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Abstract

The classification of nonstationary signals of unknown duration is of great importance
i areas like oil exploration, moving target detection, and pattern recognition. In an
earlier work, we provided a solution to this problem, based on the wavelet transform, by
defining representations called pseudo power signatures for signal classes which were
independent of signal length, location and magnitude, and proposed a simple approach
using the Singular Value Decomposition to generate these signatures. This paper offers a
new approach resulting in more discriminating signatures. The enhanced signatures are
obtained by solving a nonlinear minimization problem involving an inverse projection.
The problem formulation, solution procedure, and computational algorithm are presented
in this work. An analysis of the projection signatures, and their efficacy in separating

highly correlated signal classes are demonstrated through simulation examples.
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1 Introduction and previous work

The classification of nonstationary signals of unknown duration is of great importance
in areas like oil exploration, moving target detection, and pattern recognition. Consider
the following representative classification problem :

Signals are obtained by propagating electromagnetic waves through several layers of dif-
ferent classes of materials. The goal is the determination of the various classes present
and the thickness of each layer. We denote the presence of a particular class as the oc-
currence of an event.

The problem was described as a generic classification problem in a previous work ([1]),
and was solved by introducing the concept of pseudo power signatures. For signals in each
class, these signatures capture information at different scales, independent of the signal
duration. Essentially, the signatures characterize the scale power distribution ([2]) in a
manner independent of time. The signatures are then invariant to time shifts, and pieces
of signals are all characterized by the same signature. This is an extremely important
characteristic, and one that is not generally present in current classification schemes ([3]).
For z € L*(R) with CWT, ¢}, € H = L*(R?,C,, ' %), where ¢ is an admissible wavelet,

we approximated c, (a,b) by a separable element of the form?

cyla,b) = sy (a)ry(b)

2We have shown ([4]) that there do not exist any admissible wavelets that admit a separable CWT
function. Thus, we can only approximate a CWT function by a separable form.



where 53 € S = L’(R,C,'%), and r}, € R = L?(R,db). The normalized function
sy, corresponds to the pseudo power signature of z. In [4], we enumerated a simple ap-
proach to determine this signature by performing a Singular Value Decomposition (SV D)
of the Continuous Wavelet Transform (CWT), and extracting the principal component
([5]). For discrete signals, we reduced the problem of determination of the pseudo power
signatures to a standard matrix SV D problem, and readily obtained the discrete approx-
imation to the signatures from the principal component of the discretized CW'T matrix.
The results shown in [4] indicate that the signatures obtained from the principal compo-
nent of the discretized C'W'T" matrix are easy to compute, and are insensitive to noise,
but are limited by a lack of fine discriminating capability. Consequently, they are not
well suited for classification problems. The SV D matrix technique had two obvious
shortcomings: (1) It implicitly assumed that the CWT was piecewise constant. (2)
It made the more seriously erroneous assumption that the orthogonality of the vectors
ui, u; € 2(2), and vi,v; € *(Z), i # j, implied that the elements s;r;,s;v; € H defined
as siri(a,b) = 3, 22, (D)v;(n)qin(a, b) and s;ri(a,b) = Yin 2% (1)v;(n)qan(a,b), are
orthogonal in H 3. We can readily see that such an assumption is not valid in the space
H with its weighted inner product ([6]). Hence, given cj, € M, though the principal
component of ¢fj, denoted by PC[cj], is such that <cﬁ, cj, — PC [ci]>H = 0, this property

no longer holds true when we consider the discretization used in [4], to determine PClcy],

(@h) = 1, 2'<a< 2, n<b<n+1
A a 0, elsewhere



resulting in reduced signature quality.

A much more significant and subtle limitation lies in the fact that assuring a good ap-
proximation to the CWT does not necessarily assure a good approximation to the signal
that is being classified. Since the separable approximation cannot be a CWT, associat-
ing a time signal to it is not obvious. The CWT permits the definition of an isometry
between L?(R) and the subspace of wavelet transforms M C H. Hence, what one needs
to consider is the projection of the separable terms onto the subspace M. The association
of a time signal to the separable term in H is then logically defined as the element in
L?*(R) associated with the projection in M of the separable term. The situation is best
described in Figure 1. In the figure, Cy € M denotes a CWT. The vectors s1 @711, So @79
represent the best separable approximations obtained using different notions of orthog-
onality (one obtained from the SV D of the discretized CWT matrix, and the other
directly from PC([cj]). The vector s3 ® r3 denotes the separable term that provides the
best orthogonal projection onto the subspace of wavelet transforms. Our first result will
show that this last term provides the best separable representation of the signal z(¢). The
normalized scale component, s € S, will then be used to define a pseudo power signature
for x(t). Since this signature is obtained as a result of a projection, it is referred to as a
projection signature. The following sections formulate and solve the problem of directly

determining the pseudo power signatures using a suitably defined projection operator.



