Nonstationary Signal Classification Using
Pseudo Power Signatures : The Matrix SV D
Approach

Vidya Venkatachalam, Member, IEEE, and Jorge L. Aravena, Member, IEEE

Vidya Venkatachalam is with the Computational Mathematics Laboratory, Rice University, Houston, TX 77005. Tel :
(713) 527 8101-8096, Fax : (713) 737 6196, Email : vidyav@rice.edu. Dr. Venkatachalam is supported by DARPA/AFOSR

and Northrop Grumman Corp.
Jorge L. Aravena is with the Dept. of Electrical & Computer Engr., Louisiana State University, Baton Rouge, LA 70803.

Tel : (504) 388 5537, Fax : (504) 388 5200, Email : aravena@Qee.lsu.edu

January 19, 2000 DRAFT



Abstract

This paper deals with the problem of classification of nonstationary signals using signatures which are essentially in-
dependent of the signal length. This independence is a requirement in common classification problems like stratigraphic
analysis, which was a motivation for this research. We achieve this objective by developing the notion of an approximation
to the Continuous Wavelet Transform (CWT'), which is separable in the time and scale parameters, and using it to define
power signatures, which essentially characterize the scale energy density, independent of time. We present a simple tech-
nique which uses the Singular Value Decomposition (SV D) to compute such an approximation, and demonstrate through
an example how it is used to perform the classification. The proposed classification approach has potential applications in

areas like moving target detection, object recognition, oil exploration, and speech processing.

I. INTRODUCTION

Signal classification is an area of great importance in a wide variety of applications. Representative
applications include system identification, moving target detection, oil exploration, and pattern recogni-
tion. In most of these applications, the signals are nonstationary in nature; i.e., their statistical properties
vary with time. Consequently, nonstationary signal classification is an area of active research in the signal
and image processing community. This paper addresses one such classification problem, common in non-
intrusive subsurface exploration, involving nonstationary multicomponent signals of unknown duration.
The problem is introduced here as the following event detection situation :

There is a known class of events, {Cr;k = 1,...,n}, which may appear in a given scene for a variable
time interval. Using a probe one collects data about the scene. The objective is to analyze the probe signal

to determine what events are present and the duration of the occurrence of each of these events.

In this paper we consider a basic case. One has collected the data as a signal z(t);t; < t < tp, and
it is known that only one event is present at any given time. (Note that each event here represents a
signal component in the time-frequency plane.) Then there is an unknown partition P, = {t; < #; <
ta... <ty <tpy1... < tp}, of transition times marking the start and end times of an event. The goal is
to determine the transition times and the events occurring in each time interval. This process is called

classification of the signal x(t).

In the current literature, there exist several classification schemes which use time-frequency representations
to perform the above classification. These take the form of signal expansions over suitable basis function
sets ([1],[2]), signal adaptive kernel function design techniques ([3],[4]), principal component analysis tech-
niques ([5],[6]), statistical analysis techniques ([7],[8]), and neural network techniques ([9]). While each of
these approaches works well for the specific problem motivating their formulation, their applicability to
the classification problem under consideration, where each event may have an unknown time support, is
limited ([10]). This drawback (owing to the signal length dependent nature) of conventional classification

techniques using time-frequency distributions ([11]), led us to explore the possibility of obtaining repre-
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sentations which are intrinsically independent of time, motivating this research.

The classification approach we adopt is to extract, from a signal belonging to a class, certain attributes
which have the following properties.

o They are independent of signal length, location, and magnitude.

o They are robust and reliable.

o They are discriminating.

e They have few parameters.

o They lend themselves to fast classification routines.

We call this set of attributes a signature for the associated signal. This signature can then be used to
detect the presence of similar attributes in unknown data. Since the signals of interest in this research are
nonstationary, we determine the signatures based on a time-frequency analysis of the signals. Owing to
the excellent resolution of the Continuous Wavelet Transform (CWT), which is necessary to accurately
determine the transition times, and its computational efficiency ([12]), the CWT is the tool selected for

the classification process.

