4| TR0 < Culely < o

Since € > 0, this result implies that the weighted sequence % € 1>(2?). Hence
T : H — [*(2%, 57), where the weighted Hilbert space (*(Z?,55;) is defined as
P(2% 50) = {z(l,n) : T2 _ o X0 o ‘%%”2 < oo}. Moreover, if ¢ € H is contin-
uous at (2!,n), and € > 0 is sufficiently small, Tc|(l,n) ~ ¢(2!,n). One can thus
view the operator 7 as an approximation to the sampling operator, and denote

Tlcl(l,n) = ¢(2',n) for all c € H, for all I,n. 2 Then, from Proposition 3.1, one has

Tlegll,n) = T[Z o;siri](l,n)
= ZO'Z'T[SZ'T'Z'](Z, TL)
= Z 0i5:(2Hri(n

The pseudo power signature of x is given by the function s;. The elements of the ma-

trix Cf are precisely the elements T[cj](l, 7). Thus, the discrete vector s4, = [512(22,1)]

of dimension L, can be directly related to the vector u; of dimension L obtained

2Tt is to be understood that the actual value of T[c](l,n) is obtained using the definition of
the operator 7. The expression T[c|(I,n) = ¢(2!,n) is written for convenience of notation, to
emphasize that T is an approximation to the sampling operator.
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from the SV D of the matrix C, as sq;, = u;. Hence, the vector u; denotes the
discrete approximation to the pseudo power signature of z.

The above analysis implicitly assumes that the functions s; € S, and r; € R are
piecewise constant. In general, it does not follow that a rank one matrix is always
associated with a separable element in H. However, the analysis makes the assump-
tion that the rank one matrix obtained from the samples of s; and r;, maps directly
to the separable element o;s;m; € H. This mapping is valid if one imposes the condi-
tion that the elements s;, r; be piecewise constant. In order to see this more clearly,
one can define the following maps :

With the operator 7 : H — [12(22, ) defined as before, the adjoint operator

2

T* : (2% 55) — H is given by
1
T*[R](a,b) = lz h(l,n)pi(a)g,(b), h € I*(2? ﬁ)

where the functions p; € S, and ¢, € R are defined as

0, elsewhere

, n<b<n+1

0, elsewhere

\

Clearly, if h(l,n) = s(2Y)r(n), then T*[h] maps to a separable element in H. Note

that 7*7|[cj] is an approximation to the CWT function ¢, which is separately
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piecewise constant in both variables. Then,

T Tlegl(a,b) = ;T[Ci](l,n)pz(a)qn(b)
= icw (a)gn ()
= Zzazsz (n)pi(@)an (b)
= Zaizsi Yoi(a) 3 7i(1)ga (b
= z::aiéil(a)fz(b) '

If one assumes that the functions s; € S, and r; € R are piecewise constant; i.e.,

si = §;, and r; = 7, for all 4, then 7*T = I, and the vector sy, = [512(2211)] of

dimension L, suitably normalized, is given by the vector u; obtained from the SV D
of the matrix Cf = [} (2, n)]. Under these assumptions, it follows that, the discrete

approximation to PC takes the form

Clcgl(a,b) = ors1(a)ri(b) = D> ci( (24, b)c% (a n)i81(2l)r1(n)

01
and, for a given z € L*(R), the discrete representation oju;v} obtained from the
SV D of the discretized CWT matrix Cj, corresponds to the discrete approximation

to the principal component o1s171 of ¢y
3.1.2 IMPLEMENTATION TECHNIQUE

The previous section dealt with the problem of approximating the CWT of x €
L?(R) using a discrete set of coefficients, and obtaining the pseudo power signature
using this set. For a practical implementation, one needs to determine techniques to
efficiently compute the coefficient values. Also, in practice, one usually deals with
sampled (discrete) signal sets z4 € I2(Z). In the current literature, there exist several

very efficient algorithms ([31]) to compute the discretized CWT coefficients. In each
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case, the basic structure used for implementation is the Perfect Reconstruction (PR)
filter bank. A brief review of the theory of the general PR filter banks is provided
in Appendix A. The theory relating the filter bank structure and the discretized

CW'T coefficient computation is presented below.

CONNECTION OF THE CWT TO FILTER BANKS

Several researchers have examined the relationship between wavelets and filter banks
in depth ([33], [34]). The underlying theory behind the computation of the dis-
cretized CWT coefficients using the filter bank structure is based on a concept

called the Multi Resolution Analysis (M RA) ([26]).

Definition 3.3 A multiresolution analysis consists of a sequence of successive ap-

prozimation closed subspaces V; C L*(R) which satisfy the conditions

1. LovicVyac Vo
2. UVi=L®)
lez
5. Nvi={0
lez
4. reVi<=z(2) eV
5. zeVy=z(-—n)eWVy, neZ

i.e. Vg s invariant under integer translations.

D

. There ezxists ¢ € Vy such that the collection

{¢0,n; n e Z}n

constitutes an ONB for Vy, where ¢y, (t) = 2-3(27't — n).
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The basic tenet of the M RA is that whenever the above conditions are satisfied,
there exists a collection of wavelets {¢;,}i1n; [,n € Z, which forms an ONB for
L*(R), with ¢, (t) = 2_%¢>(2_lt —n). Moreover, for every | € Z, with W, denoting

the orthogonal complement of V; in V,_;, one has
Vieio=VieW; and Wy LWy, 1 #1
The result is that one has an orthogonal decomposition of L?(R) given by

L*(®) =DW,

lez

Also, the basic defining functions associated with the MRA, ¢(t) = ¢op and
Y(t) = oy, called the scaling and mother wavelet functions respectively, satisfy

the following two-scale equations.

¢(t) - Enfnqsfl,n(t)
¢(t) = Engngb—l,n(t)

The connection to filter banks arises as a consequence of the following result.

Proposition 3.2 To every M RA, there corresponds a Perfect Reconstruction (PR)
filter bank.

The general form of the PR filter bank associated with the M RA is a tree-structure,
as shown in Figure 3.1 for a tree of 3 levels. Here, the discrete input signal z° is
successively split into finer approximations (narrower frequency bands) at each level
as one progresses down the tree. Each level of the tree contains two channels, and
hence is maximally decimated. The filters F;, and G, are low-pass and high-pass
filters respectively. The coefficients { f,, },, and {g,}n, associated with the two-scale

equations, determine the low-pass and high-pass filter coefficients of the analysis
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section of the filter bank. Hence, F,(2) = X,f,z7", and G,(z) = X,g,27". Let
F' denote the operation of filtering by F; followed by downsampling by 2, and F™*
its adjoint. Similarly, let G denote the operation of filtering by G, followed by

downsampling by 2, and G* its adjoint. Then, these operators satisfy the conditions

F'F+G'G = 1

FF* =1
GG* =1
G'F =0

The filters in the synthesis section can thus be readily derived using the above
conditions. In particular, if the wavelet i has compact support, the filters Fj
and G, are FIR filters, and the synthesis filters are given by F,(z) = F,(z!),

Gs(z) = G4(z 1), and the PR condition simplifies to

Fo(2)Fu(z7") + Gu(2)Gu(z™') = 2

Fu(=2)F,(27") + Gu(=2)Go(27") = 0

The determination of the discretized CW'T coefficients using this framework is
based on the implicit assumption that the signal z(¢) € V5. The input to the filter
bank z° is then assumed to be given by z°(n) = (z, do,),. With this assumption,
the output 3'(n) = cﬁ(?l, n2!). In practice, one usually deals with a sampled signal
xq € [2. In this case, the above implementation provides exact discretized CWT
coefficients for the signal Z € L?(R) given by Z(t) = E,z4(n)¢(t — n).

For the purpose of computing the SV D, signatures, one needs a discretization

which is separable in time and scale. The above approach, which computes the
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Figure 3.1: Tree-structured filter bank associated with the M RA
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CWTT coefficients on a dyadic grid in both time and scale, is not separable in the true
sense. However, if one computes the C'W'T coefficients on a grid which is dyadic in
scale, but uniform in time, one obtains a separable discretization. The computation
of these discretized coefficients can be achieved by using a slight variation of the tree-
structured filter bank. It is based on an algorithm referred to as the Shensa algorithm
([30]). The Shensa algorithm provides an overcomplete (redundant) representation
of z in that it computes the coefficients ci(?l, n); l,n € Z.

In its basic form, the Shensa algorithm creates a map
S:*(2) = 1*(2?

S can be implemented using the tree-structured filter bank shown in Figure 3.2.
Here, at the [th stage, the analysis filters used are represented by D'f and Dlg
which are obtained by inserting 2! — 1 zeros between each pair of filter coefficients
in f and g respectively. The decimation at each stage is also done away with in
this implementation. In this case, the output y'(n) = ¢f,(2',n). Thus, the Shensa
algorithm provides a discretization of the CWT which is dyadic in scale, and uniform

in time.

3.2 SIMULATION RESULTS

Two sets of computer results are presented in this section. The first result val-
idates the claim that the pseudo power signatures indeed do not depend on the
length or the position of data points on the time plane. The second result serves to
demonstrate the applicability, and limitations, of the matrix SV D approach to the

classification of some artificially generated signals.
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ANALYSIS BANK

—_— . DH*lg e
D'f >
DH—lf -—
B B —
Level l +1 -—
Level l + 2

Figure 3.2: Tree-structured filter bank associated with the Shensa Algorithm

For the first case, consider the sample chirp signal shown in Figure 3.3a. This
is the Gaussian amplitude modulated chirp signal given by e-1*+7-05*+i50t T
signature obtained using the matrix SV D analysis is shown in Figure 3.3b (the
axis is expressed as a logarithmic function of the scale on a dyadic grid). Figures
3.3c, 3.3e, and 3.3g, show different arbitrarily picked samples of the same chirp
signal, varying in length and location on the time plane. Their SV D), signatures
are shown in Figures 3.3d, 3.3f, and 3.3h. These signatures were generated using
the Db4 wavelet.> The Shensa algorithm was used to compute the discretized CWT
coefficient matrix. The pseudo power signatures were then readily obtained from
the principal component of the SV D of the coefficient matrix. Observe that there
is no significant variation in the signature for each sample considered. This test was
performed on several different sample signals with similar results. This example
is a representative one, used to justify the claim that the concept of using pseudo
power signatures to characterize signals independent of time (duration and location)

is valid, and applicable to whole classes of nonstationary signals.