2 Orthogonal projections

The first step in the determination of the projection signature is the definition of a

suitable orthogonal projection operator K : H — M.

Theorem 2.1 There exists an orthogonal projection operator KK : H — M defined as
follows :

Kl a,) = 5" [ [ (0B ) 5%, veen

The proof is given in [7].
The next result establishes a fundamental connection between this projector and the

continuous wavelet transform.

Theorem 2.2 Consider the Continuous Wavelet Transform, T’ : L*(R) — H, defined
by [Cz](a,b) = (x,%ap); T € L*(R). This operator is known to have the closed subspace
M C H as its range space. The adjoint operator T* : H — L*(R) satisfies the following
conditions :

1) T*T : L3(R) — L?(R) is the identity operator

2) TT* : H — H is the orthogonal projector, K introduced in Theorem 2.1.

The proof of this theorem is also included in [7]. A result which readily follows from

Theorems 2.1 and 2.2 is given by :

Corollary 2.1 To every c € H, there corresponds one and only one & € L*(R) such that
Lz =K[c] € M, i.e.

¢ (a,b) = K] (a,b)



For any given z € L*(R), let ¢j, € M denote its CWT with respect to an admissible
¢ € L*(R). Consider the element sr € H (sr is unitarily equivalent to s ® r). Let
¢ = K[sr] € M, and & € L?(R) the element associated with sr by Corollary 2.1. Tt
intuitively follows that if we determine sr € H such that || ¢, — ¢ [|as is minimized, then
we effectively minimize || x — 2 ||2. Hence, we can expect that ¢, and consequently, sr, will
better characterize the intrinsic properties of . However, we have no formal proof that
the orthogonal projection operator I, when restricted to the set of separable elements
in H, is one-one. Thus, in order to ensure the determination of a unique projection
signature, a regularizing term « ||sr|| is added to the minimization problem. For analysis
purposes, & = 1. The minimization problem can then be represented as follows :

For a given ¢, € M, find the decomposition sy ry € H that minimizes the index

J(s,r5) = {1l ¢ = Klspril I + || s 1)

where I is the orthogonal projection operator defined earlier.

This is an infinite dimensional nonlinear minimization problem, and requires the solution
of the inverse projection problem. The problem formulation and solution procedure for
the infinite dimensional case is discussed in [7]. However, for a practical application, the
problem needs to be reduced to a finite dimensional one. The problem formulation and
the corresponding solution procedure for the finite dimensional case are discussed in the

following sections.



3 Problem formulation

The first step towards developing a finite dimensional representation for the infinite di-
mensional minimization problem is to determine a suitable discretization for the elements
cg, Klsyry] € M, s, € S, and rj, € R. As discussed in [4], given ¢, € M, one can ob-
tain a discretized equivalent using the concept of frames and frame operators ([8]), and
a wavelet ¥ € L*(R) of compact support that arises from a multiresolution analysis
(MRA). The set of discretized coefficients {c,(2',n)};, can then be determined using
the Shensa algorithm ([9]), and we can approximate {c,(2',7)};, using finitely many
coefficients, and thus obtain a finite dimensional discretized CW'T coefficient matrix
C3% € C**N. However, the problem of finding a discrete approximation to the orthogonal
projection operator K : H — M is more involved. The approach followed here approxi-

mates K by using a successive application of the inverse and forward Shensa algorithms.

3.1 Discrete approximation to the projection operator

In this analysis, it is assumed that the wavelet ¢ € L*(R) arises from a multiresolution.
Let ¢ € Vi C L*(R) denote the scaling function associated with the multiresolution (Vj is
one of the spaces of the multiresolution ladder). Note that the collection {¢g,},, Where
b0 = ¢(t — n), constitutes an ONB for V;. There is an associated implicit assumption
that we constrain the computation to the subspace V5. With these assumptions, we can

define a frame operator F, : Vj — [2(Z2) as

Fg[dﬁ](ﬂ) = <x’¢0,n>25 z €Vy



The adjoint operator Fy : [?(Z) — Vj is then given by

Fi[2](t) =Y 2(n)gon, 2 € *(Z2)

We also define a second operator, T : H — 1?(2?, 2%) which is the approximation to the
sampling operator, as