II. PSEUDO POWER SIGNATURES

In this section, we introduce a methodology for signal classification that is essentially independent of
the actual duration of each event. We achieve this objective by using the concept of a spectral energy
distribution to develop a representation that allows us to define an “instantaneous energy distribution”

which we call pseudo power signature (PPS).

[P (w
[w]

I gy < 00,

Consider any z € L?(R) with CWT, cy,, where 1 is an admissible wavelet; i.e., Cy = 27 L,
where ¥ (w) is the Fourier Transform of the wavelet. It is well known ([13]) that the associated scalogram,

SCy, can be interpreted as a time-scale energy density function since we can write

/|ac(t)|2dt=C1;1/b/5017}(a,b)$

Hence, the function

SCy(a,b) = |cj(a,b)|*

can be viewed as the corresponding time-scale power density function, and the function SC@(-, b) as the
“scale power distribution at time b”. For the stated classification purpose, an ideal situation would arise
if we could define a wavelet such that, for a given class of signals, the corresponding wavelet transforms
are separable! ; i.e.,

ciy(a,b) = s3,(a)ry (b)

LIf we move away from L2(R) signals, we can find functions whose formal CWT is separable. Consider the power signal

z(t) = Ae~79. If ¢(t) is an admissible wavelet with Fourier transform, ¥(w), the function c(a,b) = f w(t)ﬁw(%)dt is
defined for all values of a # 0,b € R. Observe then that ¢ (a,b) = A\/a U (ah)e?®® = s(a)r(b).
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Then, from the Mean Value Theorem for integrals, the scale power distribution at an arbitrary time bg is
given by

5 [P g ()
sc;(a,bo)=|33(a)|2/ Iy (©) db; bo € [by by]

It is apparent that the normalized distribution would be independent of by, and essentially independent
of the signal length. Thus, the scale function sfp(a), suitably normalized, could be used as the power
signature to characterize the corresponding signal class in a manner that is independent of duration.
Unfortunately, such an ideal case is impossible. We prove below that there do not exist wavelets that
admit a separable CWT for elements in L?(R).

It is known that in order to be the CWT of an L?(R) signal, the function, cy(a,b), must belong to a
closed subspace, M, of the Hilbert space H = L2(§R2,C’J 1%) [14]. Now, the space H is isomorphic
to the tensor product of the spaces § = L*(R,C, "' %), and R = L*(R,db); i.e., S ® R ([15]). Hence, it
trivially follows that functions of the form s(a)r(b) do exist in the space H. However, the following result
proves that it is impossible to have an element of this form in the closed subspace M.

Theorem I1.1: Given any nontrivial function z € L?(R), and an admissible (nontrivial) wavelet ¢ €
L2(R), the space of CWTs of z with respect to 1) does not contain any element of the form given by
c?(a,b) = s(a)r(b) where s € L*(R,C;' %), and r € L*(R, db).

The proof establishes that any wavelet leading to a separable transform must be a fixed point of a given
transformation. From the Contraction Mapping theorem, we can show that the only fixed point is the null
function. Complete details of the proof of the theorem are presented in the Appendix. This result opens
up the problem of finding a suitable separable approzimation to the CWT of the form s;(a)ri(b). Since
this is only an approximation, the corresponding power signature given by the normalized function % is
termed the pseudo power signature(PPS) of z. Observe that this function is essentially independent

of the signal length.

III. THE MATRIX SV D APPROACH

The approach to the generation of PPSs is based on a Principal Component Analysis technique, and is
derived from the decomposition of the CWT of a signal as a sum of separable terms. This decomposition is
the natural extension of the SV D analysis, and effectively determines the closest separable approximation,
in the traditional least mean squares sense, to the CWT given by cj, (a,b) € M C H. The analysis is
based on the following result ([16]).

Proposition II1.1: The CWT can always be expressed as

cy(a,b) = Z oisi(a)ri(b)

where s;(a) € S = L%(R, C;l%), and r;(b) € R = L*(R, db) for each i. The function sets {s;};, {r;}; are

complete in S and R respectively.
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The principal component of ¢, is given by o1s1(a)r1(b). The function s; can then be used to define the

PPS for the associated signal z, and can be determined by solving a coupled integral equation system

([16]).