3This is one of Daubechies’ compact support wavelets, and is defined through a two scale
equation with 8 coefficients ([26]).
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However, there do exist signals which show noticeable variations in their signatures
when one considers different sampled data points. A possible explanation for this
phenomenon is that these signals are essentially multicomponent, i.e., have several
localized disjoint peaks in the time-frequency plane. It is important to note that the
entire exercise of representing a signal in a class using one signature pattern is based
on the premise that the signal is essentially monocomponent. For signals which
do not satisfy this premise, and are multicomponent, one would need to extract
each component, and apply the above process to it. These signals would then be
represented by a set of signatures, improving the accuracy of their classification.

For the second example, consider the signals shown in Figure 3.4. These signals are

the simple modulated sinc functions {z1,x2, 23} given by

- t
z1(t) = 63'5”52'nc(§)

- t
zo(t) = 67'55”tsinc(§)

- t
z3(t) = 6]1'55ﬂ3in0(§)

Their frequency spectra {f1, f2, f3} (the axis is expressed as a fraction of ) and
their pseudo power signatures {S1, 52, 53} are also shown in the same figure. As be-
fore, these signatures were generated using the Db4 wavelet. Now consider a signal
created by concatenating segments of each signal class: z1 over the interval [-125:-
50], 22 over the interval [-50:50], and x3 over the interval [50:115]. The composite
signal, its STFT, and its discretized CWT are shown in Figure 3.5. Observe that
merely examining the signal, its ST F'T, or the CWT is not sufficient to identify ei-
ther the component signals or the transition points. Furthermore, direct comparison

of the CWT's of each signal class with the CW'T of the composite signal is also not
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Samples of a chirp signal Corresponding SVD signatures

b)
05
O N
2 4 6 8
g -
Of ———o 05
1 : 0
10 -5 0 5 10 2 4 6 8
1 - 1—
e) f)
0 05
-1 . 0
10 -5 0 5 10 2 4 6 8
1 - - - 1—
9) h)
0 i 05
-1 : : : o— :
10 -5 0 5 10 2 4 6 8

Figure 3.3: Samples of a chirp signal and the corresponding SV D, signatures




40

feasible because the CWT support is dependent on the signal duration which is, in
general, unknown. For classification purposes, there is a need for a representation
which is more intrinsic to each signal class, and is independent of the signal support.

These conditions are satisfied by the power signatures shown in Figure 3.4.

The results of the classification using a correlation approach are shown here.  Two
1 x1 10 f1 1 si
o 5 0.5

—1 (o] (o]

—50 (o] 50 —1 o a1 2 4 6
11— 10 = 1 s2
o 5 0.5

—1 (o] (o]

—50 o 50 —1 o 1 2 4 6
a1 <3 10 = a1 Sa
o 5 0.5

—1 (o] o

—50 (o] 50 —1 o a1 2 4 6

Figure 3.4: The 3 signal classes and their corresponding signatures

assumptions are made in performing this classification.

e All the signal classes are present.

e Only one signal class is present at any given time.

It was established in Chapter 2 that the pseudo power signature S7 represents the
normalized scale power distribution, and is independent of b. Thus, one can get
an accurate picture of the signal composition, with particular reference to the loca-
tion of the transition points, if one determines the correlation of each S7 with the
discretized C'W'T' of the composite signal for each b. The results are presented in

Figure 3.6. The results show quite clearly that there are 2 transition points in the
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Figure 3.5: The signal, its STFT, and its CWT
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signal, (the first around —50, and the second around 50), a situation which is not
very evident upon examination of the signal. Here, one can make the legitimate
assumption that the correlation values must remain fairly constant over a range for
the signal to be classified as having support in that range. Hence, one can conclude
from the graphs that the support of 1 is [—125 : —50], that of 2 is [-50 : 50], and
that of 23 is [50 : 115]. Based on the underlying assumptions, the high correlation
values of S1 in the range [—50 : 50] were disregarded since S2 has a higher correla-
tion in that range than S1, and is more likely to be present in the range [—50 : 50]
than anywhere else.

It is clear from the results presented that the simplistic process of taking the prin-

Correlation graphs of the discretized CWT with each Si

a1 T
Corr—Si1
0.5 -
o . -
—150 —100 —50 (o] 50 100 150
i T
Corr—s2
0.5 1
o i 1 i i i
—150 —100 —50 (o] 50 100 150
T
Corr—Ss3
0.5 1
o i f i i i
—150 —100 —50 (o] 50 100 150

—=b

Figure 3.6: Correlation graphs of the discretized CW'T

cipal component of the SV D of the discretized cj, as the pseudo power signature of
a signal class can, at times, lead to ambiguous interpretations. The examples pre-
sented show that the pseudo power signatures indeed do satisfy the requirement of
time independence, and are more discriminating than the Fourier spectra, and more

robust than the CWT. However, they lack the ability to capture fine distinctions
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between different signal classes, and hence, are not capable of separating signals
belonging to two closely spaced classes. This suggests that one needs to deter-
mine a more sophisticated technique to find pseudo power signatures with better

discriminating capability.



CHAPTER 4

THE PROJECTOR APPROACH

The results shown in the last chapter indicate that the signatures obtained from the
principal component of the SV D of the discretized CWT matrix are limited by a
lack of fine discriminating capability. In theory, for an element cj, € M, the principal
component of the SV D does, in fact, provide the best separable approximation in
the least mean squares sense; i.e., if s;r; denotes the principal component PC [ci],1

of the SV D of cj), it satisfies

m_

J(s1,m1) = min J(s,7), J(s,7) = |lcy STHH

SES, TER

However, the computation of the pseudo power signature using the principal com-
ponent of the SV D of the discretized coefficient matrix, suffers from a very seri-
ous drawback. In addition to the assumptions of piecewise constant forms for the
functions s;, and r;, it makes the implicit assumption that the orthogonality of the
vectors u;,u; € 12(Z), i # j, implies that the functions s; = ¥, 2%u;()pi(a), s; =
> n 22"ui(n)pn(a) are orthogonal in S. One can readily see that such an assumption
is not valid in the space S with its weighted inner product. Specifically, suppose
that u,uy are two orthogonal vectors obtained from the SV D of the discretized

CWT matrix. Then >, uq(l)ug(l) = 0. However,

——d
(1,525 = Cy' [ si(@m(a)
da

= o / S 2%, (py(a)S 22 (1) po ()

a?

IThe singular value oy has been incorporated into the functions s1,r; for convenience.

44
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= T2 mcs’ [ pla) e
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£ 0

Note that even if one uses a uniform discretization in scale, the orthogonality as-
sumption is not valid. This occurs because the space S is not the traditional Hilbert

space, but is instead, a weighted Hilbert space with the inner product defined as :

——da
(s1,82)g = CJI/Sl(a)SQ(a)E; V s1,50 €S

Consequently, since H = S ® R, if u;, uo, and vy, v,, are orthogonal in [%(Z),

it does not follow that the elements s;r;, and sore in H defined as sy71(a,b) =

i 2%Mui (Dv1 (n)pi(a)gn (b) and sora(a, b) = 325, 2%us (1) ve(n)pi(a)ga(b), are orthog-
onal in H. Hence, given ¢, € M, though PC|[cf] is such that <ci, Cp — PC[C$]>H =0,
this property no longer holds true when one considers the discretization used in
Chapter 3, to determine PC|[cj], resulting in a reduced signature quality. The sit-
uation is best described in the Figure 4.1. In the figure, M denotes the closed
subspace of CWT functions, and M~ its orthogonal subspace in H. The element,
¢ € M, is to be approximated by a separable element of H. In theory, the best
separable approximation is provided by the separable element in H that orthogo-
nally projects onto ¢, and is given by the principal component of ¢ as defined in
Proposition 3.1. In the figure, this is represented by the element sr € H. However,
the discretized SV D analysis outlined in Chapter 3, yields the element §7 € H
as the best separable approximation, where 57 = ¥, , 22u; ()1 (n)pi(a)ga (b). Note
however, that in the sense of the weighted inner product defined in H, the element

§7 does not orthogonally project onto ¢, but rather onto ¢ € M. If || ¢ — ¢ || is
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Vo .
C 'M

C
Figure 4.1: Graphical representation of the SV D), and projection vectors

large, then one can intuitively see that the element 7 is a poor approximation to c.
What one needs to determine then is the true principal component of ¢, which is the
element sr € H that orthogonally projects onto c. The normalized function s can
then be used to denote the pseudo power signature of the function z € L?*(R) whose
CWT is given by c. Since this signature is obtained as a result of a projection, it
is referred to as a projection signature. The following sections formulate and solve
the problem of directly determining the pseudo power signatures using a suitably

defined projection operator.

4.1 ORTHOGONAL PROJECTIONS

The first step in the determination of the projection signature is the definition of a

suitable orthogonal projection operator K : H — M.
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Theorem 4.1 There exists an orthogonal projection operator K : H — M defined

as follows :
Klc] (a,b) = C,* // w‘”’ c(a ﬂ)dﬂda Vee H

ProoFr. To prove that K is an orthogonal projection operator, one needs to show

the following.
e K is well defined, and its range is M.
e K is a projection, i.e. K% = K.
e /C is self-adjoint, i.e. K* = K.

To show that IC is well defined with range M, and is a projection operator.
It is known that M is a reproducing kernel Hilbert space (r.k.H.s.) , with the kernel

given by k(a,b; a, 5) = c:i‘”’( ,3) ([26]). This implies that given any ¢ € M,

¢(a, b) Cw // wab o B ﬂ)dadﬁ

a2

Thus, by the definition of K, given any ¢ € M, K[c] € M. Consider any ¢ € H.
Since M is a closed subspace of H, by the projection theorem in Hilbert spaces,

€= Cpm + €L, Where ¢,, € M, and c,,. € M*. Hence,

Kl (a,b) = Klem](a,b) + Klcmi] (a,b)
= <cm, ciﬁ“”>H + <CmJ_ cﬁﬁ“b>H
= <cm,c:£“”>H, (Since cz‘“’ €M, ¢, € M, <CmJ_ cza”>H =0)

= ¢p(a,b) € M

Thus, K is well defined with range M. Moreover, since M is a r.k.H.s., it directly

follows that K2 = K. Hence, K is a projection operator.
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To show that IC 1s self-adjoint, i.e. K* = K.

