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ABSTRACT

The classification of nonstationary signals of unknown dura-
tion is of great importance in areas like oil exploration, mov-
ing target detection, and pattern recognition. In an earlier
work, we provided a solution to this problem, based on the
wavelet transform, by defining representations called pseudo
power signatures for signal classes which were independent
of signal length, and proposed a simple approach using the
Singular Value Decomposition to generate these signatures.
This paper offers a new approach resulting in more discrim-
inating signatures. The enhanced signatures are obtained
by solving a nonlinear minimization problem involving an
inverse projection. The problem formulation, solution pro-
cedure, and computational algorithm are presented in this
work. The efficacy of the projection signatures in separat-
ing highly correlated signal classes is demonstrated through
a simulation example.

1. INTRODUCTION AND PREVIOUS WORK

Consider the following classification problem :

Signals are obtained by propagating electromagnetic waves
through several layers of different classes of materials. The
goal is the determination of the various classes present and
the thickness of each layer. We denote the presence of a
particular class as the occurrence of an event.

The problem was described as a generic classification prob-
lem in a previous work ([1]), and was solved by introduc-
ing the concept of pseudo power signatures. For signals
in each class, these signatures capture information at dif-
ferent scales, independent of the signal duration. Essen-
tially, the signatures characterize the scale power distri-
bution in a manner independent of time. In [1], we pro-
posed an approach to determine the signatures by perform-
ing a Singular Value Decomposition (SV D) of the Continu-
ous Wavelet Transform (CWT), and extracting the princi-
pal component. Specifically, for z € L*(R) with CWT,
cy € H = LQ(%Q,C;M—ZQ—I’), where 1) is an admissible
wavelet, we approximated cf(a,b) by a separable element
of the form !

¢y (a,b) = 5 (a)ry, ()

We have shown ([2]) that there do not exist any admissible
wavelets that admit a separable CWT function. Thus, we can
only approximate a CWT function by a separable form.

vl H=M o M*

ST ST

_ - M

Figure 1: Graphical representation of the SVD and projec-
tion vectors

where s, € S = L*(R, C_I%‘%), and rj € R = L2 (R, db).
The normalized function s, corresponds to the pseudo power
signature of z.

Now, it is known that the principal component of the SV D
provides the optimal separable approximation to an element
in the standard Hilbert space L?(R?, dbda). However, H is
a Hilbert space with a weighted inner product, and the prin-
cipal component obtained using the traditional SV D anal-
ysis does not provide the closest separable approximation
to an element in H. The situation is described graphically
in Figure 1. In the figure, M denotes the closed subspace
of CWT functions, and M~ its orthogonal subspace in H.
The element, ¢ € M, is to be approximated by a separable
element of H. In theory, the best separable approximation
is provided by the separable element in H that orthogonally
projects onto c¢. The traditional SV D analysis yields the el-
ement §7 € H as the best separable approximation. Note
however, that in the sense of the weighted inner product
defined in H, the element §7 does not orthogonally project
onto ¢, but rather onto ¢ € M. If || ¢ — & || i is large, then
we can intuitively see that the element 37 is a poor approx-
imation to c¢. 'What we need to determine is the element
sr € H that orthogonally projects onto c¢. The normalized
function s can then be used to denote the pseudo power sig-
nature of the function € L?(R) whose CWT is given by c.
Since this signature is obtained as a result of a projection,



it is referred to as a projection signature. The following sec-
tions describe in detail a method to create the projection
signatures, the computational algorithms used, and some
experimental results on the classification of signals using
the approach.

2. PROBLEM FORMULATION
The first step in the determination of the projection sig-
nature is the definition of a suitable orthogonal projection

operator K : H — M.

Theorem 2.1 There exists an orthogonal projection oper-
ator K : H — M defined as follows. Given any c € H,

dBdo

K [c] (a,b) = q_//¢“aﬂﬂam

The proof is fairly simple, and can be obtained from [2].
Moreover, denoting I' : L?(R) — H as the CWT operator,
and T* : H — L?(R) as the adjoint operator (I'* is effec-
tively the inverse CWT operator extended to the whole of
H by defining M~ to be its null space), we can easily show
that £ = I'T* ([2]). A result which readily follows from
Theorem 2.1 is given by :

Corollary 2.1 To every c € H, there corresponds one and
only one & € L2(R) such that the CWT of &, iy, is given
by

cj(a,b) = K[d] (a,b)

For any given x € L*(R), let cj, € M denote its CWT
with respect to an admissible ¢ € L?(R). Consider the el-
ement st € H. Let ¢ = K[sr] € M, and & € L*(R) the
element associated with sr by Corollary 2.1. It intuitively
follows that if we determine sr € H such that it minimizes
| ¢ — ¢ |lar, then the sr effectively minimizes ||  — & ||2.
Hence, we can expect that ¢, and consequently, sr, will bet-
ter characterize the intrinsic properties of x. However, we
do not know if the orthogonal projection operator K, when
restricted to the set of separable elements in H, is one-one.
Consequently, there may be more than one separable ele-
ment sr € H with the same projection ¢ € M. Thus, in
order to ensure the determination of a unique projection
signature, we add a regularizing term « || sr || to the mini-
mization problem. For analysis purposes, we choose o = 1.
The minimization problem is then represented as follows :
For a given cj, € M, find the decomposition syry € H
that minimizes the index

2 2
T(s5,r5) = {1l € = Klsgry] e + 1 575 117 }

This is an infinite dimensional nonlinear minimization, and
requires the solution of the inverse projection problem. The
problem formulation and solution procedure for the infinite
dimensional case can be found in [2]. However, for a practi-
cal application, the problem needs to be reduced to a finite
dimensional one. For this, we need to find a finite dimen-
sional representation for K, and determine a suitable dis-
cretization for the elements cj, K[syry] € M, sj € S, and
ry € R.

