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ABSTRACT

This paper presents results on the multiresolution analysis
of nonstationary signals with the objective of detecting un-
derlying periodic phenomena. Wavelet packet analysis with
coefficient thresholding is the basis for the detection. The
effectiveness of the method is illustrated by analyzing exper-
imental data on sediment electrochemical redox potential
in a tidal microcosm. The significance of the technique is
that it can extract periodic phenomena from experimental
data corrupted by catastrophic and random events, provide
a signature of the basic periodic component, and give an
estimate of the degree of deviation from periodic behavior.
Consequently, it has potential applications in the analysis of
quasi-periodic signals such as electrocardiograms (ECGs),
where the determination of the extent of quasi-periodicity
is of critical importance.

1. INTRODUCTION

In this paper, we aim to analyze experimental data relat-
ing to periodic phenomena which have been corrupted by
catastrophic or random events, and formulate techniques to
extract the periodic components from the data. The prob-
lem description and the solution we propose is explained by
means of a case study using time series data * on sediment
electrochemical (Fh) redox potential in a tidal simulation
microcosm. The goal of the experiment is to isolate and
identify the effect of diurnal tide cycles. The system is
run for several weeks and measurements of redox potential
are taken every hour. The microcosm is a carefully con-
trolled environment with all reasonable experimental pre-
cautions and verifications in place. Nevertheless, for the
experiment studied here, cold fronts caused significant tem-
perature variations (~ 10°C) over the course of the run.
Moreover, logs showed a power failure during a weekend.
As a result, the experimental data showed variations that
appear nonstationary in nature. Figure 1 displays the Eh
data from the tide simulating microcosm at two electrodes,
one at the surface, and the other at medium depth.

The problem was studied in some depth using time series
and spectral analysis techniques ([1]). However, the conven-
tional techniques failed to give satisfactory results. Figure
2 displays the spectral energy distributions corresponding

!We express our thanks to Dr. J. Catallo of the Laboratory
for Ecological Chemistry at LSU who supplied the experimental
data.
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Figure 1: Electrochemical Potential

to the signals shown in Figure 1. A simple visual in-
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Figure 2: Spectral Energy Distribution

spection of the spectral energy shows significant peaks at
the fundamental frequency and harmonics, strongly sup-
porting the presence of a periodic signal embedded in the
data. The spectral data also indicates a strong compo-
nent of very low frequency which points to long term vari-
ations. Our aim is to compensate for all the random and
unwanted variations, and extract the basic underlying pe-
riodic signal. Problems of this nature have been studied
in the past, and various solutions mainly involving conven-
tional spectral analysis have been proposed ([2]). However,



for the data presented, though the conventional spectral
analysis reveals strong harmonic components with period
close to 24 hrs (Figure 2), the signals reconstructed using
these harmonics show poor matches with the experimental
data. Figure 3 displays the reconstructed signal obtained
using the first four harmonics. For comparison, we include
the original signal with very long term variations removed.
It is clear that the spectral analysis technique leaves a sig-
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Figure 3: Harmonic Reconstruction With Four Terms

nificant residual attributable to the noise signal and inac-
curacies in the computation of the period. Moreover, this
technique has a very serious drawback in that it completely
disregards local temporal variations, such as those occuring
near the 90 hour mark and the 300 hour mark.

It is apparent that the problem of detecting buried periodic
phenomena is not limited to the microcosm experimental
set-up. Any similar experiment over such an extended pe-
riod is likely to display random effects. It is thus necessary
to develop a processing algorithm that can compensate for
such random variations and enhance the features that are
being sought. The effect of noise can be reduced with ad-
ditional observations. However, the inability to describe
local variations is a known limitation of spectral analysis.
The Short Time Fourier Transform (ST FT') was developed
as a partial solution to overcome this limitation. Unfortu-
nately, the STFT can only provide a fixed time resolution
determined by the size of the selected window. However, a
technique based on wavelets and multiresolution representa-
tions permits a description of the data in a “time-frequency”
space using variable resolution in both time and frequency.
Thus, we use the wavelet packet analysis as the basis for
our detection.

2. MULTIRESOLUTION APPROACH

The processing algorithm is based on a multiresolution anal-
ysis of the experimental data. Data was processed with a
perfect reconstruction filter bank creating a complete wavelet
packet decomposition. Each component of the packet gives
a representation of signal details in a specific resolution
level. The wavelet used was Db10, Daubechies’ compact
support orthogonal wavelet with 20 taps ([3]). It is appar-
ent from the data in Figure 1, that there exist some long
term variations, probably caused by weather changes (two

cold fronts passed through during the experiment). These
slow variations can be eliminated by subtracting an orthog-
onal component with very low resolution. For this purpose,
we used a low resolution component containing details with
periods longer than 64 hours. Figure 4 shows first the
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Figure 4: Compensation of Long Term Variations in Sub-
merged Electrode

variation of the potential in the submerged electrode and
then the same signal after subtracting the low resolution or-
thogonal component. Observe that the long term variation
compensation produces no loss of fine features. A similar
result was obtained for the surface electrode. In the com-
putations and displays, the mean value has been removed
from the original uncompensated Eh readings.

A cursory examination of the compensated data shows what
appear to be significant periodic features corrupted by other
effects (noise). To verify the existence of such periodic fea-
tures, we use the wavelet packets to create low resolution
representations of the signal. The assumption is that at
low resolution only the most significant effects will appear.
Thus, we expect the low resolution representations to en-
hance the periodic behavior, while suppressing the noise,
and other random effects. Figure 5 displays the orthogo-
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Figure 5: Low Resolution Orthogonal Components

nal components of the compensated electrode potential with
components of periods larger than 16 hours. For clarity, the
compensated signal is also shown in dotted lines.