It is worthwhile to note that the concept of obtaining PPSs using the principal component of the SV D
is not limited to the CWT. Any time-frequency distribution (TF'D) can be represented as the sum of
separable components of the form shown in Proposition II1.1 ([16]), and hence, it is feasible to obtain PPSs
using any T'F'D. For the specific event detection problem under consideration, better performance can be
obtained using the CW T, owing to its excellent localization capability ([12]). However, for classification
problems with different requirements, the use of some other TF' D to generate the PPSs might be more

appropriate.

A. Applicability to discrete data sets

Proposition ITI.1 presented a technique to determine the PPSs for signals in L2(®). For computational
purposes, however, we usually deal with finite discrete time signals. It is thus necessary to determine the
nature of the decomposition given in Proposition III.1 when applied to finite dimensional discrete signal
sets. Observe that the decomposition is very similar to the more commonly known SV D 2 applied to finite
dimensional matrices. If we can reduce the problem of the determination of the PPSs for finite discrete
signal sets, using principal component analysis, to a standard matrix SV D problem, then we can use any
one of the existing standard and efficient algorithms for the computation of the SV D. From the SV D,
we can extract the principal component, and thus, determine the PPS. Since the signature is obtained

from the matrix SV D analysis, it is referred to as the SV Dy, signature.

In order to reduce the problem to a standard matrix SV D problem, one needs to make a link between a
continuous time function in L?(R) whose samples are given by the finite discrete signal under considera-
tion, the CWT of this continuous function and its discrete equivalent, and the relation between the discrete
equivalent to the CWT and the discrete signal itself. Effectively, assume that for some z(t) € L?(R) with
CWT given by cj, the discrete signal z(n) € 12 is obtained by sampling z(t). Then, we need to find a
discrete equivalent to ¢y, which can be obtained from z(n), and which completely represents the original
signal z(t). Finally, we need to find a way to represent the discrete equivalent to the CWT as a finite

dimensional matrix, and determine an efficient way to compute it.

2The SV D applied to finite dimensional matrices is defined as follows. Given a matrix X € CEXN the SV D of X is given
by
X=UxVv*

where U € CL*L and V € ¢V*X¥N are unitary matrices, and ¥ € RLX¥ js a positive semidefinite diagonal matrix. The

diagonal entries of 3, 01 > 02... > 0, are referred to as the singular values of X.
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Using suitably defined frames and frame operators in Hilbert spaces, and a wavelet ¢ that arises from a
multiresolution, under certain conditions ([14]), we can define a collection {t¢;n}in that constitutes an
orthonormal basis for L?(R), where ¢, = 2_%1/1(% —n). In this case, given any x € L?(R), the discretized
set of CWT coefficients {c; ., = cfp(2l, n2')};,n defined by

Cln = <$; ¢l,n>

provides a complete non-redundant representation of x in the sense that x can be recovered from this

discretized set as

2(t) =Y cintin
In

Also, by using finitely many of the discretized coefficients, we can approximate z to any arbitrary precision.
We can represent the finitely many discretized CWT coefficients ¢, = ¢f,(2',n2") as a matrix C = [c;,n]-
The problem with this representation is that the principal component of the SV D of the matrix C is
not really separable in time and scale in the true sense. The time, represented by the variable n, in ¢ p,
is dependent on the associated scale, represented by the variable . In order to obtain a truly separable
approximation, we must have complete independence in the time and scale parameters. This independence

can be achieved with the discretization

‘,n)

él,n = Cf/j (2
Such a discretization is redundant, providing an overcomplete representation of z. It has been shown by

Shensa in [17], that under certain constraints, this redundant discretization also constitutes a frame.

For most practical applications, C has near compact support in the time-frequency plane. For a signal
of finite time support, and a suitably chosen 1, (where ¢ has compact time support), it can be well
approximated using finitely many discretized CWT coefficient values. This implies that there exists L, N
such that ¢;, = 0,V [ > LandV n > N. We can represent this using a finite dimensional matrix

w = lc1,n] of dimension L x N. Applying the SV D to this finite matrix Cj,, we obtain
Cy =Uxv”

and hence,

Cytyn) =3 owusl)viln)

The principal component is then obtained by extracting the rank one matrix oju1v, where the vectors
uy, vy are truly separable in time n and scale [. It is shown below that, under certain approximations,

the unit vector u; is the discrete approximation to the PPS of x.