Consider z,y € H.

dadb

W, KDy = | yla,b)Klz](a,b)—

dadﬂ dadb

y(a,b)Cy 1/@6”“ @, )z(a, B)

, a?

/
L

:.AC”Lcﬂww GMM%(ammw,wwm)
/

B s
= [ Kl (e 8l B) g
= (Klyl,2) g

Hence, K is self-adjoint. Since K? = K, and K* = K, it follows that K : H — M is

an orthogonal projection operator. O
A result which readily follows from Theorem 4.1 is given by :

Corollary 4.1 To every c € H, there corresponds one and only one & € L*(R) such

that T[] = K[c] € M, i.e.

ci(a, b) = K¢ (a,b)

For any given z € L*(R), let ¢, € M denote its CWT with respect to an admissible
¥ € L?(R). Consider the element sr € H. Let ¢ = K[sr] € M, and Z € L*(R)
the element associated with sr by Corollary 4.1. It intuitively follows that if one
determines sr € H such that || c¢j, — ¢ ||» is minimized, then one effectively mini-
mizes || z — % ||o. Hence, one can expect that ¢, and consequently, sr, will better
characterize the intrinsic properties of x. However, it is not known if the orthogonal
projection operator K, when restricted to the set of separable elements in H, is one-

one. Consequently, there may be more than one separable element sr € H with the
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same projection ¢ € M. Thus, in order to ensure the determination of a unique pro-
jection signature, a regularizing term « ||sr|| is added to the minimization problem.
For analysis purposes, & = 1. The minimization problem can then be represented
as follows :

For a given ¢j, € M, find the decomposition sjrj € H that minimizes the

index
T(s5,75) = {Il & — Kls§ri) 13 + Il 5575 1%}

where K is the orthogonal projection operator defined earlier.

This is an infinite dimensional nonlinear minimization problem, and requires the
solution of the inverse projection problem. The problem formulation and solution
procedure for the infinite dimensional case is discussed in Appendix B. However, for
a practical application, the problem needs to be reduced to a finite dimensional one,
which can then be solved. The problem formulation and the corresponding solution

procedure for the finite dimensional case are discussed in the following sections.

4.2 PROBLEM FORMULATION

The first step towards developing a finite dimensional representation for the infinite
dimensional minimization problem is to determine a suitable discretization for the
elements cfb,IC[sirfp] € M, sj, € S, and rj, € R. As discussed in Chapter 3, given
¢y, € M, one can obtain a discretized equivalent using the concept of frames and
frame operators, and a wavelet ¢ € L*(R) of compact support that arises from a
MRA. The set of discretized coefficients {cf,(2', 1)}, can then be determined using
the Shensa algorithm. As before, one can approximate {cf(2',n)};, using finitely
many coefficients, and thus obtain a finite dimensional discretized CWT coeflicient

matrix Cf € CEXN . However, the problem of finding a discrete approximation to
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the orthogonal projection operator I : H — M, is more involved. The approach
followed here approximates I by using a successive application of the inverse and
forward Shensa algorithms, as explained in the next section.

4.2.1 DISCRETE APPROXIMATION TO THE PROJECTION

OPERATOR

In this analysis, it is assumed that the wavelet ) € L?(R) arises from a multires-
olution. Let ¢ € Vy C L?(R) denote the scaling function associated with the mul-
tiresolution (V; is one of the spaces of the multiresolution ladder). Note that the
collection {¢g  }n, where ¢y, = ¢(t — n), constitutes an ONB for V;. There is an
associated implicit assumption that one constrains the computation to the subspace

Vo. With these assumptions, one can define a frame operator F, : Vy — [2(Z) as
FQ[.’L’](TL) = <33, ¢0,n>2a T e VE)

The adjoint operator Fy : [?(Z) — Vj is then given by

F3[2](t) = Y- 2(n)bon, z € 1*(2)

n
Similarly, using the analysis presented in Chapter 3, one can define a second op-
erator, 7 : H — 1?(2?, 5&7), which is the approximation to the sampling operator,

24l

Tlc(l,n) = c(2',n), c€ H

The adjoint operator 7* : [?(22, 57) — H is then defined as

Th(a,5) = 3 bl man(a,), h e (22, o)
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where

1, 2" <a< 2" n<b<n+1
ql,n(aab) = <

0, elsewhere

\

Thus, 7*T[c| is a piecewise constant approximation to ¢ € H of the form
L N
c(a,b) = T*Tlcl(a,b) =Y > e(2",n)qn(a,b)
I=1n=1
Let S : I>(Z) — [*(Z2?) denote the forward Shensa operator. Clearly, an element in

the range of § is also in [?(Z?, 557) (since [ assumes only non-negative integer values).

Thus, S : 1*(Z) = I*(Z?, 3)- Then, for z € Vj, the map SF; defines a matrix CJ

L

with samples, ¢ (2!, n), of the wavelet transform of z, i.e. SF, : Vo — I?(Z?, 77) is

defined as
Sk[z|(l,n) = (2, %1n)y, v €W
The adjoint operator F5S* : [?(Z?, ;) — Vp is then obtained as 2

F;S*C)(t) =Y C(l,n)¢yu(t)

I,n

Note that, if C was a matrix of discretized CWT coefficients, S* is exactly the

inverse Shensa operator. Thus, the adjoint operator §* : 1*(Z?, 55) — [*(Z) is

2Using the property of adjoints, for z € Vg, C € I2(Z2?),

(SFax,C) = Y [ sl 0T
In t

[#03 ct.nina

t I,n

= (z,F;8*C)

which implies that F5S*[C](t) = 3., C (1, n)dhin(2)-
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effectively the extended inverse Shensa operator (similar to the infinite dimensional
case in Appendix B where I'* = A). Clearly, S*S = I (analogous to I*T' = T
as discussed in Appendix B). It is shown below that, in this framework, SS* is
the discrete approximation to K (analogous to the infinite dimensional case where
T =K).

With the above terminology, the approximation to the operators I' and I'* is given

by

r

Q

T*SF,:Vy - H

F*

Q

FS*T:H =V,

As shown in Appendix B, the orthogonal projection operator X : H — M can be
represented as KL = I''*. This result can be used to obtain a discrete approximation

to K as given below.

K = IT"

Q

T*SFF;S'T

= T*SS'T

It is clear that 7*SS*T is not an orthogonal projection, since for any ¢ € M,
T*S8S*T ¢ only provides a piecewise constant approximation to ¢ € M. However,
if one assumes that the CWT is indeed piecewise constant, then 7*SS*7T can be
used as an approximation to the orthogonal projection operator. To see this more

clearly, observe that

T*Ss*T[C] (CL, b) = Z <Z C(2lﬂ n)wl,n(t)a 7vbl’,n’> q ' (0'7 b), ceH

U'n' \ln 2
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= Z C(Ql’ n) Z Czlm (2l” nI)Ql’,n’ (CL, b)

! 7
ln U'n

= > (2, n)czl’“ (a,b), if ci”" is piecewise constant

ln

= c¢(a,b), ifce M

With s4(1) = s%(2'), sa € C", and r4(n) = rf(n), rq € CV, the element K[sr]
can be approximated by the finite dimensional matrix C' € C**V resulting from the
operation SS*[sqrT].

The infinite dimensional minimization can now be formulated as the following finite
dimensional problem :

Given a matrix Cj € C"*" of samples on the Shensa grid of the CWT
of z € L?(R), determine the rank one matrix syr] € C'*V such that the

following functional is minimized
T * T 2 T 2
J(sara) =I| CF — 88" [sard] 13 + |sar [

4.3 SOLUTION TO THE MINIMIZATION PROBLEM

This section presents the solution procedure for the finite dimensional minimization
problem. The solution technique uses an iterative approach, where, in each iteration,
one successively minimizes with respect to the vectors s; € CY, and r4 € CV. The
basic framework leading to the solution procedure is established below. The entire

development is in 2.
4.3.1 EXISTENCE OF THE MINIMIZER

The first step in developing a solution procedure is to establish the existence of
a solution to the finite dimensional minimization problem. The finite dimensional

minimization problem has a solution based on the following result.
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Theorem 4.2 There ezists 54 € By, = {sa € C*; ||s4ll, < 1}, and 7q € CV such

that

J(Ed, fd) = inf J(Sd, Td)

sq€BL,rqg€CN

PrROOF. The proof of the theorem is based on the results established below.

The discrete orthogonal projection approximation operator SS* on the separable
finite dimensional Hilbert space [2(CX*Y), is isometrically equivalent to a square
matrix K : CEN*EN | This isometry, T : C*N — CEV| essentially rearranges the
elements of an L x N matrix into a column vector by stacking its rows. Let 7™ :
CIN — CI*N denote the adjoint operator, with the property that 7*7 = I. Then,
K = TS8S8*T*. Observe that K has the properties that it is Hermitian (f( = IN(*),

idempotent (K? = K), and positive semidefinite (K > 0). With I, denoting the

identity matrix of size L, and ¢ = T'CZ%, the functional J(s4,74) can be redefined as
2
J(sara) = || TC—TSS' T Tsary |[3 + |Tsarf|,
= lle—K(ra®I)sa I3 +1(ra ® I1)sdll3
where ® denotes the standard Kronecker product. For a fixed r4, one can thus
define the following subproblem for minimization with respect to sq :
min J(sq) =|| ¢ = K(ra® I)sa I3 + [[(ra ® I1)sdll; (4.1)

Similarly, denoting ¢y = TC%T, and Iy as the identity matrix of size N, one can

define the minimization problem with respect to ry for a fixed s; as
min J(rq) = or — K(sa® In)ra |3 + l(sa ® In)rall; (4.2)

Lemma 4.1 The solutions to the minimization problems defined in Equations 4.1

and 4.2 exist, and are unique.
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PROOF. It can be easily shown that the positive real valued functional J(-) defined
in Equations 4.1 and 4.2 is quadratic in the variables s; and r, respectively. From
Equation 4.1, for a fixed r4, denote Ay = (c,c), B = (ry ® I)*c, and A = (rg ®

ID)*(K 4+ I)(rg ® Ip.). Then, it follows that
J(sa) = Ao + (84, Asa) — (B, sa) — (sa, B)

which is clearly quadratic in s;. Moreover, since A > 0, the quadratic form is posi-
tive definite, and .J is convex in s; . Hence, the minimization problem has a unique

solution. A similar result can be shown for r,4. O

From Lemma 4.1, the existence of a unique solution to each of the subproblems
defined in Equations 4.1 and 4.2 has been established. Using Calculus of Variations,
one can then determine the conditions on the minimizers to each of the subproblems.
Since the functional J is separately convex in s4, and r4, the first order necessary
conditions as determined using Calculus of Variations, become sufficient to deter-
mine the minimizers.