Tlc(l,n) = c¢(2,,n), c€ H

The adjoint operator 7+ : [?(2?%, ;) — H is then defined as
. 1
T*[h] ab:zl:Zhlnqlnab) h€l2(22,ﬁ)

where ¢, is the piecewise constant function defined earlier. Thus, 7*7[c| is a piecewise

constant approximation to ¢ € H of the form

c(a,b) = T*Tlcl(a,b) =D (2", n)qn(a, b)

I=1n=1

Let S : I2(Z) — [2(2?) denote the forward Shensa operator. Clearly, an element in the

L

sw) (since [ assumes only non-negative integer values). Thus,

range of S is also in 1*(Z?,
S :1?(Z) —» I(Z?, 3z). Then, for z € V;, the map SF; defines a matrix C}j with samples,

¢ (2',n), of the wavelet transform of z, i.e. SF; : Vo — 1*(Z?, 57) is defined as

SFQ[.’E](Z,TL) = <x7,¢)l,n>27 T € Vb



The adjoint operator F5S* : 1*(Z?%, ;i) — Vp is then obtained as

FQ*S*[C] (t) = Z C(l’ n)wl,n(t)

In

Note that, if C' was a matrix of discretized CW'T coefficients, &* is exactly the inverse
Shensa operator. Thus, the adjoint operator S* : I?(Z2, Q—L) — [2(Z) is effectively the
extended inverse Shensa operator. Clearly, S*S = I. It can be shown that, in this

framework, SS* is the discrete approximation to /.

With the above terminology, the approximation to the operators I' and ['* is given by

' T"SF,: Vo - H

F*

Q

ES'T: H—V,

As shown in [7], the orthogonal projection operator K : H — M can be represented
as IC = I'T'™*. This result can be used to obtain a discrete approximation to K as K =
T*SS*T. It is clear that T*SS8*T is not an orthogonal projection, since for any ¢ € M,
T*S8S8*T ¢ only provides a piecewise constant approximation to ¢ € M. However, if we
assume that the CWT is indeed piecewise constant, then 7*SS*7 can be used as an
approximation to the orthogonal projection operator. To see this more clearly, observe

that

T*SS*T[C](CL, b) = Z <Z 0(217 n)'(/Jl,n(t)v 1/Jl’,n’> qu (a'7 b)ﬂ ceH

I'n' \in 9
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= Z c(2", n) z cﬁl’" (2”, n')qu n (a, b)
U'n'

In
= > (2, n)czl’" (a,b), if ¢, is piecewise constant
In

= c¢(a,b), ifce M

With s4(l) = s%(2"), sq € C*, and r4(n) = r5(n), ra € C", the element K[s%r7] can be
approximated by the finite dimensional matrix C' € CE*Y resulting from the operation
S8*[sarl].

The infinite dimensional minimization can now be formulated as the following finite
dimensional problem :

Given a matrix Cj € CL*N of samples on the Shensa grid of the CWT of
z € L?(R), determine the rank one matrix sgrl € CL*Y such that the following

functional is minimized

Tsayra) =11 G5 = S5 [sark] 1B + lsar]

4 Solution to the minimization problem

This section presents the solution procedure for the finite dimensional minimization prob-
lem. The technique uses an iterative approach, where, in each iteration, we successively
minimize with respect to the vectors s; € CY, and r4 € CV¥. The basic framework leading

to the solution procedure is established below. The entire development is in /2.



11
4.1 Existence of the minimizer

The first step in developing a solution procedure is to establish the existence of a solution
to the finite dimensional minimization problem. The finite dimensional minimization

problem has a solution based on the following result.

Theorem 4.1 There exists 54 € By, = {sq € C*; ||sall, < 1}, and 7q € CV such that

J(gd,fd) = 1nf J(sd,rd)

SdEBL,’rdECN

The proof is given in Appendix A.

4.2 Convergence to the optimal

Once the existence of the minimizer has been established, we can develop a procedure
for its determination. The procedure followed here is an iterative one, and requires
successively solving a set of necessary conditions in each iteration. From Lemma A.2,
one can immediately see that the iterative procedure outlined produces a monotoni-
cally decreasing sequence of costs {J'};, since one has the result J(s3,79) > J(5},79) >

- > J(s%,14) > - -, from which one can extract the monotonically decreasing sequence,
{J}i; JP = J(sY), defined on the unit ball By, which is compact. The convergence of

the iterative procedure is established based on the following result.