It can be seen that the signals obtained at low resolution
do indeed display very regular periodic behavior. In or-
der to obtain a measure of periodicity, we determined the
maxima and minima in the low resolution components us-
ing a peak detector. Table 1 presents the data for the sub-
merged electrode. A similar table is available for the surface
electrode. From the tabulated data we removed the data
corresponding to the maxima and minima in the interval
300 — 330 hours, where the experimental data showed a
clearly anomalous behavior, and determined that the max-
ima and minima were spaced in the average by 23.78 hours,
with a standard deviation of 2.1 hours, making a good case
for diurnal variations. This gives us an estimate of the aver-
age period, and also a measure of the deviation. Note that
in addition to depicting the periodic components, the low
resolution representation also highlights details which were
masked in the original data, like the catastrophic changes
occurring in the neighborhood of 300 hours (when logs in-
dicated a power failure), which are enhanced in the low
resolution view.

Table 1: Data On Maxima And Minima Of The Submerged
Electrode

Minima | Separation | Maxima | Separation
4 14
26 22 38 24
49 23 66 28
79 30 86 20
98 19 110 24
122 24 133 23
146 24 158 25
170 24 182 24
193 23 205 23
217 24 229 24
241 24 254 25
264 23 277 23
289 25 298 21
303 14 313 15
316 13 325 12
338 22 350 25
362 24 374 24
387 25 398 24
410 23 422 24
433 23 446 24
458 25 469 23
482 24 494 25

3. ENHANCEMENT OF PERIODIC
BEHAVIOR

The determination of the period was carried out using a
limited resolution representation. In order to capture all
the nuances of the periodic phenomena, we assume that
the non-periodic phenomena will have no preferred loca-
tion either in time or frequency and that their energy will
be spread uniformly in the time-frequency domain. The
energy contribution of non-periodic phenomena is finite.
Hence, the energy in each component of the wavelet packet

should be approximately the same, and decrease with the
number of components. On the other hand, the periodic
phenomena are expected to have energy only in some com-
ponents in the wavelet packet decomposition. Therefore,
those components showing periodic behavior will have an
improved signal to noise ratio.

Figure 6 shows the electrode potential, one orthogonal com-
ponent with clearly defined periodic features and one com-
ponent that does not display significant periodic behavior.
The component showing periodic behavior contains har-
monics with periods between 8 and 16 hours. The compo-
nent without clear periodic features has components with
periods ranging from 2.7 hours to 3.2 hours. If we seek
to add details to the periodic variations, we should con-
sider the features with periods between eight and 16 hours
and safely ignore the others, as these would most likely
be high frequency noise. A very significant fact is that the
high resolution features also preserve the temporal informa-
tion. Where the periodic signal was destroyed, the details
are also missing. Hence, if desired, one can perform signal
enhancing using only relevant information. Each of the
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Figure 6: Orthogonal Component With And Without Pe-
riodic Features

components can be analyzed in the same manner. In this
study, we took a simplistic approach and we either used an
orthogonal component or rejected it.

The last step in the processing is the accounting of catas-
trophic events, such as the power failure and other ran-
dom effects. For this processing, we used the representa-
tion with enhanced periodic behavior and defined “daily
vectors,” starting at the first minima and containing data
for one 24 hour period. The collection of “daily vectors”
was then analyzed to discard outliers, thus eliminating the
distortion due to catastrophic events. The remaining vec-
tors were averaged to create the final signature of one cy-
cle. Essentially, we determined the mean value of the “daily
vectors” set, and obtained the correlation coefficients of this
mean vector with each vector in the set. By fixing a suit-
able threshold (.8 in our case), we could identify all those
elements of the set which had a high correlation with the
mean value. These were then used to determine the periodic
signature for the compensated signal. Figures 7 and 8 show
the results of processing the surface and medium depth sig-
nal using the Db10 wavelet. For each case, the compensated



signal is shown along with the signal obtained using only
the peridic signature, and they are displayed using the same
scale for better clarity. Note the significant reduction in the
amplitude of the noise corrupting the original signals, in the
enhanced signals. It is important to highlight that our ap-
proach determines one typical period of the signal. We
concatenate periods for display purpose only.

It is reasonable to suppose that the simple averaging proce-
dure outlined above, worked very well in our case because
the signals were inherently highly periodic. The technique
though might not be suitable for highly irregular signals.
For such signals, we would need to formulate more sophis-
ticated processing techniques.
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Figure 7: Enhanced Periodic Features Of The Surface Sig-
nal

Processing the medium depth signal with D10
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Figure 8 Enhanced Periodic Features Of The Medium
Depth Signal

4. CONCLUSIONS

‘We have demonstrated how the wavelet packet decomposi-
tion can be used to look at a nonstationary signal at differ-
ent frequency resolutions and time instances. As the case
study shows, this property has very interesting and use-
ful applications. The signal enhancing approach we used
in this work is naive, but the technique is economical and

easy to implement. The results show the tremendous capa-
blities of the wavelet based multiresolution technique. The
methodology presented in this work appears to be an effec-
tive tool to compensate for random effects and to enhance
periodic behavior embedded in the data corresponding to
quasi-periodic signals.
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