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Abstract

Conventional signal processing typically involves fre-
quency selective techniques which are highly inade-
quate for nonstationary signals. In this paper, we
present an approach to perform time-frequency selec-
tive processing using the Wavelet Transform. The ap-
proach is motivated by the excellent localization, in
both time and frequency, afforded by the wavelet basis
functions. Suitably chosen wavelet basis functions are
used to characterize the subspace of signals that have
a given localized time-frequency support, thus enabling
a time-frequency partitioning of signals. A practical
implementation scheme using filter banks is also pre-
sented, and the effectiveness of the approach over con-
ventional techniques ts demonstrated.

1 Introduction

In several application areas, such as speech, audio,
image and video subband coding systems, the signal
properties and statistics vary temporally or spatially.
Additionally, the signals may show high energy con-
centration in several localized time-frequency regions.
For these signals, time-frequency decomposition, pro-
cessing and reconstruction is widely used. This is
done using distributions and transforms such as the
Wigner Distribution, the Short Time Fourier Trans-
form, the Gabor Transform, and more recently, the
Wavelet Transform. The underlying idea in this type
of analysis is to obtain a time-frequency energy dis-
tribution of the signal so that one can isolate, and
process independently, components of the signal cor-
responding to regions of high energy concentration in
the time-frequency plane.

Our research objective can be simply described as fol-
lows:

Given a nonstationary signal, which has ils energy
localized in disjoint regions in the time-frequency

plane. The main task is to develop procedures to ma-
nipulate the signal components in the different regions
independently, and concurrently, with the inten-
tion of enhancing the signal.

This paper focuses on the issue of partitioning the
time-frequency plane into disjoint regions such that
signal components with support in the different re-
gions are effectively isolated. This is necessary for the
independent manipulation of the different components
in order to achieve the desired enhancement.

2 Background review

The authors in [1] addressed a similar problem and
attempted to solve it through the use of the Wigner
distribution (WD). While the WD has very desirable
properties when applied to signals with only one region
of concentration in the time-frequency plane, it has
been acknowledged that it has some very serious lim-
itations when dealing with multicomponent signals.
In most cases, the WD is incapable of resolving two
components in a signal due to the presence of exces-
sive cross-terms. One needs very high resolution in
order to distinguish two closely spaced components,
but then, at high resolutions the WD may produce
negative values which are difficult to interpret in en-
ergy terms. Thus, the WD is a poor candidate for the
analysis of multicomponent nonstationary signals.

Another commonly used time-frequency representa-
tion is the Short Time Fourier Transform (STFT).
If Fi(t, f) is the STFT of a signal z(¢), the associ-
ated energy time-frequency distribution is given by the
spectrogram(SP), which is defined as SP;(t, f) =|
Fi(t, f) |?. The spectrogram is a very effective repre-
sentation in most situations, even where the WD fails,
namely, the resolution of multicomponent signals. It
has little cross-term interference, and always assumes
only positive values, providing for unambiguous inter-



pretations. However, the shape of the window criti-
cally determines the time resolution afforded by the
STFT. The main disadvantage is that it allows con-
stant time-frequency resolution, and time events not
separated by an interval larger than the window length
cannot be effectively isolated by the STFT. Hence,
though the STFT overcomes several problems associ-
ated with the WD, it is limited by the time resolution
it can afford.

The Wavelet Transform (WT) overcomes the limita-
tion in resolution by introducing a scale parameter
which allows variations in the time-frequency resolu-
tion and generates a TDF which is always nonnega-
tive. The continuous wavelet transform of a function

z(t) € L2(R) is defined as

T (e (0,6) = (3 00s) = [ a0t (1)
where ), 3 is defined as
1 —b
Yap =|a|"? ¢(t a )

The function, ¥4, represents a dilated and shifted
version of a basic function ¢(¢), called the ’mother
wavelet’ or basic wavelet function. The inverse WT is
computed as

s = [ [T R @

where ¢ = 2=« f_oooo %dw. This implies that the
WT is invertible whenever ¢ < co. This rather weak
condition for inversion is called the admissibility con-
dition.

The variable a is referred to as the scale parameter. 1t
determines the dilation performed on the basic wavelet
and it is inversely proportional to the frequency ([2]).
Later we will establish a formal correspondence be-
tween the two. The variable b determines the time
location of the wavelet; hence it is called the time pa-
rameter. The wavelets thus provide a natural local-
ization of a given function #(¢) € L2(R) (finite energy
signals) in time and frequency. One can visualize the
WT, T% [¢] (-, b), as the extracting of the signal infor-
mation in varying neighborhoods of b; or examining
it with a continuous family of bandpass filters. As
the width of the time window decreases (the scale re-
duces), the bandpass increases. The effect of this is
that the WT offers good spectral and poor temporal
resolutions at low frequencies, which is useful for ana-
lyzing low frequency components of long duration; and
good temporal and poor spectral resolutions at high

frequencies which is useful for analyzing signal com-
ponents of high frequency and short duration. Since
most nonstationary signals encountered in practice are
of these forms, the WT provides a very good repre-
sentation for these signals. This inherent property of
the W' is the foundation of the proposed use of the
wavelets for nonstationary signal enhancement.