Theorem 4.2 There exists 54 € B, and J > 0 such that the sequence of costs {J'};

converges to J = J(34).
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Proof. By Lemma A.3, the real valued functional J(s,) is continuous on the compact
set Byr. Hence, it is guaranteed to attain its maximum and minimum on By. The iterative
procedure produces a monotonically decreasing sequence of costs {J'};, whose limit .J
exists by Lemma A.3. Hence, lim J? = J. The set B, is also sequentially compact. This
implies that from the sequence {s%};, one can extract a subsequence {sfj }s; that converges
to some 54 € By such that by the continuity of J, J(54) = lim J(sf{') = limJ% = J,

establishing the convergence of the algorithm to the optimal solution. a

An iterative procedure using successive minimization with respect to s4, and r4, which
converges to the limiting solution whose existence is guaranteed, has thus been developed.
It is important to note that the procedure offers no guarantee that the minimum attained
is global. This is a general problem in nonlinear minimization techniques. The sufficient
condition to ensure that the minimum attained is indeed global is that the functional J

be jointly convex in the variables s4 and 74, which is not the case in this problem.

5 Computational algorithm

The last section outlined a solution procedure for the determination of the discrete projec-
tion signatures for signal classes. In this section, the computational algorithm developed
based on the procedure is presented. The computational algorithm used to generate the

projection signatures is given below.

1. Select a wavelet ¢ € L?(R) which arises from a M RA, and the number of levels L

to be used in the filter bank corresponding to the M RA. Denote the analysis low
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pass filters as f € CV, and the analysis high pass filters as g € C™v.

2. For the given finite discrete input signal x € C¥=, determine the discretized CWT

coefficient matrix Cj, € C**N using the forward Shensa algorithm. Note that

N =

Ny + (28 = 1)(Ny — 1).

3. Based on the scalogram SCj(l,n) =| C3(l,n) |* obtained, modify the value of L

such that Cj(l,n) ~ 0, for all | > L, n > N. Recompute Cj} using the modified

value of L.

4. Pick random vectors s € C*, r% € CV, and set a value for tol.

5. end.

At the i th stage, set r4 = 75!, Using the conjugate gradient technique ([10]),
with gradient given by A;, = %{(sdrg_lT + S8S* [sdré_lT] - ij)rf[lc}, solve

the minimization problem for s;. Let §;* denote the solution.

Set s, = °4

Next, with s; = s, using the conjugate gradient technique with gradient

A, = R{(sirst + S8S* [sfirdT] —C%)Tsi°}, solve the minimization problem for

rq . Let % denote the solution.

Compute the cost function J(s%,r%). If ( J(s5 ' rt) — J(si,r8) ) < tol,

terminate.
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5.1 Computational complexity of the algorithm

The minimization problem under consideration is separately quadratic in sy, and 74.
Consequently, the use of the conjugate gradient technique for each minimization guaran-
tees convergence for each minimization in O(V') steps, where V' is the size of the vector
over which one is minimizing. It is clear that the computational cost associated with the
technique depends on the number of iterations I required to reach the optimal solution,
which in turn, is a function of tol, and the initial condition. The complexity of each it-
eration is largely a factor of the complexity of the conjugate gradient technique, and the
complexity of the implementation of § and §*. The complexity of the conjugate gradient
technique is (6V +2) multiplications and (61 — 3) additions per iteration. For a practical
implementation, especially when V is large (like, for example, when we are minimizing
with respect to 74), we usually prescribe a termination criteria so that convergence occurs
in far fewer than V steps ([10]). The complexity of S is 2L N, N, multiplications and
2L(Ny, —1)N, additions, and that of S* is exactly the same ([11]). Thus, the complexity
of the Shensa algorithm is a linear function of N, L, and Ny. If we assume an average
of T steps for convergence of the conjugate gradient technique for the minimization with
respect to sg, and 7, steps for the minimization with respect to r4, the overall cost of
the projection algorithm is given by I[(6L + 2 + 4LNyN,)Ts + (6N + 2 + 4LNyN,)T;]

multiplications and I[(6L —3+4L(Ny—1)N,)Ts+ (6N —3+4L(Ny —1)N,)T,] additions.
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6 Simulation results

This section presents the results of applying the iterative solution technique to different
nonstationary signals. These results serve to illustrate the potential capabilities of the
projection signatures, and also the limitations of the computational procedure used to
determine these signatures. A summary of the simulation experiments and the corre-

sponding results is given in Table 1.