2.1. Discrete approximation to the minimization prob-
lem

Using the concept of frames and frame operators, and a
wavelet ¢ € L?(R) that arises from a multiresolution ([3]),
we can determine the set of discretized coefficients {c, (2',n)}in
using the Shensa algorithm ([4]). For most practical ap-
plications, cj has near compact support in the time-scale
plane. For a signal of finite time support, and a suitably
chosen 1, (where ¢ has compact time support), it can be
well approximated using finitely many discretized CWT co-
efficient values. This implies that there exists L, N such
that cﬁ(?l,n) =~ 0, for all I > L and for all n > N.
One can represent this using a finite dimensional matrix
Cy(l,n) = [cy, (2%, n)] of dimension L x N.

The problem of finding a discrete approximation to the or-
thogonal projection operator K : H — M, is more involved.
The approach followed here approximates K by using a suc-
cessive application of the inverse and forward Shensa algo-
rithms. Let S : >(Z2) — 1?(2%) denote the forward Shensa
operator. Then the adjoint operator S* : I>(2?) — I*(2)
is given by the extended inverse Shensa operator. Clearly,
S*S = I. Under certain assumptions, we can show that
SS™ is the discrete approximation to K.

Define an operator, F» : H — I(2?) as

Byle](l,n) = (¢, )y, c€H

where the sampling function &;, = d(a — 2',b — n). The
adjoint operator Fs : 12(22) — H is then defined as

Fi[h)(a,b) =Y Y hl,n)an(ab), hel*(2%)

l

where

(@h) = 1, 22<a<2*, n<b<n+1
2,n 1%, - 0, elsewhere

and F5 Fyc is a piecewise constant approximation to ¢ € H
of the form

N

F5 Fy[c](a, b) ZZ 2, n)q,n(a,b)

It is possible to show that if we make the assumption that
the CWT is piecewise constant, the orthogonal projection
operator K = I'T" can be approximated as

K =~ F,SS'F,

With sq(l) = 32(21), sq € CE, and ry(n) = Ty (n), ra € cN,
the element K[sjry] can be approximated by the finite di-
mensional matrix C € C**" resulting from the operation
S$8*[sar]]. The infinite dimensional minimization then re-
duces to the following problem :

Given a matrix Cy € CEXN of samples on the Shensa
grid of the CWT of « € L*(R), determine the rank
one matrix sqr: € CY*¥ such that the following func-
tional is minimized

J(sa,ra) =|| C§ — 88" [sarq ] ll> + || sard |13



3. SOLUTION TO THE MINIMIZATION

We solve the finite dimensional minimization problem using
the following steps :

1. Proving existence of a global minimum.
2. Establishing necessary conditions for optimality.

3. Developing an iterative algorithm involving succes-
sive quadratic minimizations with respect to the vec-
tors sq € CL, and rq € CT.

The discrete orthogonal projection approximation opera-
tor SS* on the separable finite dimensional Hilbert space
12(CEXM), is isometrically equivalent to a matrix K : CEV —
CYYN. The isometry, T, essentially rearranges matrices as
vectors by stacking its rows. With this notation, we can
define the following two subproblems. Let I denote the
identity matrix of size L, and ¢ = T'Cy a column vector
representation for Cjj. Then, with ® denoting the standard
Kronecker product, for a fixed r4, we obtain a minimization
with respect to sy as shown.

min J(s4) = ¢ — K(ra ® I)sa I3 + || (ra ® I)sa I3 (1)
sd

Similarly, denoting cr = TCff,T, and Iy as the identity ma-
trix of size IV, for a fixed s4, we can define the minimization
problem with respect to rq as

n}in J(rq) =|| er —K($d®IN)T‘d ||§ + || (sa®In)rg ||§ (2)
d

It can be readily shown that each of the above subproblems
has a unique solution, since J is separately convex in sq,
and r4. Let By = {sq € C*; || sq ||2< 1} denote the
closed unit ball in 1?>(2) of dimension L, which is compact.
For a fixed s4 of unit norm, sq € Br. Let r4(sq) be the
solution to Equation 2. Then, the functional J(sq,7r4(s4))
is effectively a function of s4 € Br.

