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ABSTRACT

This paper deals with the problem of classification of non-
stationary signals using signatures which are essentially in-
dependent of the signal length. We develop the notion of a
separable approximation to the Continuous Wavelet Trans-
form (CWT) and use it to define a power signature. We
present a simple technique which uses the Singular Value
Decomposition (SV D) to compute such an approximation,
and demonstrate through an example how it is used to per-
form the classification process. This example serves to show
both the effectiveness and the limitations of the approach.
Our main result is an alternate approach which develops the
idea of using orthogonal projections to refine the approx-
imation process, thus allowing for the definition of better
signatures.

1. INTRODUCTION

This research is motivated by a classification problem, com-
mon in non-intrusive subsurface exploration, and introduced
here as an event detection situation: There is a known class
of events, {Crx;k =1,...,n}, which may appear in a given
scene for a variable time interval. Using a probe one col-
lects data about the scene. The objective is to analyze the
probe signal to determine what events are present and the
duration of the occurrence of each of these events.

In this paper we consider a simple case. Suppose one has
collected the data as a signal z(t);t; < t < tp, and it is
known that only one event may be present at any given
time. Then there is an unknown partition P, = {t; <1 <
ta... <ty <tpy1...<tp}, of transition times marking the
start and end times of an event. Our goal is to determine
the transition times and the events occurring in each time
interval. This process is called classification of the signal

z(t).

The Short Time Fourier Transform (ST FT) might be con-
sidered as a possibility to determine the type of event taking
place, but it has resolution limitations in determining the
transition times. For this reason, we consider the CWT
as the tool for the classification process. However, the
fact that each event may have an unknown time support
presents difficulties in the conventional classification using
time-frequency distributions, motivating this research.

2. PSEUDO POWER SIGNATURES

In this section, we introduce a methodology for signal clas-
sification that is essentially independent of the actual du-
ration of each event. We achieve this objective by using
the concept of spectral energy distribution and developing
a representation that allows us to define an “instantaneous
energy distribution” which we call pseudo power signature.

Consider any = € L*(R) with CWT, cf(a,b), where ¢ is
an admissible wavelet; i.e., Cy = 27 fw %dw < o0,
where ¥(w) is the Fourier Transform of the wavelet. It
is well known ([1]) that the associated scalogram can be
interpreted as a time-scale energy density function since
one can write
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Hence, the function

] 2
P§(a,b) = L(“;b)'
a
can be viewed as the corresponding time-scale power den-
sity function and the function Py(-,b) as the “scale power
distribution at time b”. Notice that one can estimate this
function using the mean value theorem as follows
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If the wavelet has compact support, then as the scale de-
creases, the value of Pj(a,b1,b2) is essentially independent
of the values of z(t) outside the interval by <t < by. Thus,
the scale power distribution can be estimated by the scalo-
grams of small segments of the signal, and for low scales, it
would be essentially independent of the length of the record.
The lower the scale that one can use, the smaller the seg-
ments that are required.

The ideal situation would arise if one could define a wavelet
such that for a given class of signals the corresponding
wavelet transforms are separable, i.e.

cy (a,b) = sy, (a)rip(b)



Then the power distribution would always be proportional
to |¥|2 and one could use a suitably normalized version
to characterize the signal in a manner that is independent
of duration.

Unfortunately, such wavelets do not exist. ' It is known
that in order to be the CWT of an L? signal, the func-
tion, cj, (a,b), must belong to a closed subspace, M, of the
Hilbert space H = L2(%2,C;1%) [2]. We show in [3]
that functions of the form s(a)r(b) do exist in the space
H but it is impossible to have an element of this form in
the closed subspace M. This leaves us with the problem of
finding suitable separable approzimations to the CWT of
the form s3,(a)ry,(b). We denote the function sj,(a) as the
pseudo power signature of . In this paper, we present two
approaches to solve this problem. Note that this represen-
tation is dependent on the wavelet used, and so a related
problem is to determine the wavelet that provides the most
discriminating signatures for a given class of signals.

3. SVD APPROACH

Our first approach to the generation of pseudo power sig-
natures uses the decomposition of the CWT as a sum of
separable terms. This decomposition is the natural exten-
sion of the SV D analysis, and effectively determines the
closest separable approximation in H to the CWT given by
¢y (a,b). This is based on the following :

The CWT can always be expressed as

cy(a,b) = Zoisi(a)ri(b)

where s;(a) € S = L*(R, CJI Z—Z), andr;(b) € R = L*(R, db)
for each 1.

This result follows from the observation that H is isomor-
phic to the tensor product of the above two Hilbert spaces,
i,e. S® R. Suppose ¢r and 2; are orthonormal bases,
ONB, for each of the two Hilbert spaces S and R respec-
tively. Then, the collection ¢x1); is an ON B for the Hilbert
space H ([4]), and we can write

¢(a,b) =) awi(a)u(b)
k,l
Using the notation A = [ar], ® = [¢r], ¥ = [¢], we get
= dAT”

Applying the SVD to the matrix, A, the result can be easily
derived.