For the minimization with respect to s4, for a fixed ry4, equation 4.1 simplifies to

J(Sd) = <C K(Td®IL)Sd,C— (’I"d®IL)Sd>+<(Td®IL)Sd,(7'd®IL)Sd>
= <C:C>_<(Td®IL KC 8d> <Sd, Td®IL) KC>

+ <(K + I)("'d X IL)Sd, (K + I)(’f'd ® IL)Sd>

3The convexity of J in s4 can be shown from first principles. Consider J(s4) which is defined
on a convex domain. Let 0 < A < 1, and sg,,54, € C". Then, with A, = sq, — sa, # 0, and
A=(rg@1I)*(K +1)(rg ® I,) > 0, one can readily obtain

JOsay + (1 =Nsa)) = A(say) + (1= N (sa,) = A1 = X) (Ay, 44,)
< AM(saq,) + (1= N)JI(54,)

which implies that J(sq) is strictly convex in s4. Similarly, one can show that J(rg) is strictly
convex in rg4.
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Taking variations with respect to sy, one obtains

5Js = — <(T’d X IL)*KC, (58d> — <5Sd, (T’d & IL)*KC> +
<(’I‘d () IL)*(K + I)(T‘d (024 IL)84,58d> + <58d, (T‘d X IL)*(K + I)(’f‘d X IL)Sd>
= {(ra® L) (K + 1)(ra ® I)sa — (ra® I)"Ke, 054) +

(054, (ra ® I)" (K + I)(ra ® I)sa — (ra ® I)"Kc) (4.3)

where dsy4 is completely arbitrary. Setting d.J; = 0, one obtains the necessary con-

dition for minimization with respect to s4 as
(T‘d & IL)*(K + I)(Td X IL)Sd — (Td & IL)*C =0

which can be uniquely solved for s; to yield 54 = Qr_dl(rd ® Ir)*c where Q,, =
(Td®IL)*(K+I)(7’d®IL) > 0.
Following a similar approach, the necessary condition for the minimization with

respect to ry for a fixed s; is obtained as
(54 ® IN)*(K + 1) (54 ® In)ra — (s4 ® In)*cr =0

which, in turn, can be uniquely solved for 4 to give 7y = Ps_dl(sd ® Iy)*er, where
P,, = (54 @ In)*(K+1)(s54® Iy) > 0.

Let By, = {sq € C*; ||s4ll, < 1} denote the closed unit ball in 1*(Z) of dimension L,
which is compact. For a fixed s; of unit norm, sy € Br. Let 7y = Psgl(sd ® In)*er
be the solution to Equation 4.2, with P,, defined as before. Then, the functional

J(84,7q) = <c, c—(54® InN)P; (54 ® IN)*CT> is effectively a function of s; € By.

Lemma 4.2 The real valued functional J(sq) is continuous on the compact set By, =

{sa € CE lsall, < 1).
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PRrROOF. The real valued functional J(s4) defined on the compact set By, is given

by
J(Sd) = <C, c— (Sd X IN)PSZI(Sd X IN)*CT> , Sq € By

Let K+1=A2> 0, where A is positive definite and self-adjoint. Let A,.;, > 0 and
Amaz > 0 denote the minimum and maximum eigen values of the positive definite

matrix A. Then,

Amin I € [7< (Ae, Ac) < X7

max

| c¢lI?; Ve et (4.4)

Defining X (sq) = Asq®In, Ps; = X*(54)X (s4). Using Equation 4.4, one can readily

establish the following results.

Amin || sa [I<I] X (5a) 1< Amaa || 54 || (4.5)
Noin | 7a 1P (ra, Poyra) < Mo I 7a 1% Vra € CVs 54 € By, (4.6)
A2 | ra 1P< <rd,P5_dlrd> < A2 || ra || Vrg € CNssq € By (4.7)

For s4,, sq4, € Br, let 05 = s4, — Sq,- Then,

[1s]] < [[sa [l + llsa, || = 2 (4.8)
Now,
Payy = Poyy = X" (54,) X (05) + X7 (85) X (5a,) + X*(05) X (05)

and hence, from Equations 4.5 and 4.8,

P,

Sdl

< AN 05 | (4.9)

— Psd2

Also,

~1 -1 _ p-1 .
P5d2 PSd1 - P5d2 (Psdl P3d2

).

Sdl
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which implies from Equations 4.7 and 4.9
| Pt = Pl 1< AN 2 11 6, s Va5, € B

From the above results, observe that one can express

J(s) = (¢, ¢) — 3 (X*(sa)Ac, Py X* (sa)Aer')

Denoting AJ = J(s4,) — J(84,), one can then obtain

[AT| = GI(X"(sa)Ae (PG = PI)X " (s0)Aer) +

sdl Sdz

(X*(s4,)Ac, P X7 (85) Acr) + (X" (6:) Ac, Pl X" (s4,) Acr)]

IN

i N €™ 11105 1 HAZE lell® 1861+ A2 llell™ 116

min’‘mazr min men

IN

Al

where A is a constant and depends only on || ¢ ||, Auin, and Apep. Then, given any
€ > 0, there exists 0 < 0 = 55, such that for all || s4, =54, ||2< 6, | J(54,) —J(84,) |<

€. Thus, J is continuous on By. O

The existence of the minimizing solution to the finite dimensional problem is estab-
lished as follows :

Fix s; € Br. Then, by Lemma 4.1, there exists r4(sq) € CV such that J(sq,74(54)) =
J(s4) = inf, ,cev J(S4,74)- The real valued functional J is thus defined on By which
is compact. From Lemma 4.2, J is continuous on the compact set. Hence, it is guar-
anteed to attain its maximum and minimum on the set, i.e. there exists s; € By,

such that J(54) = inf,,ep, J(saq), i-e.

J(gd,’l‘d(gd)) = inf J(Sd,T'd(Sd)) = inf J(Sd,T'd)

$4€BL, SdEBL,'I‘dECN

Denoting 7y = 74(84), the existence of the minimum is established. a
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4.3.2 ITERATIVE PROCEDURE

Once the existence of the minimizer has been established, one can develop a pro-
cedure for its determination. The procedure followed here is an iterative one, and

requires successively solving the necessary conditions given by the equations
(ra @ IL) (K 4+ 1) (ra® I)sq — (ra ® I)*c =0 (4.10)
(8d®IN)*(K+I)(Sd®IN)Td—(Sd®IN)*CT:O (411)

in each iteration. Note that these are only necessary conditions for the minimizing
solution, and are not sufficient to guarantee a minimum. The approach is based on
the result presented in Lemma 4.1. Effectively, the result ensures that the iterative
approach produces a monotonically decreasing cost function sequence. The iterative
approach developed for successive minimization with respect to sg4, and r,4 is given

below.
e Specify a tolerance value tol for termination.

e Using randomly picked vectors s € CL, and 79 € C¥, compute the cost

JO = J(s5,19).
o At the 1th stage of the iterative process, with ry, = rfi_l, solve Eq. 4.10 to
obtain 8. Thus, 5 = Q; ', (ry” ® Ip)*c,

g
15

e Set 54, = This constrains s to the unit ball By, in the finite dimensional

Iz

a sy

Hilbert space [?(Z) of dimension L.

o With s = i, solve Eq. 4.11 to obtain rj = P;'(s§ ® In)*cr.
d
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e Compute J* = J(s},7%) = <c,c —(84® IN)stl(sfj ® IN)*cT>. Observe that
d

this is a function of s} only, i.e. J* = J(s’). Moreover, it is independent of

the norm of s.
o If J©=1 — J¢ < tol, terminate.

4.3.3 CONVERGENCE TO THE OPTIMAL

From Lemma 4.1, one can immediately see that the iterative procedure outlined
produces a monotonically decreasing sequence of costs {.J*};, since one has the result
J(s%,r9) > J(EL,rY) > oo > J(si,ry) > ---, from which one can extract the

monotonically decreasing sequence
(T} T = J(s) (4.12)

defined on the unit ball By, which is compact. The convergence of the iterative

procedure is established based on the following result.

Theorem 4.3 There ezists 55 € By, and J > 0 such that the sequence {J'}; defined

in Equation 4.12 converges to J = J(34).

PROOF. By Lemma 4.2, the real valued functional J(sg) is continuous on the
compact set Br. Hence, it is guaranteed to attain its maximum and minimum on
By. The iterative procedure produces a monotonically decreasing sequence of costs
{J%};, whose limit J exists by Lemma 4.2. Hence, lim J* = J. Now, By is also
sequentially compact. This implies that from the sequence {s’};, one can extract a

subsequence {si{ }i; that converges to some 54 € By, and by the continuity of J,
J(54) = lim J(s¥) = lim J% = J

establishing the convergence of the algorithm to the optimal solution. O
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An iterative procedure using successive minimization with respect to sz, and rg4,
which converges to the limiting solution whose existence is guaranteed, has thus been
developed. It is important to note that, while the procedure attains a minimum for
the functional J, it offers no guarantee that the minimum attained is global. This
is a general problem in nonlinear minimization techniques. The sufficient condition
to ensure that the minimum attained is indeed global is that the functional J be

jointly convex in the variables s4 and 74, which is not the case in this problem.



CHAPTER 5

SIMULATION RESULTS USING PROJECTION
SIGNATURES

The last chapter outlined a solution procedure for the determination of the dis-
crete projection signatures for signal classes. The procedure adopted an iterative
approach, involving successive minimization with respect to the variables s;, and
rq, which were defined in the chapter. In this chapter, the computational algorithm
developed based on the procedure is presented, along with some simulation results.
These results serve to illustrate the potential capabilities of the projection signa-
tures, and also the limitations of the computational procedure used to determine

these signatures.

5.1 COMPUTATIONAL ALGORITHM

The computational algorithm used to generate the projection signatures is given

below.