The simplest discrete approximation to the PPS would be the vector obtained from its samples. However,

for a general measurable function, there is no guarantee that its samples are bounded, and offer a stable
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reconstruction. In order to ensure boundedness, and guarantee a stable reconstruction, we can define an
approximation to the ideal sampling operator using as model the actual operation of A/D converters.
Given a number e, suitably small, let T denote the operator

22l 2lte
TTel( / / db(ja, ceH, e>0
2!

12

With this definition, observe that for any given € > 0,

16¢ ) 2t dbda
(me ml = / &
2+e
< / / (b dbc2la
91 a
Tlc)(1,n) 2 dbda
= 1o TG e o [ [ e 2
2!
Tlel(l,n) 2be pnte dbda
> 164 Y| e < 3 f / [ea) P 2
17" —€ n—e
T, n)
= 4¢ [;T < Cyllelly < o
2

Since € > 0, this result implies that the weighted sequence % €1?(Z?). Hence T : H — I>(2?, 3i7),
where 12(22, 57) = {z(l,n) : Y2 Y oe lz@m)® oo} is a weighted Hilbert space of two dimen-

n=-—oo 241

sional square summable sequences. Moreover, if ¢ € H is continuous at (2!,n), and € > 0 is sufficiently
small, T[c](I,n) ~ c(2!,n). We can thus view the operator 7 as an approximation to the sampling

operator, and denote T[c|(l,n) = ¢(2!,n) for all ¢ € H, for all [,n. > Then, from Proposition IIL.1,
TE)n) = T oisril(l,n)

Z oiT[siri](l,n)

= Z oi5i(2Yri(n

The PPS of z is given by the function s;. The elements of the matrix U] are precisely the elements

1
Tlegl(l,n). Thus, the discrete vector sq, = [312(22, )] of dimension L, can be directly related to the vector
uy of dimension L obtained from the SV D of the matrix ij), as sq, = u1. Hence, the vector u; denotes

the discrete approximation to the PPS of x.

The above analysis implicitly assumes that the functions s; € S, and r; € R are piecewise constant. In
general, it does not follow that a rank one matrix is always associated with a separable element in H.
However, the analysis makes the assumption that the rank one matrix obtained from the samples of s; and

3Tt is to be understood that the actual value of T [c|(l,n) is obtained using the definition of the operator 7. The expression

Tle](l,n) = c(2!,n) is written for convenience of notation, to emphasize that 7 is an approximation to the sampling operator.
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r;, maps directly to the separable element o;s;r; € H. This mapping is valid if we impose the condition
that the elements s;,r; be piecewise constant. In order to see this more clearly, we can define the following
maps :

With the operator 7 : H — I?(22, 5i7) defined as before, the adjoint operator T* : I(22, 5i) — H is
given by

T*[h)(a,b) = h(l,n)pi(a)gn(b), he1*(2?, %)
I,n

where the functions p; € S, and ¢,, € R are defined as

1, 2 <a< 2!
m(a) =

0, elsewhere

1, n<b<n+1
qn(d) =

0, elsewhere
Clearly, if h(l,n) = s(2)r(n), then 7*[h] maps to a separable element in H. Note that T*Tlcy] is an
approximation to the CWT function ¢y, Which is separately piecewise constant in both variables. Then,
T*TI¢G)(a,0) = Y Tleg)n)pi(a)gn(b)
In
= Y@@, np(@and)
I,n

= Z Z 0;S; (2I)Ti (n)pl (a)qn(b)

ln

= Z o; Z S; (Zl)pl (a) Z T3 (n)qn(b)
1 n

i

If we assume that the functions s; € S, and r; € R are piecewise constant; i.e., s; = §;, and r; = 7;, for all

i, then 7*T = I, and the vector sq4, = [312(2211)] of dimension L, suitably normalized, is given by the vector
uy obtained from the SV D of the matrix Cj = [03(21, n)]. Under these assumptions, it follows that, for
a given z € L%(R), the discrete representation oju;v} obtained from the SV D of the discretized CWT

matrix C7, corresponds to the discrete approximation to the principal component 15171 of cf,.