Theorem 3.1 There exists §4 € B, and 7q4 = r4(3q4) €
CYN such that

J(gd,fd) = inf J(Sd,Td)

sq€BL,rqeCN
The proof of the theorem can be found in [2], and is based
on the result that J is continuous on the compact set Br.
Once, the existence of the minimal solution has been estab-
lished, we can develop necessary conditions for minimiza-
tion using Calculus of Variations. Taking variations with
respect to s4 in Equation 1, and r4 in Equation 2, the nec-
essary conditions for minimization with respect to sq and
rq respectively are given by

(Td®IL)*(K+I)(Td®IL)Sd—(Td®IL)*C=0 (3)

(8d®IN)*(K+I)(Sd®IN)Td—(Sd®IN)*CT=0 (4)

In order to determine the projection signature, we devel-
oped an iterative procedure which involves successively solv-
ing Equations 3 and 4. Owing to the convexity of J in each
variable s4,r4 separately, the first order necessary condi-
tions also become sufficient for each minimization. Thus,
we obtain a monotonically decreasing cost sequence {J"};.

Theorem 3.2 There exists 34 € Br, and J > 0 such that
the sequence {J'}; converges to J = J(5q).

The proof of the theorem is based on the continuity of J(sq)
on the compact set Bz, and the sequential compactness of
By. Complete details are given in [2]. Thus, we have a so-
lution technique to compute the projection signatures, with
a guaranteed convergence to the limiting solution, though
there is no assurance that the convergence is to the global
minimum.

3.1. Computational algorithm

The computational algorithm to determine the projection
signatures, based on the iterative procedure developed, is
as follows.

1. Select a wavelet ¢ € L*(R) which arises from a mul-
tiresolution, and the number of levels L to be used in
the filter bank corresponding to the multiresolution.

2. For the given finite discrete input signal x € V=, de-
termine the discretized CWT coefficient matrix Cy, €

LXN ysing the forward Shensa algorithm.

3. Based on the scalogram SC} (I,n) =| C§(l,n) |* val-
ues, modify L such that Cj(l,n) = 0, for all | > L,
n > N, and recompute Cy using the modified value
of L.

4. Pick random vectors s € C%, r§ € €V, and set a
value for tol.

o At the i th stage, set rq = ré‘l. Using the
conjugate gradient technique, with gradient

Dsy = §}:E{(SdT;lT-i-SS* [sdr,fflT] _C&c))T;—lc}

solve the minimization problem for sq. Let §;°
denote the solution.
iS4t
o Set sy = oot
e Next, with s; = s’ using the conjugate gradi-
ent technique with gradient

Ay, =R{(sira" + 58 [sérdT] e
Let 7

solve the minimization problem for r4 .
denote the solution.

e Compute the cost function J(sg,rg). If
(J(s5 i) — J(sh,rh)) < tol, terminate.

5. end.

The projection signature of the input signal x € CNe is
given by the function s; obtained at the termination of the
algorithm.

4. SIMULATION RESULTS

In this section, we will consider the same example presented
in [1], and show the improvement obtained using the projec-
tion signatures. The signals x1,x2,zs from three different
signal classes and their projection signatures are displayed



in Figure 2. For purposes of comparison, the SV D signa-
tures obtained from the principal component of the SV D
of the discretized CW T matrix of the signals z1,x2, z3 are
also displayed in the same figure. All the signatures were
generated using the wavelet Db4. Observe how well the
projection signatures S; and S separate the highly corre-
lated signal classes z1 and z2. The signal to be classified
x is shown in Figure 3. The signal z was obtained by con-
catenating segments of each of the three signal classes. The
classification process we used here was a very simple one.
We determined the correlation of each signature with the
discretized CWT [05(21, n)] of the signal z for each n. The
correlation graphs are also shown in Figure 3. Observe that
the transition points at —50 and 50 are clearly marked, and
the signal  can be classified with a high degree of con-
fidence based on the correlation graphs. This example is
representative of several classification tests we ran using
projection signatures. In most cases, we obtained signa-
tures of very good quality, with unambiguous classification
results.

From a computational standpoint, the use of the conjugate
gradient technique guarantees convergence in at most P
steps where P is the size of the vector over which we are
minimizing, which makes this technique very efficient. In
fact, our experiments show that convergence usually occurs
in far fewer iterations, no more than 15 for signals with
30000 sample points. One would expect from the above
discussion, that this computational technique would fail
when the assumption on the piecewise constant nature of
the CWT is violated. However, our results on randomly
selected sample signals indicate that this approach does
in fact provide highly discriminating signatures for diverse
classes of signals.

The 3 signal classes and their pseudo power signatures
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Figure 2: The 3 known signals and their SVD and projec-
tion signatures

5. CONCLUSIONS

In this paper, we proposed a technique using the CWT to
compute pseudo power signatures for signal classes based on
projections. The technique involved a nonlinear minimiza-
tion, and we provided the complete solution to the mini-
mization problem. We also developed an efficient algorithm
for the computation of the signatures using an iterative pro-
cedure with fast convergence, and illustrated the quality of
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Figure 3: The signal to be classified and its correlation
graphs

the projection signatures through a representative example.
It is important to note that the actual classification can be
done very quickly, since the signatures are vectors of very
small dimension. This approach has wide applicability, in
areas as diverse as oil exploration, hidden mine detection,
moving target detection, system identification, and pattern
recognition.
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