1. Select a wavelet ¢ € L?(R) which arises from a MRA, and the number of
levels L to be used in the filter bank corresponding to the M RA. Denote
the analysis low pass filters as f € C¥, and the analysis high pass filters as

geCMy.

2. For the given finite discrete input signal z € CY=, determine the discretized
CWT coefficient matrix C, € **" using the forward Shensa algorithm. Note

that N = N, + (2" — 1)(Ny, — 1).
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3. Based on the scalogram SC3(I,n) =| C}(l,n) | obtained, modify the value
of L such that Cj(l,n) ~ 0, for all | > L, n > N. Recompute Cj using the

modified value of L.
4. Pick random vectors s € CL, r9 € CV, and set a value for tol.

e At the i th stage, set 7y = 75!, Using the conjugate gradient technique
([32]), with gradient given by *

i—1T

A, = %{(sdrfi_lT + S8S* [sdrd } — 01/“,’)7"3_16}
solve the minimization problem for s,;. Let §;* denote the solution.

e Set s, = Si_.
a7 sl

e Next, with s; = s%, using the conjugate gradient technique with gradient
A, = R{(s4rs" + SS* [sfirdT] - C’qu)Tsff}
solve the minimization problem for r; . Let 7} denote the solution.

e Compute the cost function J(sY,r%). If

(J(siTh ity — J(s%,7%) ) < tol, terminate.
5. end.

5.1.1 COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

The minimization problem under consideration is separately quadratic in sz, and
rq. Consequently, the use of the conjugate gradient technique for each minimization

guarantees convergence for each minimization in O(V') steps, where V' is the size

1The gradient can be readily obtained from Equation 4.3 by using the conjugate symmetry
property of the inner product in a complex Hilbert space X, i.e. for z,y € X, (z,y) = (y,z).
Then, by applying the destacking operator 7", one can obtain the gradient as shown.
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of the vector over which one is minimizing. It is clear that the computational
cost associated with the technique depends on the number of iterations I required
to reach the optimal solution, which in turn, is a function of tol, and the initial
condition. The complexity of each iteration is largely a factor of the complexity of
the conjugate gradient technique, and the complexity of the implementation of § and
S*. The complexity of the conjugate gradient technique is (6V + 2) multiplications
and (6 —3) additions per iteration. For a practical implementation, especially when
V is large (like, for example, when one is minimizing with respect to r4), one usually
prescribes a termination criteria so that convergence occurs in far fewer than V' steps
([32]). The complexity of S is 2L Ny, N, multiplications and 2L(N,, — 1) N, additions,
and that of S* is exactly the same ([31]). Thus, the complexity of the Shensa
algorithm is a linear function of N, L, and N,. If one assumes an average of T}
steps for convergence of the conjugate gradient technique for the minimization with
respect to sg, and T, steps for the minimization with respect to r4, the overall cost of
the projection algorithm is given by I[(6L+2+4LNyN,)Ts+ (6N +2+4LNyN,)T;]
multiplications and I[(6L — 3 + 4L(Ny — 1)N,)Ts + (6N — 3 + 4L(Ny — 1)N,)T; ]
additions. The overall cost thus depends on the choice of the initial vector r9, since
a point closer to the minimum would require fewer iterations to converge to the
optimal. However, the choice of s} does not affect the overall computational cost

significantly.

5.2 SIMULATION RESULTS

This section presents the results of applying the iterative solution technique to
different nonstationary signals. A summary of the simulation experiments and the

corresponding results is given in Table 5.1.
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Table 5.1: Simulation results on the projection signatures

EXPERIMENT ANALYSIS
Signature quality Highly distinct
Classification Unambiguous, with sharp transition points
Reliability Good
Robustness Not very robust in the presence of much noise

Sensitivity to initial condition | Not affected by perturbations in initial condition,

but sensitive to choice of initial condition

Analyzing wavelet No significant difference in quality

Computational requirements Very reasonable with fast convergence

5.2.1 SIGNATURE QUALITY AND APPLICATION TO
CLASSIFICATION

The first experimental result presented is the classification problem discussed in
Chapter 3. The signals used are shown in Figure 5.1, and are the same three signals
shown earlier in Figure 3.4. The projection signatures obtained using the Db4
wavelet, for L = 6, and r) = x, 2, are also shown in Figure 5.1. Observe how the
projection signatures clearly separate the highly correlated signals z; and x5. These
signatures were then applied to the classification problem described in Figure 3.5.
The composite signal and the correlation graphs of the projection signatures with

the discretized CWT of the composite signal are shown in Figure 5.2. From the

2x» € CV is the characteristic function of z € C™V= defined as
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1 1 1
x1 X2 x3
0.5 0.5 0.5
-0.5 -0.5 -0.5
50 0 50 -50 0 50 -50 0 50
Projection signatures of the above signals
1 T T T T T T T T
0.8 i
0.6 .
0.4 .
0.2 .
0 | | |
1 1.5 2 2.5 3 35 4 4.5 5 5.5 6

Scale(dyadic)

Figure 5.1: The 3 signal classes, and their projection signatures
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Signal to be classified

1 T T T T T
x1 : [-125:-50]
05k X2 : [-50:50] i
x3 :[50:115]
O - -
-0.51 -
-1 | | | | |
-150 -100 -50 0 50 100 150
1 ‘ 1 ‘ 1 ‘
Corr-S1 Corr-52 Corr-S3
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
-200 0 200 -200 0 200 -200 0 200

Figure 5.2: The projection signatures applied to the classification problem
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correlation graphs, one can conclude with a high degree of confidence that the signal
x1 is present in the segment [—125 : —50], xo is present in the segment [—50 : 50],
and the signal z3 is present in the segment [50 : 115]. Notice, when compared with
Figure 3.6, the high correlation values obtained using the projection signatures, and
the clear demarcation of the transition points. The high correlation values are of
great importance when one needs to classify a signal where it is not known a priori

iof all the events are present.
5.2.2 RELIABILITY ANALYSIS

For use in classification applications, it is extremely important that the projection
signatures be reliable measures of the classes they represent. By this, one implies
that for samples of different signals in the same signal class, the projection signatures
should not show significant variations. Consider a common example of a speech
signal, say for example, the letter “A” as spoken by a person on several different
occasions. It is reasonable to expect that slight variations will exist between every
utterance of the letter by the same person. However, a reliable signature for the
signal class (here, the signal class comprises of every sample of the letter “A” spoken
by the same person) should be fairly insensitive to these variations. Figure 5.3
presents the results of the reliability experiment using this example. In the figure,
Sample #1 represents the projection signatures for 5 different samples of the letter
“A" as spoken by a person on a given day, and Sample #2, the projection signatures
for samples obtained on a different day. Observe the very high correlations between
all the different signatures (the correlation coefficient values ranged between .9705 —
.9950). The wavelet used was Db4 with L = 8. As before, in every case, r’ was

taken to be the characteristic function of the sample signal.
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The experiment described above is significant for several reasons. The reliability
results obtained from the experiment reflect those obtained from several other similar

experiments. First, the experiment shows that the projection signatures are true

Projection signatures of the letter “A" using Db4
1 T T T T T T

0.8 Sample #1
0.6

0.4

0.2

Samplé #2

0.6

0.4

0.2

1

1 2 3 4 5 6 7 8
—>Scale(dyadic)

Figure 5.3: Reliability test results for the projection signatures

measures of the signal class they characterize, which is an essential requirement
of any representation. Next, it shows that the pseudo power signature technique
can be applied to real data signals which may have some background noise, slight
anomalies and random variations, even though every signal essentially belongs to

the same class. Finally, it reiterates the claim that the signatures are independent
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of signal duration, since every signal sample considered in the example was of a

duration different from the others.
5.2.3 ROBUSTNESS ANALYSIS

Owing to the assumption of a piecewise constant form for the CW'T of the signal
in the projection algorithm, one would expect that the algorithm would perform
poorly for signals that do not satisfy the premise. However, experiments on a wide
variety of signals show surprisingly good results. A possible explanation for this
phenomenon is that since the CW'T preserves the regularity of the associated signal,
a signal that is fairly smooth, and not highly corrupted by noise, is likely to satisfy
the premise. When dealing with noisy signals, it might be necessary to prefilter
the signal to remove some of the noise before applying the projection technique. A
comparative performance of the robustness of the SV D,, and projection signatures
in the presence of white Gaussian noise is shown in Figures 5.4 and 5.5. It is
important to note that while the matrix SV D approach does not generate very
discriminating signatures owing to the invalid orthogonality assumption, this very
assumption makes the signatures more robust. The reason for this is that, the
incorrect assumption makes for a rather poor representation, which is not very
sensitive to the variations occurring in the signal owing to the noise. The signatures
computed using the projection algorithm outlined are not as robust, because they
better characterize the signal, and hence, are more sensitive to variations in the
signal. Also, since the projection algorithm was not guaranteed to attain the global
minimum, it is possible that different local minima are attained when the signal is

highly corrupted by noise.
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Figure 5.4: Robustness of the SV D), signatures
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Figure 5.5: Robustness of the projection signatures
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Another study of importance in the robustness analysis of the projection signatures
is the sensitivity to the initial condition. Since the solution technique offers no
guarantee that a global minimum is attained, it is necessary to study the effect of
different initial points. From the nature of the solution technique used, the projec-
tion signatures do not depend on the initial choice of s, a fact that was supported
by experimental results. The robustness analysis then is effectively based on the
sensitivity to the initial vector 7. For the study, one would need to consider two
different situations. The first situation is the effect of random perturbations in 79
on the projection signatures. For the signal x shown in Figure 5.6, with 73 = x, the
effect of both small (< 10%), and large (> 75%) random perturbations in rJ on the
projection signature is shown in the same figure. The results displayed in the figure
are representative of several test cases, and indicate that the projection algorithm
is quite robust in the face of random perturbations in the initial condition.