IV. SIMULATION RESULTS

This section presents three sets of computer results. Some of these results were presented in [18]. The
first result validates the claim that the PPSs indeed do not depend on the length or the position of data
points on the time plane, as long as the underlying signal is monocomponent. The second result analyzes
the robustness of the SV D, signatures in the presence of noise, and the third result serves to demonstrate

the applicability, and limitations, of the SV D approach to the classification of some artificially generated

January 19, 2000 DRAFT



signals.

The first case considered is the chirp signal shown in Figure 1a. This is the Gaussian amplitude modulated

. . . _ 2 . 2 .
chirp signal given by e 1 +5:05t"+j50¢

. The signature using the above matrix SV D analysis is shown in
Figure 1b (the axis is expressed as a logarithmic function of the scale on a dyadic grid). Figures 1c, le,
and 1g, show different arbitrarily picked samples of the same chirp signal, varying in length and location
on the time plane. Their SV Dy signatures are shown in Figures 1d, 1f, and 1h. These signatures were
generated using the Db4 wavelet *. We used Shensa’a algorithm ([17]) to compute the discretized CW T
coefficients with the scale varying on a dyadic grid. The PPSs were then readily obtained from the
principal component of the SV D of the coefficient matrix. Observe that there is no significant variation
in the signature for each sample considered. We performed this test on several different sample signals
with similar results. This example is a representative one, used to justify the claim that the concept of

using PPSs to characterize signals independent of time (duration and location) is valid, and applicable

to whole classes of nonstationary signals.

However, there do exist signals which show noticeable variations in their signatures when one consid-
ers different sampled data points. A possible explanation for this phenomenon is that these signals are
essentially multicomponent; i.e., have several localized disjoint peaks in the time-frequency plane. This
hypothesis is currently being researched on multicomponent data sets. The following experiment supports

the concept that variability can be attributed to the presence of several components in the same signal.

We generated two signals, z1, 22, with clearly different spectral densities. The signals and their SV Dy,
signatures (using Db4) are displayed in Figure 2. We then created a family of 11 signals of the same length,
by concatenating segments of both x; and x5, in length increments of 10%. Thus, the first element is only
x1, the second is 90% z; followed by 10% x2, and so on. The last element of the family is only x5. The
corresponding family of SV Dy signatures is displayed in Figure 3 (2— D and mesh plots). The signatures
show a certain robustness when one component is clearly dominant, but the situation is variable when

the two modes contribute almost equal energy to the combination.

It is important to note that the entire exercise of representing a signal in a class using one signature pat-
tern is based on the premise that the signal is essentially monocomponent. For signals which do not satisfy
this premise, and are multicomponent, one needs to extract each component, and apply the above process
to it. These signals would then be represented by a set of signatures, improving the accuracy of their
classification. If the various components have different time localization (as in the example illustrated in
the previous paragraph), a sliding window approach to signature computation provides a practical solution.

4This is one of Daubechies’ compact support wavelets, and is defined through a two scale equation with 8 coefficients.
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If the SV D analysis shows the existence of several singular values close to the principal value, one might
consider using approximations with more terms. However, before considering that alternative, we have
some theoretical results ([19]) which suggest that it may be more efficient to develop alternative techniques

to generate signatures.

The second example shown here is a chirp signal corrupted with white Gaussian noise. The SV D s sig-
nature of the pure and corrupted signals is shown in Figure 4. Observe that the SV D, signatures are
quite robust in the presence of noise, and do not exhibit a significant deviation. This is a very important

property when dealing with real data, which is most often corrupted by noise.