6.1 Signature quality and application to classification

The first experimental result presented is the classification problem discussed in [4]. The

signals considered (Figure 2) are the simple modulated sinc (sinc(z) = %) functions

{z1, 22,23} given by

1) z1(t) = e sinc(t)
2) my(t) = e sinc(f)
3) x3(t) = /5 sinc()

The projection signatures obtained using the Db4 wavelet, for L = 6, and 7 = x, *,
are also shown in Figure 2. Observe how the projection signatures clearly separate the
highly correlated signals x; and z,. These signatures were then applied to the classifi-
cation problem described in Figure 3. The figure displays the composite signal obtained

with z1 in the interval [-125:-50], 22 in the interval [-50:50] and z3 in the interval [50:115].

4y, € CV is the characteristic function of € CV= defined as

m = [ L 1<n<N
Xel) = 10, N,<n<N
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The results of the classification using a correlation approach are shown here. Two as-
sumptions are made in performing this classification.

1) All the signal classes are present.

2) Only one signal class is present at any given time.

It was established that the pseudo power signature of a signal represents the normalized
scale power distribution, and is independent of time. Thus, one can get an accurate pic-
ture of the signal composition, with particular reference to the location of the transition
points, if one determines the correlation of each signature with the discretized CWT of
the composite signal for each b. Figure 3 also shows the correlation graphs of the projec-
tion signatures with the discretized CWT of the composite signal. From the correlation
graphs, we can conclude with a high degree of confidence that the signal x; is present
in [—125 : —50], zo in the segment [—50 : 50], and z3 in [50 : 115]. Notice the high
correlation values obtained using the projection signatures, and the clear demarkation of
the transition points. The high correlation values are of great importance when we need

to classify a signal where it is not known apriori if all the events are present.

6.2 Reliability analysis

For use in classification applications, it is extremely important that the projection signa-
tures be reliable measures of the classes they represent. For samples of different signals
in the same signal class, the projection signatures should not show significant variations.
Consider a common example of a speech signal, say for example, the letter “A” as spoken

by a person on several different occasions (this constitutes a class). It is reasonable to
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expect that slight variations will exist between every utterance of the letter by the same
person. However, a reliable signature for the signal class should be fairly insensitive to
these variations. Figure 4 presents the results of the reliability experiment using this
example. In the figure, Sample #1 represents the projection signatures for 5 different
samples of the letter “A” as spoken by a person on a given day, and Sample #2, the
projection signatures for samples obtained on a different day. Observe the very high
correlations (.9705 — .9950) between all the different signatures. The wavelet used was
Db4 with L = 8. As before, in every case, rJ was taken to be the characteristic function
of the sample signal.

The experiment described above is significant for several reasons. The reliability results
obtained from the experiment reflect those obtained from several other similar experi-
ments. First, the experiment shows that the projection signatures are true measures of
the signal class they characterize, which is an essential requirement of any representation.
Next, it shows that the pseudo power signature technique can be applied to real data
signals which may have noise and random variations, even though every signal essentially
belongs to the same class. Finally, it reiterates the claim that the signatures are inde-
pendent of signal duration, since every signal sample considered in the example was of a

duration different from the others.

6.3 Robustness analysis

Robustness of the projection signatures in the presence of noise adds to their effectiveness.

While the projection signatures were fairly robust in the presence of low noise (as seen in
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the speech example), they are not very robust in the presence of a lot of noise (Figure 5).
This is because these signatures closely characterize the true signal, and hence, are more
sensitive to signal variations. Also, since the projection algorithm was not guaranteed to
attain the global minimum, it is possible that different local minima are attained when
the signal is highly corrupted by noise. Thus, when dealing with very noisy signals, it
might be necessary to prefilter the signal to remove some of the noise before applying
the projection technique.

Another study of importance in the robustness analysis of the projection signatures is the
sensitivity to the initial condition. From experimental analysis, for « = 1, the projection
signatures did not depend on the initial choice of s. The robustness analysis then is
effectively based on the sensitivity to the initial vector r9. In many cases, the projection
signatures were completely unaffected by the choice of the initial condition. However, for
the three signal classes shown in Figure 2, the projection signatures (especially S1, and
S2) show quite some variation when a different initial point is used, as is evident from
Figure 6. In the figure, the results are shown for r9 chosen randomly, and for 79 obtained
from the principal component of the SV D of the discretized CW'T matrix for each
signal. This result suggests that the solution technique does not converge to the global
minimum in all cases. This is a common limitation of nonlinear minimization algorithms,
and we usually get around it by analyzing different initial conditions, and selecting the
one that gives best results. For classification problems, one of the main requirements is
that the projection signatures obtained should clearly separate even closely spaced signal

classes. Intuitively, we can see that for a signal , if r$ = x,, then it has little information
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pertaining to the intrinsic signal properties, which would ‘force’ the associated projection
signature to capture most of the information about the intrinsic properties of the signal.
On this basis, one could conclude that the projection signature would better represent the
signal class. This conclusion was borne out by several experimental studies on different
signal classes and a variety of initial conditions. Thus, the initial vector r9 was always

set at 7Y = x, for the determination of the projection signatures.