The second situation is the case where the basic initial condition rJ itself varies. If
one could ensure the achievement of the globally optimal solution using the compu-
tational technique, then the solution would be completely independent of the initial
condition. In many cases, the projection signatures were completely unaffected by
the choice of the initial condition. However, for the three signal classes shown in Fig-
ure 5.1, the projection signatures (especially S1, and S2) show quite some variation
when a different initial point is used, as is evident from Figure 5.7. In the figure,
the results are shown for 79 chosen randomly, and for r$ obtained from the principal
component of the SV D of the discretized CW'T" matrix for each signal. This result
suggests that the solution technique does not converge to the global minimum in
all cases. This is a common limitation of nonlinear minimization algorithms, and

one usually gets around it by analyzing different initial conditions, and selecting the
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Projection signatures obtained by perturbing the initial condition

1 T T T T T T T T
Original signal
|
40 50
T
|
55 6
T
|
55 6
T
|
1 15 2 25 3 35 4 4.5 5 5.5 6

Figure 5.6: Effect of random perturbations in the initial condition rJ on the projec-

tion signatures
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Projection signatures for randomly chosen initial condition
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Figure 5.7: Effect of different initial conditions rJ on the projection signatures
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one that gives best results. For the classification problem under consideration, one
of the main requirements is that the projection signatures obtained should clearly
separate even closely spaced signal classes. Intuitively, one can see that for a sig-
nal z, if 7% = x,, then it has little information pertaining to the intrinsic signal
properties, which would ‘force’ the associated projection signature to capture most
of the information about the intrinsic properties of the signal. On this basis, one
could conclude that the projection signature would better represent the signal class.
This conclusion was borne out by every experimental study made on different signal
classes, and a variety of initial conditions. Thus, the initial vector r was always
set at r) = x, for the determination of the projection signatures for purposes of

classification.
5.2.4 EFFECT OF THE ANALYZING WAVELET

The solution procedure used to generate the projection signatures assumes a fixed
admissible wavelet ¢ € L?(R) of compact support that arises from a M RA. It is
worthwhile to study the effect of using different wavelet functions on the projection
signatures of signals. An example of the effect of using different wavelet functions of
the Daubechies family (][26]) is illustrated in Figure 5.8. It can be observed that while
there are some variations in the projection signatures obtained, they are essentially
of the same nature (especially the signatures obtained using Db6 and Db10).

Now, the Daubechies family of wavelet functions {Dbi}; essentially corresponds to
band pass filters with decreasing center frequency as ¢ increases. Hence, one might
expect that a high frequency signal will be better represented by Db2 than say,
by Db10. However, the initial results on different classification problems do not

indicate any significant differences in the quality of the classification owing to using
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Original signal and its projection signatures using different wavelets
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Figure 5.8: Effect of different wavelet functions on the projection signatures
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different members of the Daubechies family of wavelets. Nevertheless, the problem
of optimal wavelet selection for a better quality classification is an area which needs
to be studied in depth. One possible advantage of this study is that if one can indeed
select an optimal wavelet, one might be able to obtain sufficiently discriminating

signatures using the simple, and more robust, matrix SV D approach.
5.2.5 (CONVERGENCE ISSUES

In the discussion on the computational complexity of the projection algorithm, an
average number of iterations for the convergence of the conjugate gradient algorithm
for each minimization was assumed. From several experiments, it was observed that
convergence was usually achieved in L steps for the minimization with respect to sg,
but far fewer than N steps (less than 15 steps for N = 30000) for the minimization
with respect to ry without the need for a termination criteria. The number of
iterations I required for convergence to the minimum showed a wide variation, with
values as low as I = 3 for a signal of length N, = 201, to values as high as I = 19 for
a signal of length N, = 25000. In both cases, N, = 8, and L = 8. For illustration
purposes, some sample results on eight different signals of length N, = 201, with
Ny = 8, and L = 8, are shown in Figure 5.9. It is seen that, in most of the
cases, the maximum reduction in cost is achieved in the first iteration, with only
marginal improvements in the subsequent steps. This figure also serves to validate
the monotonically decreasing nature of the cost function. From the figure, and
several other simulation results, one may then conclude that the algorithm used
to generate the projection signatures converges to the minimum in relatively few

iterations; i.e., it has a reasonably fast convergence rate.
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5.2.6 (QUALITY OF THE CLASSIFICATION

The last issue addressed in this chapter deals with the actual quality of the classi-
fication results. For an unambiguous classification, one would ideally like to have
correlation graphs which are relatively smooth over different segments, and have
sharp transition points. While the second criteria is reasonably met by the corre-
lation graphs shown in Figure 5.2, the first is not. There exist some oscillations in
the correlation graphs over the different segments which cannot be easily explained.
A curious result that was observed was that these oscillations or fluctuations were
greatly reduced when the correlation was performed between the absolute values of
the projection signatures, and the discretized CWT, as shown in Figure 5.10. A
possible explanation for this could be that the development of the pseudo power
signatures was based on the result that if the CWT of a signal was approximated
using a separable function of the form cjj(a, b) = s(a)r(b), then the scalogram SCj
(modulus squared of the CWT') could be represented, at some time by, by the scale
power function | s(a) |?, suitably normalized. Thus, a correlation in terms of the
modulus of the CWT and the pseudo power signature might lead to better quality
results.

A second issue regarding the quality of the classification is the use of the simple
correlation technique as the basis for the classification. While it is true that the
correlation approach gives fairly good results for artificially generated signals, it
is reasonable to expect that one might need a more sophisticated technique when
dealing with real data signals. At the very least, one might expect to need some
additional techniques, along with the straightforward correlation approach. These

techniques could take the form of preprocessing the signal to remove noise, and

removing cross - correlation effects occurring due to interaction between adjacent



81

Classification using absolute values of projection signatures and the discretized CWT
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Figure 5.10: The composite signal and its correlation graphs using absolute values
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signal classes. The latter technique would be extremely useful when dealing with
signals where two or more events could be present at the same time. This is an issue

for further study, and will be addressed in greater depth in the next chapter.



CHAPTER 6

CONCLUSION

A methodology to perform nonstationary signal classification, using signatures which
are essentially independent of signal length, has been discussed in the previous
chapters. The methodology has some distinct advantages, though it also suffers from
certain limitations. This chapter gives a brief summary and a critical evaluation of

the methodology, as well as, suggestions for future work in the area.

6.1 SUMMARY AND ANALYSIS OF THE
CLASSIFICATION METHODOLOGY

The problem that was addressed in this research was the classification problem P,
stated again for convenience.

P There is a known class of events, {Ex;k = 1,...,n}, which may appear
in a given scene for a variable time interval. One has collected data from the scene
as a signal z(t); € < t < ty, and it is known that only one event is present at
any given time. Then there is an unknown partition P, = {t; < t; <ty... <t <
tri1-.. < tp}, of transition times marking the start and end times of an event.
The goal 1s to determine the transition times and the events occurring in each time
interval. This process is called classification of the signal z(?).

The approach to the classification was based on generating signatures or character-
istic representations for each event or component signal class. Since the component
signals are known to be nonstationary, they are best represented using T'F'Ds. Ow-
ing to the excellent localization properties of the CWT, and the efficient techniques

available for its computation using filter banks, the CWT was well suited to meet
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the particular requirements of the classification problem P, and thus, was the TF D
of choice in the determination of the signatures.

Since each component signal could be of any arbitrary duration, one of the pri-
mary requirements of the signatures generated was that the signatures should be
independent of the signal length. A complete discussion of the need for such time
independent signatures was provided in Chapter 1. This requirement led to the
formulation of the concept of the pseudo power signatures as discussed in Chapter
2. These signatures are essentially approximate scale power distribution functions
associated with the time-scale energy density function of the CWT'. Since the sig-
natures are approximate ‘scale’ power distribution functions, they can be used to
characterize signal classes in a manner that is independent of time.

Two approaches to compute the pseudo power signatures were presented in this
work. The first was a simple approach using a principal component analysis, which
essentially reduced to the traditional matrix SV D analysis for discrete signals. The
complete solution technique, and experimental results were presented in Chapter 3.
It was observed that the signatures generated using the matrix SV D technique were
fairly robust, and could successfully be applied to the classification of signals where
the components were sufficiently separated in the time-frequency plane. However,
the signatures lacked a fine discriminating capability, and were not useful for the
classification of signals with closely spaced components. A possible explanation for
this could be that the orthogonality assumption made in the discretization tech-
nique, is not valid in the space of the CWTs.

A more refined approach to the determination of the pseudo power signatures was
proposed in Chapter 4. The approach generated signatures which were obtained

using orthogonal projections, and hence, the corresponding signatures were referred



85

to as projection signatures. The method used to generate the projection signatures
essentially involved a nonlinear minimization, and required solving an inverse pro-
jection problem. While the approach was computationally more complex than the
matrix SV D technique, the signatures obtained were highly discriminating, as could
be seen based on some representative experimental results on the signals shown in
Chapter 5. Since the signature computation can be done off-line, the computa-
tional cost is not a significant drawback when one deals with unknown signals with
closely correlated signal components. The more serious problems with the projec-
tion approach were that the computational technique made the piecewise constant
assumption on the CWT', which may not be valid when working with real data
signals, and the technique was not very robust in the presence of noise. These prob-
lems and their possible solutions are addressed in the next section, along with some

suggestions for future work.

6.2 AREAS OF FUTURE WORK

One of the first areas of future work is the improvement of the performance of the
projection computational algorithm to overcome the problems associated with it.
While the problem of making the simplifying assumption of a piecewise constant
form for the CW'T is of concern, the assumption is necessary to justify the approxi-
mation of the orthogonal projection operator IC, using the computationally efficient
forward and inverse Shensa operators. In order to avoid this, one needs to deter-
mine a more accurate technique to compute I that does not make any assumptions.
Moreover, the technique must be reliable, and computationally efficient. A possible
solution may be found by exploiting the nature of the operator . The operator X

is Hilbert-Schmidt, compact, self-adjoint and positive semidefinite. On a separable
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Hilbert space, it can be represented as a square matrix ([28]). Moreover, it can be
represented as the limit of finite rank compact operators, each of which has a finite
matrix representation. It is feasible that a careful analysis of the structure of I
will provide a better finite approximation to K. However, the problem of finding an
efficient implementation for this approximation still remains an open issue. This is
not an easy problem, and a useful solution may be difficult. A more realistic solution
would be to use the same framework as proposed in Chapter 4, but obtain signa-
tures with a finer discretization of the scale. At present, there exist techniques ([31])
for the computation of the CWT on a finer grid in scale. Though this approach
will significantly increase the computational cost of the projection algorithm, the
piecewise constant assumption on the CW'T is more readily met by signals, when
one uses a very fine time-scale grid.