The third example considers the signals shown in Figure 5. These signals are the simple modulated sinc

(sinc(x) = %) functions {z1, 22, 23} given by
z1(t) = ej‘s”tsinc(é)
z2(t) = ej'55”tsinc(§)
z3(t) = ej1'55”tsinc(§)

Their frequency spectra {f1, f2, f3} (the axis is expressed as a fraction of w) and their PPSs {51,.52, 53}
are also shown in the same figure. As before, these signatures were generated using the Db4 wavelet. Now
consider a signal created by concatenating segments of each signal class: z1 over the interval [-125:-50],
x2 over the interval [-50:50] and z3 over the interval [50:115]. The composite signal, its STFT, and
its discretized CWT are shown in Figure 6. Observe that merely examining the signal, its Short Time
Fourier Transform (STFT), or the CWT is not sufficient to identify either the component signals or the
transition points. Furthermore, direct comparison of the CWT's of each signal class with the CWT of the
composite signal is also not feasible because the CW T support is dependent on the signal duration which
is, in general, unknown. For classification purposes, we need a representation which is more intrinsic to
each signal class, and is independent of the signal support. These conditions are satisfied by the PPSs

shown in Figure 5.

The results of the classification using a correlation approach are shown here. Two assumptions are made
in performing this classification.

o All the signal classes are present.

o Only one signal class is present at any given time.

It was established that the PPS of a signal represents the normalized scale power distribution, and is

independent of time. Thus, we can get an accurate picture of the signal composition, with particular refer-
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11

ence to the location of the transition points, if we determine the correlation of each S7 with the discretized
CWT of the composite signal for each b. The results are presented in Figure 7. Observe that the results
show quite clearly that there are 2 transition points in the signal, (the first around —50, and the second
around 50), a situation which is not very evident upon examination of the signal. Here, we can make the
legitimate assumption that the correlation values must remain fairly constant, and relatively large, over
a range for the signal to be classified as having support in that range. Thus, we can conclude from the
graphs that the support of z1 is [-125 : —50], that of 22 is [—50 : 50], and that of 3 is [50 : 115]. Based
on the underlying assumptions, we disregarded the high correlation values of S1 in the range [—50 : 50]
because S2 has a higher correlation in that range than 51, and is more likely to be present in the range

[—50 : 50] than anywhere else.

It is clear from the results presented that the simplistic process of taking the principal component of the
SV D matrix obtained from the discretized cy, as the PPS of a signal class can, at times, lead to ambiguous
interpretations. The examples presented show that the PPSs indeed do satisfy the requirement of being
time independent signatures, and are more discriminating than the Fourier spectra, and more robust than
the CWT. However, they lack the ability to capture fine distinctions between different signal classes,
and hence, are not capable of separating signals belonging to two closely spaced signal classes. This
suggests that we need to determine a more sophisticated technique to find PPSs with better discriminating

capability.

V. CONCLUSIONS

In this paper, we introduced the idea of signal signatures which are essentially independent of the signal
length. The determination of such signatures was based on using separable approximations to the CWT of
the signal. We presented a simple approach using the SV D of the matrix of discretized CWT coefficients,
to generate these signatures. We tested this approach on several examples with good results. However, the
SV Dy signatures were limited by a lack of fine discriminating capability as was demonstrated through

the example shown in this paper.

Note that the representation is dependent on the wavelet used, and so a related problem is the deter-
mination of the wavelet that provides the most discriminating signatures for a given class of signals. A
well-known result, borne out here by empirical observations, is that better performance is obtained when

the analyzing wavelet used to generate the SV Djs signatures matches the signals as closely as possible.
We conjecture that the principal component of the matrix SV D does not create the best signature be-
cause the traditional matrix SV D analysis does not determine the best separable approximation in the

weighted Hilbert space H. Hence, we propose to create signatures by finding the separable approximation
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in H whose projection onto M is the closest to a given CWT. This technique essentially involves solving

an inverse projection problem, and will be addressed in a future work.

In conclusion, we have formulated a concept which is very useful for classification problems involving sig-
nals of unknown duration. Moreover, the actual classification can be done quickly because the signatures
are vectors of small dimension. This concept has potential applications in areas like oil exploration, speech

analysis, moving target detection, object recognition, and system identification.
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APPENDIX

Theorem .1: Given any nontrivial function z € L?(R), and an admissible (nontrivial) wavelet 1) € L?(R)
(e, Cy =2m [ I\Il(aw)l da < 00), the space of Continuous Wavelet Transforms (CWT's) of & with respect
to ¢ does not contain any element of the form given by ¢ (a,b) = s(a)r(b) where s € L*(R, Cy 1d2), and
r € L2(R, db).