6.4 Effect of the analyzing wavelet

The solution procedure used to generate the projection signatures assumes a fixed admis-
sible wavelet ¢ € L?(R) of compact support that arises from a M RA. It is worthwhile to
study the effect of using different wavelet functions on the projection signatures of signals.
An example of the effect of using different wavelet functions of the Daubechies family
([8]) is illustrated in Figure 7. It can be observed that while there are some variations in
the projection signatures obtained, they are essentially of the same nature. Nevertheless,
the problem of optimal wavelet selection for better classification is an area which needs
to be studied in depth with a wider variety of wavelets. One possible advantage of this
study is that if one can indeed select an optimal wavelet, one might be able to obtain
sufficiently discriminating signatures using the simple, and more robust, matrix SV D

approach ([4]).
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6.5 Convergence issues

In the discussion on the computational complexity of the projection algorithm, an average
number of iterations for the convergence of the conjugate gradient algorithm for each
minimization was assumed. From several experiments, it was observed that convergence
was usually achieved in L steps for the minimization with respect to sg4, but far fewer
than N steps (less than 15 steps for N = 30000) for the minimization with respect to
rq without the need for a termination criteria. The number of iterations I required for
convergence to the minimum showed a wide variation, with values as low as I = 3 for a
signal of length N, = 201, to values as high as I = 19 for a signal of length N, = 25000.
In both cases, Ny, = 8, and L = 8. For illustration purposes, some sample results on
eight different signals of length N, = 201, with Ny = 8, and L = 8, are shown in Figure
8. It is seen that, in most of the cases, the maximum reduction in cost is achieved in the
first iteration, with only marginal improvements in the subsequent steps. This figure also
serves to validate the monotonically decreasing nature of the cost function. From the
figure, and several other simulation results, one may then conclude that the algorithm
used to generate the projection signatures converges to the minimum in relatively few

iterations; i.e., it has a reasonably fast convergence rate.

6.6 Quality of the classification

The last issue addressed in this section deals with the actual quality of the classifica-
tion results. For an unambiguous classification, we would ideally like to have correlation

graphs which are relatively smooth over different segments, and have sharp transition
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points. While the second criteria is reasonably met by the correlation graphs shown in
Figure 3, the first is not. There exist some oscillations in the correlation graphs over the
different segments which cannot be easily explained.

A second issue regarding the quality of the classification is the use of the simple corre-
lation technique as the basis for the classification. While it is true that the correlation
approach gives fairly good results for artificially generated signals, it is reasonable to
expect that we might need a more sophisticated technique when dealing with real data
signals. At the very least, we might expect to need some additional techniques, along
with the straightforward correlation approach. These techniques could take the form of
preprocessing the signal to remove noise, and removing cross - correlation effects occur-
ring due to interaction between adjacent signal classes. The latter technique would be
extremely useful when dealing with signals where two or more events are present at the
same time. This is an issue for further study, and will be addressed in greater depth in

a future work.

7 Conclusions and future work

In this paper, we proposed a technique using the CWT to compute pseudo power signa-
tures for signal classes based on projections. The technique involved a nonlinear mini-
mization, and we provided the complete solution to the minimization problem. We also
developed an efficient algorithm for the computation of the signatures using an iterative
procedure with fast convergence, and illustrated the quality of the projection signatures

through representative examples. It is important to note that the actual classification
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can be done very quickly, since the signatures are vectors of very small dimension. This
approach has wide applicability, in areas as diverse as oil exploration, hidden mine de-
tection, moving target detection, system identification, and pattern recognition.

Though the methodology has some distinct advantages, it also suffers from certain limi-
tations. This leaves scope for further work in the area. Two problems we are currently
exploring are techniques to obtain more accurate discrete representations for the orthog-
onal projection operator K, and the classification problem where two or more events are
present at any given time. The latter is a very practical situation, since it is unrealistic
to expect that adjacent signal components will not interact with each other, and that a
composite signal consisting of several different components, will not exhibit some charac-
teristics which result from these interactions. An additional area we are exploring is the
applicability of these signatures to speech processing. Our initial results indicate several

exciting possibilities for speaker, and speech recognition schemes.
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8 Appendix A

Theorem A.1 There ezists 54 € By, = {sq € C*; ||s4ll, < 1}, and 74 € CV such that