Fpr all practical purposes, cf, I}as compact support in the
time-frequency plane. For a suitably chosen ONB, (where

LIf one moves away from L2 signals, one can find functions
whose formal CWT is separable. Consider the power signal
z(t) = Ae~79t. If 4(t) is an admissible wavelet with Fourier

transform, ¥(w), the function <y, (a,b) = fx(t)ﬁw(%)dt is
defined for all values of a # 0,b € R. Observe then that
cgla,b) = Ay/a¥(ah)el?® = s(a)r(b).

the basis elements themselves have compact support), this
implies that 3 m,n such that ar; = 0, V k£ > m and
Y | > n. Hence the SVD problem can be made finite dimen-
sional. Observe that the functions s; and r; thus defined be-
long to the Hilbert spaces S and R, respectively. The term
corresponding to the principal component, namely s (a), is
used to define the pseudo power signature of z.

3.1. Simulation Results

Here we present computer results showing the application,
and limitations, of the SV D approach to some artificially
generated signals. The signals are the simple modulated
sinc functions {z1, 22, 3} shown in Fig. 1. Their frequency
spectra {f1, f2, f3} (the axis is expressed as a fraction of )
and their pseudo power signatures {S1, 52, S3} (the axis is
expressed as a logarithmic function of the scale on a dyadic
grid) are also shown in the same figure. These signatures
were generated using the Db4 wavelet. > We used Shensa’a
algorithm ([5]) to compute the discretized CW T coefficients
with the scale varying on a dyadic grid. The pseudo power
signatures were then readily obtained by taking the princi-
pal component of the SV D of the coefficient matrix.

Now consider a signal created by concatenating segments
of each signal class: z1 over the interval [-125:-50], 2 over
the interval [-50:50] and x3 over the interval [50:115]. The
composite signal, its STFT, and its discretized CWT are
shown in Fig. 2. Observe that merely examining the signal,
its STFT, or the CWT is not sufficient to identify either the
component signals or the transition points. Furthermore,
direct comparison of the CWT's of each signal class with the
CWT of the composite signal is also not feasible because the
CWT support is dependent on the signal duration which is,
in general, unknown. For classification purposes, we need a
representation which is more intrinsic to each signal class,
and is independent of the signal support. These conditions
are satisfied by the power signatures shown in Fig. 1.
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Figure 1: The 3 signal classes and their corresponding sig-
natures

2This is one of Daubechies’ compact support wavelets, and is
defined through a two scale equation with 8 coefficients.
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Figure 2: The signal, its STFT, and its CWT

In our first approach, we divided the CWT time axis into
10 segments {pl,p2,...,p10}, obtained the principal com-
ponent Pj of each segment, and determined its correla-
tion with each Si. The result is shown in Fig. 3, where
C1,C2,C3 represent the correlation graphs of S1,52,53
with the principal components of each segment. From these
graphs, the only unambiguous conclusion we may draw is
that z3 is present in segments 8,9,10. From the nature of
the problem, where it is known that each of the 3 signal
classes is present, and that no two classes are present at
the same time, we may also conclude that z1 is present in
segments 1,2, 3, and z2 in segments 4,5,6,7. Though we
could identify and establish approximately the duration of
each signal present using this approach, there is some am-
biguity about the validity of the classification, particularly
with respect to the identification of the highly similar signal
classes z1 and x2.
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Figure 3: Correlation graphs of each signature with the
principal components of the different segments

In order to get a more accurate picture of the signal com-
position, we determined the correlation of each Si with the

discretized CWT of the composite signal for each b. The
results are presented in Fig. 4. Observe that the results
show quite clearly that there are 2 transition points in the
signal, (the first around —50, and the second around 50),
a situation which is not very evident upon examination of
the signal. Here, we can make the legitimate assumption
that the correlation values must remain fairly constant over
a range for the signal to be classified as having support in
that range. Again, based on our underlying assumptions,
we can conclude from the graphs that the support of z1 is
[-125 : —50], that of 2 is [-50 : 50], and that of z3 is
[50 : 115]. Note that we disregarded the high correlation
values of S1 in the range [—50 : 50] because we assume
in this classification that only one signal can be present at
any given time, and S2 has a higher correlation in that
range than S1, and is more likely to be present in the range
[—50 : 50] than anywhere else.

Correlation graphs of the discretized CWT with each Si
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Figure 4: Correlation graphs of the discretized CWT

It is clear from the results presented that the simplistic
process of taking the principal component of the SV D of
cj, as the power signature of a signal class can, at times,
lead to ambiguous interpretations. This example shows that
while power signatures are indeed more discriminating than
the Fourier spectra, and more robust than the CWT, we
need a more sophisticated technique to find pseudo power
signatures which can capture even fine distinctions between
different signal classes.

4. PROJECTOR APPROACH

We conjecture that the principal component does not cre-
ate the best signature because the separable element in H
is not a wavelet transform. Hence, we propose to create sig-
natures by finding the separable approrimation in H whose
projection onto M is the closest to a given CWT. This de-
velopment is based on the following.