The second problem of concern with the projection signatures involved the sus-
ceptibility to noise. Though it it true that most real data contains some noise,
preprocessing the data set before applying the classification technique to it, usually
reduces the problem of noise significantly. It is generally accepted that there is al-
ways a trade off between quality and robustness, in the sense that it is unrealistic
to expect a high quality or very discriminating signature, (one which very closely
represents the associated signal class), to also be very robust. The kind of prepro-
cessing to be done to overcome the lack of robustness problem is an issue that can
be further studied. An idea worth exploring would be to apply the robust SV Dy,
signatures to first obtain a coarse classification, and only use preprocessing and the
projection signatures to clarify any ambiguities and refine the classification.

An issue not directly relevant to the signature computation problem, but which

is of importance in signature quality, is the selection of an optimal wavelet for the



87

signature generation, both in the matrix SV D and projection techniques. Initial ex-
perimental results indicate that, in some cases, the selection of a wavelet that more
closely ‘matches’ a particular signal class (in terms of time-frequency characteris-
tics), provides a better quality signature. However, in order to make a conclusive
analysis, a more thorough study needs to be made. The study might conceivably
involve solving another minimization, but this time, with respect to the wavelet
function. A possible advantage of solving this problem is that one might be able to
obtain fairly discriminating signatures using the simple and efficient matrix SV D
technique if one uses a more ‘optimal’ wavelet.

Another significant issue that needs further research is one that is directly applicable
to real world signals. This issue is the one where the basic assumption in P, that
only one event is present at any given time, is dropped. In a real world scenario, it
is unrealistic to expect that adjacent signal components do not interact with each
other, and that a composite signal consisting of several different components, will
not exhibit some characteristics which result from these interactions. Essentially, in
order to obtain a more realistic and meaningful classification, one needs to modify
the basic problem P to allow for the presence of two or more events at a time.
The problem then is one of obtaining a more realistic model for the classification.
In signal processing terminology, one can relate the modeling problem to the strati-
graphic classification problem which motivated this research. As shown in Figure
6.1, one can view each stratigraphic layer as a filter, and the original known trace
as the filter response to the input pulse. These responses could then be seen as the
impulse responses e; of each layer. Every event in P then can be understood to
represent the filtered response y; of the filter with impulse response e;. The goal of

the classification would be the identification of the e; associated with each event y;.
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Figure 6.1: Modeling the classification problem

With this understanding, in Figure 6.1, the response y; of each filter e; represents
each event in P (each stratigraphic layer), with x representing the input pulse. The
important difference between the problem modeling in P, and the modeling here,
is that the filters are all connected in series, which automatically implies that the
reflected echo y; not only depends on z, and e;, but also on e;, j7 <i. The unknown
signal to be classified is given by y = [y; y2 y3---|. It is intuitive that this modeling
more closely depicts a practical situation.

Once the problem has been modeled, the issue of the signal classification can be
addressed. Suppose one has determined the signatures corresponding to each event
e;- From the nature of the model, it is obvious that the straightforward correla-
tion technique used to perform the classification may, in general, not yield good
results. One needs to take into account the effects of interaction of the different
events or signal classes which might affect the correlation values. Effectively, one
would need to determine the cross correlation effects between different classes, and
process them out. The problem becomes quite complex when one deals with a large
number of possible events which may occur in any random order. However, this is
an important problem, and its solution would greatly increase the applicability of

the classification technique to a wide variety of problems.
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In conclusion, a methodology to perform nonstationary signal classification for sig-
nals of arbitrary unknown duration has been formulated through the use of time
independent pseudo power signatures. It is worthwhile to note that the actual clas-
sification process can be performed quickly because the signatures are vectors of
very small dimension. The method has wide applicability since it permits the sepa-
ration of highly correlated signals. The potential areas of application are in fields as
diverse as oil exploration, hidden mine detection, moving target detection, system

identification, and pattern recognition.
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APPENDIX A

Filter banks are a classical implementation of the principle of splitting a signal and
then reconstructing it. The typical scheme is shown in Figure A.1. There are two
sections to any filter bank - the analysis section, and the synthesis section. The in-
put signal z(n) is divided into M frequency bands using the filters F}, in the analysis
section. The channel component signals are then decimated by a factor R which
results in the aliased channel outputs. The two operations can be represented by an
equivalent linear operation Fj. The system is said to be mazimally decimated when
R = M. For most applications, the analysis filters are band pass filters which are
decimated to their nominal Nyquist rates. Thus these signals form a set of critically
sampled representations of the original signal x(n).

The output signal Z(n) is a reconstructed version of the input signal. The recon-
struction is achieved by linear operations G which consist of upsampling the channel
signals to their original sampling rate, and passing each through the interpolation
filters G, in the synthesis bank, and then summing the results.

The most common family of filter banks is the Quadrature Mirror Filters(QMF)
where the analysis and synthesis banks are designed using a perfect reconstruction
criterion. There is abundant literature on the design of QMFs and it is still an
active research topic ([35],[36]). The basic idea behind the perfect reconstruction
filter bank is the following. For ideal band pass filters in the analysis and synthesis
sections, perfect reconstruction is possible. Unfortunately, ideal filters are not real-
izable, and in practice, the individual channel outputs are always aliased. However,
the specialty of the filter bank environment is that information about the aliased
signals in one channel is available in other channel signals. Hence, it is possible
to obtain perfect reconstruction systems even though the individual channel signals
are aliased if the filters Fj, and G}, satisfy certain conditions. These conditions are :

e The perfect reconstruction (PR) condition :

M
k=1

e The aliasing cancellation condition :
F,G,=0, k#I

The main concentration of effort in the research in this area has been in the design of
optimal, high quality filters (both FIR and ITR), which afford perfect reconstruc-
tion (upto a time delay). The theory of M RA provides one approach to design PR
filter banks since all M RAs are associated with a PR filter bank. It is worthwhile
to note that the converse is not true.
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Figure A.1: M band analysis/synthesis filter bank system with decimation factor R



APPENDIX B

B.1 THE INFINITE DIMENSIONAL PROBLEM
FORMULATION

Let H = (R?,C;'%42), and M C H denote the space of the CWTs. The problem
to be solved is as follows :

For a given ¢j € M, find the decomposition sjryj € H that minimizes the
index

J(s5,r3) = {1l ¢ — Ksprg) 13 + 1| sors 1%}
where K : H —+ M is the orthogonal projection operator defined as :

K[d(a,b) = C; // & (0, B) ﬂ)dﬁdo‘, Vee H

To formulate the above problem in a manner that lends itself to a solution, one can
define the following maps.

1. The Continuous Wavelet Transform, ' : L?(R) — H, defined by

[Tx](a,b) = (,%ap); = € L*(R)
where ¢ € L?>(R) is an admissible wavelet.

2. The map, A : H — L2%(R), defined by

dbd
Ac] Cy // (@, b)ap(t) a. e H

This is effectively the inverse CWT operator, extended to all of H by defining
M+ to be its null space.

3. The family of maps, O, : L?>(R) — H, defined for each s € S by
[O,7](a, b) = s(a)r(b)

4. A dual family of maps, T, : S — H, defined for each r € R by
[Y,s](a,b) = s(a)r(b)

Note that the Hilbert spaces H and S are not self - dual. However, by the Riesz
isometry, one can always identify a Hilbert space with its dual. In the following
analysis, this property is used to justify the definition of the adjoint maps.

Theorem B.1 Ifv¢ € L*(R) is an admissible wavelet, then A is a well defined map.
Moreover, A is the adjoint map from H to L*(R), i.e.

A=T*
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PROOF. Let ¢ € L*(R) be an admissible wavelet. The CWT operator I' : L>(R) —
H, and hence its adjoint operator T'* : H — L2?(R). Thus, for any c¢,d € H where
c = I'z, using adjoints in Hilbert spaces, one obtains,

(T'z,d); = (z,I"d),

Hence,

(Tz,d), = C;' / /b rxm,wmd‘;f“
- 01;1/a/b/tx(t)%b(t)dtd(a’b)%

_ /t 2(t)C,! / /b W%dt; (Fubini)

dbda
_ -1 '
- /t 2(1)C; / /b d(a,b) (1) =t
= (z,I"d),
where
dbda
P | -
r'd = 67 [ [ dlabvu(t)=;
= Ad
Hence, A =T* on H. H

Theorem B.2 The maps Oy, T, are well defined and their adjoints are given by
O:: H — L*(R) defined by O%c = (¢, s)y, Ve € H
Yr:H — S defined by Tic=(c,1),, Vc€ H

PROOF. By definition,
[O,7] (a,b) = s(a)r(b)

Using adjoints, one gets
(Os1, )y = (1, O%¢),

Now,
©r o = 6" [ [s@rt)n s
= AT(b)CJILS(a)m%db§ (F'ubini)

= /br(b)Clzl/ac(a, b)s(a)%db
= (r,0;0),
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which implies that

. _ ——da
Oic = Cwl/ac(a,b)s(a)g

= <C, S)S

The derivation of the expression of T follows along exactly similar lines. a

From the above definitions, it readily follows that
. AT =TT : L*(R) — L*(R)
is the identity transformation, since I'* =T'~! on M.
. TA=IT":H—H

is the orthogonal projection operator X : H — M defined earlier *.

B.2 SOLUTION TO THE MINIMIZATION PROBLEM

The nonlinear infinite dimensional minimization problem is solved using an iterative
approach based on a successive minimization in each iteration, with respect to the
variables s € § and r € R. First, the existence of a minimizing solution to the
problem is established.

B.2.1 EXISTENCE OF THE MINIMIZER
Theorem B.3 There erists 5 € Bs = {s € S; ||s||g < 1}, and 7 € R such that

J(5,7)= _inf J(s,1)

s€Bs,r€ER

IThe result can be shown as follows: For ¢ € H,

IT*[c|(a, b) / el Bar (D)t

= [t [ [ ctasBraste (0200 G wyat

- ¢ /a /ﬂ el / bap () Pas (@) dﬂfo‘, (Fubing)
_ c—l//c /«/;a,, Vgt )dtdﬂda
- o [ [t

= K¢(a,b)
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Proor. The proof of the theorem is based on the results established below.
One can break the minimization problem into the following two subproblems. For
a fixed r € R, define the subproblem :

min J(s) = (¢ — KYrs, ¢}, = KTps)  +(Lrs, Tp8)y (B.1)
Similarly, for a fixed s € S, define the subproblem :

min J(r) = (¢ — KO,r, ¢, — KO,r) + (O,7,0,7)y (B.2)

Lemma B.1 The solutions to the minimization problems defined in Equations B.1
and B.2 exist, and are unique.