J(84,7a) =  inf  J(s4,74)

SdEBL,TdECN

Proof. The discrete orthogonal projection approximation operator SS§* on the sepa-
rable finite dimensional Hilbert space (?(C**"), is isometrically equivalent to a square
matrix K : CEN*LN | This isometry, T : CE*N — CLN | essentially rearranges the elements
of an L x N matrix into a column vector by stacking its rows. Let T* : ¢tV — CExN
denote the adjoint operator, with the property that 7*7T = I. Then, K =T88*T*. Ob-
serve that K has the properties that it is Hermitian (K = K*), idempotent (K? = K),

and positive semidefinite (K > 0). With I, denoting the identity matrix of size L, and

¢ = TCy, the functional J(sq,74) can be redefined as

J(sara) = | TCY—TSS T Tsary |3+ Tsar’ Hz

= le—K(ra®I1)sq |13+ ||(ra ® Ir)sall3

where ® denotes the standard Kronecker product. For a fixed r4, one can thus define

the following subproblem for minimization with respect to s4 :

min J(sq) =|| ¢ = K(ra ® I)sa I3 + [[(ra ® I1)sall; (A.1)
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Similarly, denoting ¢ = TC2T, and Iy as the identity matrix of size N, one can define

the minimization problem with respect to ry for a fixed s, as
min J(rq) =|l er = K(sa ® In)ra ll3 +1(sa ® In)ralls (A.2)

Lemma A.2 The solutions to the minimization problems defined in Equations A.1 and

A.2 exist, and are unique.

Proof. The positive real valued functional J(-) defined in Equations A.1 and A.2 is
quadratic in the variables s; and r4 respectively. Moreover, the quadratic form is pos-
itive definite, and so .J is (separately) convex in s,, and r,. Hence, each minimization

problem has a unique solution. |

One can now determine the conditions on the unique minimizers to each of the subprob-
lems. Since the functional J is separately convex in sy, and 74, the first order necessary
conditions as determined using Calculus of Variations, become sufficient to determine
the minimizers. For minimization with respect to sq4 (r4 fixed), equation A.1 simplifies to
J(sa) = (e, ¢) — 2R ((ra ® I)"c, sa) + (K + 1)(ra ® 11)s, (K + I)(ra ® I1)s4) . Taking
variations with respect to sq, 6.J; = 2R <(7"d QINNK +1D)(rg ®1I)sq — (rq ® I)*c, (53d>,
where sy is completely arbitrary. Setting 6.J; = 0, one obtains the necessary condition
for minimization with respect to s;. Following a similar approach, the necessary condi-
tion for minimization with respect to r4 is also obtained. These conditions are :

D (rg®@I) (K +1)(ra®1Ip)sq — (rg ® I)*c =0, rq fized

2) (Sd X IN)*(K + I)(Sd X IN)T'd — (Sd X® IN)*CT =0, sq fized.
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Let Br, = {sq € C*; ||sall, < 1} denote the closed unit ball in [*(Z) of dimension L,
which is compact. For a fixed s4 of unit norm, s; € By. Let 7y = st(sd ® Inx)*er be the
solution to Equation A.2, with P,, = (s4 ® Ix)*(K 4 I)(sq4 ® Ix). Then, the functional

J(84,74) = <c, c—(5a®In)P;, (54 ® IN)*CT> is effectively a function of sy € By,

Lemma A.3 The real valued functional J(sq) is continuous on the compact set By, =

{sqa € C"; |lsall, <1}

Proof. The real valued functional J(s4) defined on the compact set By is given by
J(sq) = <c,c— (54 ® In) Py (54 ®IN)*CT>, s4 € By. Let K+ 1 =A% > 0, where A is
positive definite and self-adjoint. Let \,,;, > 0 and \,,4; > 0 denote the minimum and

maximum eigen values of A. Defining X (s4) = Asq ® In, Ps; = X*(54)X (s4). Then,

Ain e ? < {Ae,Ae) <N, [ e’ Vee CHY (A.3)
Amin || sall - < X(sa) | < Az || 54l (A.4)
Mma lma P < (ra, Plra) < Ao I 7a |1’ Vra € CVisa € By, (A.5)
and 05| < ||sall + |saxll =25 s = Sa, — Say, Say,Sar € B (A.6)