We have shown ([3]) that there exists an orthogonal projec-
tor, IC, in H whose range is M. This projector is defined as
follows. Given any ¢ € H,

K[d(a,b) = C;' // o5 (a0 Bela, §) 2000




Moreover, if the wavelet transform is characterized as a
map I' : Ly — H, then K = I'T*. Consider now a
function c(a,b) € H given by c(a,b) = s(a)r(b), where
r(b) € L*(R,db) and s(a) € L*(R, CJI%%). There ezists a
function &(t) € L* whose CWT is given by the projection of
c(a,b) on the closed subspace M, i.e. cy(a,b) =K|c](a,b).

This result associates to every separable element of H a
unique CWT in M. Conversely, for a given signal z € L?
and its corresponding CW T, cjj,, we can associate with it an
element, ¢y (a,b) = sy, (a)ry (b) € H such that K [éﬁ] (a,b)
is as close as possible to the wavelet transform of x. The
function s3 (a) is denoted as the pseudo power signature of
x. If there is more than one separable element with the
same projection, we guarantee uniqueness in the signature
by using the element with the minimal norm in H.

The solution to determining this unique signature lies in
solving the following optimization problem:

Fo‘r a given Cy € M, find the decomposition sjry, € H that
minimizes the index

J(s5,r3) = min || & — Ksyrg] 13 + 1| sirg 1

where K s the orthogonal projection operator defined ear-
lier.

We claim that such a pair sj(a)ry (b) is effectively the best
separable approximation to the CWT of z. In effect, the
& € L? associated with it minimizes the norm || = — & ||3.
Hence, we can expect that it will better represent the in-
trinsic properties of the signal x.

For computational feasibility we need to reduce this infinite
dimensional nonlinear minimization problem to a finite di-
mensional one. The most difficult step is the computation of
the projected value, K[sr], of a given separable element. We
solve this problem by applying the inverse Shensa algorithm
to a suitable discretization of the vector, s(a)r(b), followed
by application of the Shensa algorithm to the resulting se-
quence. The discretization can be interpreted as restricting
the separable elements s(a)r(b) to be piecewise constant on
the plane. We have shown in [3] that the approach com-
putes exactly the samples of a continuous wavelet trans-
form. Hence the only approximation lies in assuming that
elements in H can be well approximated by piecewise con-
stant functions. Formally, this approach assumes that any
element ¢ € H can be approximated as

c(a,b) = Z Zc(2m, Nn)qm,n(a,b)

m=1n=1
where
dmn(ah) = 1 2" <a<2™l n<b<n+1
AT 0 elsewhere

Based on this assumption, we have also developed a com-
putational algorithm to solve this nonlinear minimization
using iterative techniques. The algorithm guarantees that
at each step the cost function is reduced. Our initial imple-
mentations of the algorithm are not yet efficient. We are

currently working on a more efficient technique to solve this
nonlinear optimization problem. We propose to compare
the performance of the SV D approach with this approach
to the creation of the pseudo power signatures in terms of
the discriminating capability of each, computational com-
plexity, and the ease of implementation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the idea of signal signatures
which are essentially independent of the signal length. The
determination of such signatures is based on using separa-
ble approximations to the CWT of the signal. First, we
presented a simple approach using the Singular Value De-
composition to generate these signatures. We tested this
approach on several examples with good results. However,
these signatures were limited by a lack of fine discriminat-
ing capability as was demonstrated through the example
shown in this paper.

Next, we proposed a more sophisticated method to create
signatures. This is the projector approach which essen-
tially involves solving an inverse projection problem. This
method gives a much better approximation according to our
preliminary results.

An interesting empirical observation made in both the ap-
proaches was that better performance is obtained when the
wavelet used to generate the signatures matches the signals
as closely as possible.

In conclusion, we have formulated a concept which is very
useful for signal classification problems and permits the sep-
aration of highly correlated signals. Moreover, the signa-
tures are vectors of small dimension. It appears feasible to
extend the concept and define signatures for classes of sig-
nals. This has potential applications in areas like oil explo-
ration, target detection, objection recognition, and system
identification.

6. REFERENCES

[1] O. Rioul and M. Vetterli,“ Wavelets and Signal Process-
ing”, Signal Processing Magazine, vol.8, pp. 14-38, Apr.
1991.

[2] I. Daubechies, “ Ten Lectures on Wavelets”, Regional
Conference Series in Applied Mathematics, SIAM,
Philadelphia, 1992.

[3] Vidya Venkatachalam and Jorge. L. Aravena, “Non-
stationary Signal Analysis using Pseudo Power Signa-
tures”, In preparation (available from authors).

[4] M. Reed and B. Simon, “ Methods of Modern Math-
ematical Physics 1 : Functional Analysis”, Academic
Press, Inc., San Diego, 1980.

[6] Mark J. Shensa, “ The Discrete Wavelet Transform:
Wedding the A Trous and Mallat Algorithms”, IEEE

Transactions On Signal Processing, vol. 40, pp. 2464-
2482, Oct. 1992.