3 Time-frequency Partitioning using
the WT

In this section, we address the first part of the en-
hancement problem, namely the partitioning of the
time-frequency plane into different disjoint regions
such that the signal components are localized in these
regions.

The main issue here is one of characterizing the sub-
space of functions having support in a given time-
frequency region R using suitable basis functions. For
this, we need an index to measure the energy concen-
tration of a signal component in a particular region.
For the WT, this index is defined in terms of the scalo-
gram associated with the WT of a function z(t) and
defined as

SCy(a,b) =| T [](a,b) |*

The signal energy over a given support I is defined as

B = // SCy(a,b) d“g”’
(a,b)ER a

The basis behind our proposed approach is the nat-
ural localization property afforded by the wavelets.
In the time domain they are designed to have good
windowing characteristics; compact support is a de-
sirable property. On the other hand, the admissibil-
ity condition effectively imposes a frequency band-pass
characteristic. Thus, if ¢(t) is an admissible wavelet
with Fourier transform, ¥(w), one can associate to it
a time support interval BTy centered at a time ¢y and
a frequency support BWy centered at a frequency wy.
Hence, 9(t) has time-frequency support BTy x BWy
centered as (ty,wy).

The wavelet 1,5 has been time shifted by b and di-
lated by a. Hence it has a time-frequency support

BW,

Sa,b = aBTw X
and centered at the point

(t,w)ap = (tw 40, %")



The same argument can be used to establish a cor-
respondence between scale and frequency. Let wy de-
note the center frequency corresponding to the wavelet
function ¢(¢). Let w denote the center frequency for
¥q5(t). Then, the scale a is related to the frequency
w given by

_ Yy
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w

With this assignment, the scalogram, as a function of
w, does correspond to a time frequency energy density

function.
w w )’ w
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= (cw¢)_1//SCx(w—w,t)dwdt
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and EJ(UR) = (cww)_l// SC’x(ﬂ,t)dwdt
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Thus, we can obtain the energy of the signal z(¢) in a
region R in the time-frequency plane using the WT.
The crucial feature in this approach then is to deter-
mine the a,b which correspond to a region R (using
the relationship developed above), and then determine
the corresponding W'T coefficients, in order to com-
pute the energy concentration in R. This problem is
discussed below.

3.1 Determining the subspace
sponding to a region R

corre-

Consider the wavelet family {145 }. Each wavelet has
a well defined support S, 3 in the time frequency plane,
where

BW,

Sa,b = aBTw X

Hence, essentially all its energy is concentrated in that
region. By a suitable choice of a,b (corresponding to
wavelets which are well localized within the region R),
we can ’cover’ the region R using a finite number of
these wavelet functions. Then, the projection of the
signal onto the subspace spanned by these wavelet
functions would determine the signal concentration
EQ(CR) in that particular region. The reconstruction of
the signal using only these coefficients in the inverse
WT should give the component concentrated in that
region. Thus, this can be used to isolate components
into different time-frequency regions.

There are problems here regarding overlapping of the
different 14 s, and a spillover effect if the 1, ;s have
substantial support outside of the region R.

The previous analysis assumes that the region S, ; can

be used to estimate the time frequency support of the
wavelet ¥, 3. One can make a more detailed analysis
by estimating the support of the wavelet transform of
Yq 3. For this purpose, we note that

i [1/}0,5](0" 6) = <1/}<1,b7 1/}a,ﬁ>

This inner product will be zero if the two wavelets
have disjoint time support. Hence one can estimate
the support by determining conditions for the two in-
tervals to overlap. It is not difficult to show that the
two wavelets will have common time support if one of
the following two conditions is satisified

b—angﬁ—angb—l—aTw
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For simplicity in the notation we have used 7y, =
BTy /2, with BT, the time support of the basic
wavelet. The first equation constrains the left end of
the support for ¢4 g to be inside the support for 43
while the second establishes a similar constraint for
the right endpoint. This defines a romboidal region
centered at (a,b), and which can be then converted to
an equivalent region in the time-frequency plane.

It is well known that the WT offers a significant
amount of redundant information, which may be use-
ful to improve performance in noisy environments.
However, from a computational point of view one may
gain efficiency by eliminating redundancy. A natural
implementation of this idea is to generate an orthonor-
mal basis (ONB) for a given subspace using suitable
wavelet functions. One approach to obtain such a ba-
sis is through a multiresolution. This is essentially a
ladder of subspaces

...,CV1CVOCV_1C...

defined by a unit norm analysis function, ¢(t), solution
of a two scale equation

o(t) = Z hn\/§¢(2t —n)

Moreover, defining ¢, , = 2‘%¢(2Lm —n), the collec-

tion {@mn}n is an ONB for V,,,. One of the tenets
of multiresolution analysis ([3]) is that to every mul-
tiresolution it is possible to associate a (unit norm)
admissible wavelet, ¢(¢), of the form

Y(t) = gnV/26(2t — n)
such that the collection

1/}m,n = 2_%¢(Lm -

; Z
5 n); myn €



defines another orthonormal basis for L, and the sub-
spaces

W = span{mn,n € Z}; me 2

constitute an orthogonal decomposition such that
Vin = Ving1 ® Winy1. For this reason, the space, Wi,
is referred to as the subspace with details of level m.