Now, P, — P,

Sd

, = X7(8a,) X (65) + X*(05) X (8a,) + X*(05) X (J5), and hence, from Equa-

tions A.4 and A.6,

[Py = Proy || < 40200 1165 | (A7)
Also, P! — Pl = P} (P, — P,,,) Py;! which implies from Equations A.5 and A.7,

min

I Ps_d?1 — Ps_dl1 1< 4X, 0 X2 0 | 66 |5 VS4,, 54, € Br. Observe that one can express J(sq) =
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{c,c)—1% <X*(sd)Ac, PSZIX*(sd)AcT> from which one can obtain | J(sg4,)—J(s4,) |< A ||0s]]
where A is a constant that depends only on || ¢ ||, Anin, and Apez. Then, given any € > 0,
there exists § = ;5 > 0, such that for all || sq, — 54, |[2< 6, | J(54,) — J(54,) |< €. Thus,

J is continuous on Bj. O

The existence of the minimizing solution to the finite dimensional problem is established
as follows. Fix s; € Br. Then, by Lemma A.2, there exists r4(sq) € CV such that
J(s4,74(54)) = J(s4) = inf, ccnv J(54,74). The real valued functional J is thus defined on
the compact set By, and is continuous (Lemma A.3) on Bj. Hence, it is guaranteed to

attain its maximum and minimum on the set, i.e. there exists s4 € By, such that

J(s $¢)) = inf J = inf J
(8,7a(s4)) = inf J(sa,74(s4)) L S (sa,74)
Denoting 7q = 74(Sq), the existence of the minimum is established. |

Table 1: SIMULATION RESULTS ON THE PROJECTION SIGNATURES

| EXPERIMENT | ANALYSIS |
Signature quality Highly distinct
Classification Unambiguous, with sharp transition points
Reliability Good
Robustness Not very robust in the presence of much noise
Sensitivity to initial condition Sensitive to choice of initial condition
Analyzing wavelet Some variation in quality
Computational requirements Very reasonable with fast convergence
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$1QT

S3® 13

S2 ® 12

Figure 1: LIMITATIONS IN THE PRINCIPAL COMPONENT APPROACH TO DE-
TERMINE SIGNATURES

The 3 signal classes and their pseudo power signatures

1 1 1
x1 x2 x3
o o o
—1 —1 —1
—50 o 50 —50 o 50 —50 o 50
1 T T T T T
—=S3 SVD signatures
o5 —=S1 |
o I 1 i i i i i i
1 1.5 2 2.5 3 3.5 a4 4.5 5 5.5 6
1 T — - — T
—=s3 Projection signatures
— 2 —
o.5| >SS ]
o i i i i i i
a1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

—=Scale(dyadic)

Figure 2: THE 3 SIGNAL CLASSES, AND THEIR MATRIX SV D AND PROJECTION
SIGNATURES
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Signal to be classified

a T T
=<1 : [—125:—50]
o.s | <2 : [—50:50] |
<3 : [50:115]
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—o0.5 -
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Figure 3: THE PROJECTION SIGNATURES APPLIED TO THE CLASSIFICATION
PROBLEM

Projection signatures of the letter ““A" using Dba
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o.s
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Figure 4: RELIABILITY TEST RESULTS FOR THE PROJECTION SIGNATURES

a) Uncorru pted chirp b)) Corresponding projection signature
a a
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O.6
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o.4
—o-sr o.=2
— 1 o
o s 10 o =2 =3 S E=3
c) Corrupted chirp d) Corresponding projection signature
10 o.8
s ‘ O.6
o ‘ !
o.4a
—5
—10 o-=2r
—A1s
o =3 10 o =2 p= 3 S E=3

Figure 5: ROBUSTNES OF THE PROJECTION SIGNATURES
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Projection signatures for randomily chosen initial condition
a

o.s - . . . —
o.6 - s 3 1
—=S1

o.4a — —

o.2 - == -

o

a 1.s =2 2.5 3 2.5 4 4.5 s 5SS S

Projection signatures for initial condition obtained using the S\WwvD
a T T T T T T T

o.s |- —_——=3 : : —

o.6 |- -
e ea

o.a - —

oO.2 — —

o

a 1.5 =2 2.5 3 3.5 = a5 s 5.5 [S3

Figure 6: EFFECT OF DIFFERENT INITIAL CONDITIONS r% ON THE PROJEC-
TION SIGNATURES

Original signal and its projection signatures using different wavelets

Original signal

Figure 7: EFFECT OF DIFFERENT WAVELETS ON THE PROJECTION SIGNA-
TURES

Wariation of the cost function with each iteration for different signals
350 T T

Signal length = 201
Filter length = 8
L =38

300 |~

250 — —

200 —

150 — —

100 —

a 2 3 4 5 S 7 8 oS 10

Figure 8: VARIATION OF THE COST FUNCTION WITH EACH ITERATION
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