PROOF. It can be easily shown that the positive real valued functional J(-) defined
in Equations B.1 and B.2 is quadratic in the variables s and r respectively. From
Equation B.1, for a fixed r, denote Ay = <c§, cﬁ>, B =Tjcy,and A =T (K+I)T,.
Then, it follows that

J(s) = Ag + (s, As) — (B, s) — (s, B)

which is clearly quadratic in s. Moreover, since A > 0, the quadratic form is posi-
tive definite, and J is convex in s 2. Hence, the minimization problem has a unique
solution. A similar result can be shown for r. O

From Lemma B.1, the existence of a unique solution to each of the subproblems
defined in Equations B.1 and B.2 is assured. Using Calculus of Variations, one can
then determine the conditions on the minimizers to each of the subproblems. Since
the functional J is separately convex in s, and r, the first order necessary conditions
as determined using Calculus of Variations, become sufficient to determine the min-
imizers.

Consider the subproblem given in Equation B.1. For a fixed r € R,

T(s) = (ch = KYps,cf = KYps) 4+ (Tp5,Trs)y
= (ccp), = {5, KTys) = (KYps,¢5) + (s, TH(K+D)T,s),

2The convexity of J in s can be shown from first principles. Consider .J(s) which is defined
on a convex domain. Let 0 < A < 1, and s1,s2 € S. Then, with A; = 51 — s # 0, and
A=T*K+I)Y, >0, one can readily obtain

TOs1+ (1= Nsa) = AJ(s1) + (1= NJ(s2) = AL = A) (Ay, 4A,)
< )\J(Sl) + (1 — )\)J(Sz)

which implies that J(s) is strictly convex in s. Similarly, one can show that J(r) is strictly convex
in 7.
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Taking variations with respect to s, one obtains
6Jy = (Y3(K+D)Tps = Y5c),05) + (35, V1 + 1) Tps = 175,

where s is completely arbitrary. Setting §.J; = 0, one can then obtain the necessary
condition for minimization with respect to s as

Yi(K 4+ I)T,s — Tick, =0 (B.3)

Let @, = YL+ I)Y,. Since @ is a positive definite operator, there exists a unique
solution to this equation given by 5 = Q; ' Yrcj.

Following a similar approach, for a fixed s € S, taking variations J.J, with respect
to r, one can obtain the necessary condition for minimization with respect to r by
setting 0.J, = 0. The condition is given by

O;(K+1)0,r —O5c;, =0 (B.4)

If P, = O©(K + I)O,, there exists a unique solution to this equation given by
T = Ps_1®jci since P is a positive definite operator.

Let Bs = {s € S; ||s|]|g < 1} denote the closed unit ball in S. Since the Hilbert
space S is reflexive (S** = S), Bg is weakly compact. For a fixed s of unit norm,
s € Bg. Let 7 = P;'0}c}, be the solution to Equation B.2, with P, defined as before.
Then, the functional J(s,7) = <ci,ci - ®8P8_1®:ci> is effectively a function of
s € Bg.

Lemma B.2 The real valued functional J(s) is continuous on the weakly compact
set Bs ={s€ S; |s|]lg <1}.

PROOF. The real valued functional J(s) defined on the weakly compact set Bg is
given by

J(s) = (¢, cf, — ©,:P;'0%cs), s € Bs
Let 4+ I = A% > 0, where A is positive definite and self-adjoint. Let A, > 0 and

Amaz > 0 denote the minimum and maximum eigen values of the positive definite
operator A. Then,

Ain | € < (Ae, Acy g < Ang [l € ll7s Ve € H (B.5)

Defining X(s) = A©,, P, = X*(s)X(s). Using Equation B.5, one can readily
establish the following results.

Amin || s [ls<[| X () ls< Amaz [| 5 |ls (B.6)
A?nm || r ”?{S <T’ PST)R S )‘zna;v ” r ||§25 VT € R; s € BS (B7)
e 17 R (r P r) < Ao [l 7 I3 Vr € Rys € Bg (B.8)
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For s1, 9 € Bg, let §;, = s; — sy. Then,

16:1ls < lIsulls + [s2lls = 2 (B.9)
Now,

Py, — Py, = X" (52) X (d5) + X™(65) X (52) + X™(05) X ()
and hence, from Equations B.6 and B.9,

1Ps; = Pooll < 4Xa 11 65 ls (B.10)
Also,

-1 -1 -1 -1

P82 - Psl = PS2 (Psl - PSZ) Psl
which implies from Equations B.8 and B.10
” Ps;1 1 ||< 4)‘m1,n max || 5 ||S’ VS1,5‘2 6 BS

From the above results, observe that one can express

J(s) = <cﬁ, ci>M B i <X*(5)Aci’ PJIX*(S)AC@%

Denoting AJ = J(s2) — J(s1), one can then obtain

| AJ |

i[<X (s1)A, (P — P)X"(s)A) +
<X*(32)AC3, P‘lX*((S JAG)  + <X*(5S)Ac3, Ps—lx*(sl)Ac@R]

2
” 118l

.CE

AN 4 )2

min’‘mazx

Al

2

|| 6 ”S +)‘mm

IAINA

where A is a constant and depends only on || ¢ [|ar, Amin, and Amqg. Then, given any
€ > 0, there exists 0 < § = 55, such that for all || s; — s [[s< 6, | J(s2) — J(51) [< €.
Thus, J is continuous on Bg. O

The existence of the minimizing solution to the infinite dimensional problem is
established as follows.

Fix s € Bs. Then, by Lemma B.1, there exists 7(s) € R such that J(s,7(s)) =
J(s) = inf.cr J(s,7). The real valued functional J is thus defined on Bg which is
weakly compact. From Lemma B.2, J is continuous on the weakly compact set.
Hence, it is guaranteed to attain its maximum and minimum on the set ([37]); i
there exists 5§ € By, such that J(5) = inf,cp, J(s). Now, J(5) = J(5,r(5)). Hence

J(5,7(38) = siean J(s,r(s)) = _inf J(s,7)

SEBg,r€ER

With 7 = r(5), the existence of the minimum is established. O
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B.2.2 ITERATIVE PROCEDURE

Once the existence of the minimizer has been established, one can develop a pro-
cedure for its determination. The procedure followed here is an iterative one, and
requires successively solving the necessary conditions given in Equations B.3 and
B.4 in each iteration. The approach is based on the result presented in Lemma B.1.
Effectively, the result ensures that the iterative approach produces a monotonically
decreasing cost function sequence. The iterative approach developed for successive
minimization with respect to s, and r is given below.

e Pick random elements s € S, and 7% € R, and compute J° = J(s°,79),

e At the ith stage, with r = 7!, solve Eq. B.3 to obtain 5’. Thus, § =
Q;l,l'f:i_lci.

e Set s' = 2. The element s' € S is thus constrained to the unit ball Bg C S.

[ERIEN

e With s = 5%, solve Eq. B.4 to obtain r*. Then, r* = P;'©%c.

e Compute J* = J(s',7%) = <ci,ci - @sz-P;l@;c@. J* is thus seen to be only
a function of s* € Bg, i.e. J' = J(s'). Moreover, it is independent of the norm
of s € By, i.e. J' = J(s',r") = J(5,| 5 ||s r*), which justifies the unit norm
constraint imposed on s* € Bg.

B.2.3 CONVERGENCE TO THE OPTIMAL

From Lemma B.1, one can immediately see that the iterative procedure outlined
produces a monotonically decreasing sequence of costs {J'};, since one has the re-

sult J(s%,7%) > J(8',7%) > --- > J(s',7%) > ---, from which one can extract the
monotonically decreasing sequence
{J; JH=J(s) (B.11)

defined on the unit ball Bs . The convergence of the iterative procedure is established
based on the following result.

Theorem B.4 There exists § € Bg, and J > 0 such that the sequence {J'}; defined
in Equation B.11 converges to J = J(3).

PrOOF. By Lemma B.2, the real valued functional J(s) is continuous on the weakly
compact set Bg. Hence, it is guaranteed to attain its maximum and minimum on
Bg. The iterative procedure produces a monotonically decreasing sequence of costs
{J%};, whose limit .J exists by Lemma B.2. Hence, lim.J! = .J. The set Bg is also
weakly sequentially compact.? This implies that from the sequence {s‘};, one can

3Eberlein’s Theorem : Every bounded sequence in a reflexive Banach space X has a weakly
convergent subsequence.
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extract a subsequence {s% }i; that converges weakly to some 5 € Bg, such that by
the continuity of J,

J(3) =lim J(s%) = lim J% = J
establishing the convergence to the optimal solution. O

An iterative procedure using successive minimization with respect to s, and r, which
converges (weakly) to the limiting solution whose existence is guaranteed, has thus
been developed. It is important to note that, while the procedure attains a minimum
for the functional J, it offers no guarantee that the minimum attained is global. This
is a general problem in nonlinear minimization techniques. The only way in which
one can ensure that the minimum attained is indeed global is if the functional J is
known to be jointly convex in the variables s and r, which is not the case in this
problem.
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ABSTRACT

This research focuses on the analysis and classification of multicomponent non-
stationary signals of arbitrary duration. The proposed classification approach has
potential applications in areas like moving target detection, object recognition, oil
exploration, and speech processing. The wavelet transform is used as the basis for
the analysis. The classification technique is based on novel scale energy density func-
tions, called pseudo power signatures, which are independent of signal length, and
which can be used to characterize the time-scale energy distribution of the signal.
These signatures allow for fast classification of signals regardless of their length.

Two approaches to determine pseudo power signatures are presented in this work.
The first approach is based on a singular value principal component analysis tech-
nique, which, though computationally simple, is not very sensitive to signal charac-
teristics. The second is a more sophisticated approach, and is optimal in a weighted
least mean squares sense. The latter technique involves solving an inverse projection
problem arising from a nonlinear infinite dimensional minimization, and generates
good quality signatures with excellent discriminating capability. An algorithm, with
fast convergence, for application to discrete data sets is developed, and a complete
analysis of the computational complexity is obtained. Several simulation examples
are presented to illustrate the methodology, and its application to practical classifi-

cation problems. Finally, suggestions for further work in the area are given.