A given finite energy signal z(t) can be expressed as

2(t)= Y (& %mn) b

mneZ

The coefficients DWy[m,n] = T¥[z](2™,2mn] =
(z,Ymn),m,n € Z are referred to as the discrete
wavelet transform of x(t). It follows immediately that
the total energy of the signal can be expressed as

E, = Z | DWg[m,n] |2
mneZ

Suppose {¥m, n, }7L, for suitably chosen m;,n; is the
collection of orthonormal wavelets which have their
support in a given region, K. These wavelet functions
with localized support in the region R are effectively
an ONB for the collection of functions with energy
concentrated in that particular region. Thus, deter-
mining the component of a signal with energy in R is
equivalent to determining the wavelet coefficients for
{/‘/}ml,nl}g\él

Let 2r(t) denote the component of a signal z(¢) with
support in R

N
2r(t) = D (2, Umin) Yomn,
i=1
N
= D T[] (2™ 027 ),
i=1

The energy of the signal zg(¢) in the time-frequency
plane is then given by

Egm

’n?m)|2

This is consistent with our initial assumption that
zg(t) is the component of z(¢) with support in R.
Thus, this approach isolates those signal components
that have localized high energy concentrations.

Since the basis is orthonormal, we avoid the problem

of overlapping and obtain a more accurate represen-
tation of the signal concentration in the region R. In
this analysis, the choice of the mother wavelet func-
tion becomes critically important in determining the
quality of the covering.

4 Filter Bank Implementation

Filter banks are efficient in implementing the parsimo-
nious time-frequency partitioning created by a mul-
tiresolution. Filter banks are widely used for the com-
putation of the WT on a dyadic grid, i.e. a = 2™ and
b = n2™. As a result, we obtain the mapping of the
continuous 1 — D function z(t) to a 2— D discrete grid
defined by m,n in the time-scale plane.

Suppose we have a function z(¢) € V5. We can then
define a unique representation z4 for z(¢) in ly using
the frame operator F defined by

zq[n] = Fz = (x,00,)

This sequence is used as the input in the filter bank
implementation scheme. The output sequence zj; is
then mapped to an Ly(R) function Z(¢) using the ad-
joint frame operator F* defined as

l’(t) = T*l’d = szd[n]wm,n

Figure 1 shows the typical ladder structure used in
the computation of the wavelet coefficients and the
corresponding filter bank representation. The anal-
ysis filters and the synthesis filters (not shown) are
designed based on the ¢(t) and the (t) respectively,
and the decimation factor in the kth channel is given
by I = 2*. Consequently, we obtain at the kth chan-
nel output of the analysis bank, vectors di such that
dp(n) = (z,v¢p,n), which is the WT coefficient cor-
responding to a unique location in the time-frequency
plane defined by the support of ¥, ,. By isolating only
those channel coefficients which correspond to the 3 »
which form an ON B for a region R, we can directly
obtain the signal energy concentration in R, and iso-
late the signal components which have a high energy
concentration in R. This achieves the desired time-
frequency partitioning.

Once the partitioning is accomplished, we can manip-
ulate the isolated signal components independently.
This effectively implies modifying the WT coefficients
in the region R (selected analysis channel outputs) in a
desired manner before reconstruction in the synthesis

bank.



Figure 1: Computation of the Discrete Wavelet Trans-
form and Filter Bank Representation

5 Experimental Results

In this section, we demonstrate the effectiveness of
the proposed time-frequency partitioning approach in
the processing of nonstationary signals corrupted by
noise. The test signal has four well defined compo-
nents shown in Figure 2. Components a and b (resp. ¢
and d) are chirp signals with disjoint time support and
the same energy frequency distribution. Components
a and ¢ (resp. b and d) have overlapping time sup-
port but approximately disjoint frequency supports.
For demonstration purposes, we have used the un-
corrupted signal to determine the appropriate time
frequency regions. For this purpose, we have used
Daubechies’ Dig, compact support wavelet. For each
component, we determine the region R such that the
signal has 85% of its energy in that region. This is
used to define the wavelets spanning the subspace of
signals with support in R. In practice, this analysis
determines which coefficients of the discrete wavelet
transform must be used in the reconstruction of the
signal.

For the multicomponent and noise corrupted signal,
we computed the wavelet coefficients and used only
those corresponding to wavelets in the selected re-
gion to generate the enhanced signal. Effectively, this
approach completely eliminates the noise outside the

time-frequency support of the signal. Figure 3 shows
the multicomponent signal, the noise corrupted signal
and representative reconstructed components.
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Figure 2: Components of Test Signal
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Figure 3: Enhancement with Wavelet Transform
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