Proof: Let H = LQ(%%qul%). Let s € S = L*(R, CJI%), and r € R = L*(R,db). Then the
space H = S® R ([15]), and hence, it trivially follows that s ® r € H. However, S ® R is isomorphic with
the space (Sx R, C," ¢ 1da @ db), which implies that there exists a unitary operator U such that U(s®r) = sr.
Hence, the element sr € H. Let M be the space of the Continuous Wavelet Transforms (CWT's). Then,
M is a closed subspace of H. Let cj € M denote the CWT of z € L?(R), where ¢ € L*(R) is an
admissible wavelet. Using a proof by contradiction, we can show that this function cannot be of the form
s()r().

By the definition of the CWT,

() = [oO 7o
Assume that ¢ (a,b) = s(a)r(b). Then,

Keeping a fixed, and taking the Fourier Transform on both sides, we get

s(a) /b r(b)e=wtdb = / / b)dte_f“’bdb

s(@)Rw) = / f
= /t 5(1)V/aT (aw)e It dt
Va¥(aw)X (w)

*’“bdbdt (Fubingi)

By Fubini’s Theorem °, the interchange of integrals is allowed. Fix w € Q, where Q is the support of

X (w), and let p(w) = % Then,

) = W)
j5@) o da [ | ¥aw) P
[ g e = [
p@) Pllslls = o

5Fubini’s Theorem : If fw[fy | f(z,y) | dy]ldz < oo, then, fff(:c,y)dwdy = fm[fy f(z,y)dyldx = fy[fm f(z,y)dz]dy
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The above implies that | p(w) | is a constant function Vw € . This results in the condition | X (w) |= L |

R(w) |, where L = /27 || s ||s. Thus,

'Z%' =| ¥(aw) |, Yw € Q, VYa (1)

which implies that | ¥(aw) | is constant for all w € Q. Consider w1, ws € Q with w; < wy. From Equation

L

| U(aws) =] ¥(aws) |, Va 2)

Let a = aw;. Let A = £2 > 1. Equation 2 can then be rewritten as
| ¥(a) |=| ¥(Aa) |, Va
Define a map T[¥](c) = ¥(Aa). Then,
I T[] 1= 5 ) |
A

Thus, || T ||= §+ < 1, i.e. there is a strict contraction here. By the Contraction Mapping Theorem 6, the

only fixed point of this transformation is ¥(«) = 0 a.e. By the Parseval’s Identity,
12 3= 27 || ¢ I3

which implies that v(¢) = 0 a.e., which provides the contradiction. [ |

SLet T : X — X be defined on a complete metric space X with domain X, and metric d. Let « satisfy 0 < o < 1, and
d(T(z),T(y)) < ad(z,y), for all z,y € X. Then, T has a unique fixed point Z.
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Samples of a chirp signal
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Fig. 1.
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Corresponding SVWD signatures

5>
=2 a [S3 s
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Samples of a chirp signal and the corresponding SV D), signatures

sSignal,

o = a =3 s 10
Corr. SVD,, signature
a a
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o.s | B o.s8
o.6 | R o.6
o.a | B o.a
o.=z R o.=2
o o

= 4 =) s
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a =] s 10

sSVvD,, signature

Fig. 2. The test signals and their SV D), signatures
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Variation in SVDy, signatures (Db4)
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b) Mesh plot
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Fig. 3. Variability in the SV Dy, signatures
a) Uncorrupted chirp b)) Corresponding SVWD signature
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o) Corrupted chirp d) Corresponding SVvD signature
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s
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Fig. 4. Robustness of the SV D), signatures
a 10 a
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Fig. 5. The 3 signal classes and their corresponding signatures
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1
0 - -
Signal to be classified
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Fig. 6. The signal, its STFT, and its CWT

Correlation graphs of thhe discretized CW'T with each Si
T T T T
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Fig. 7. Correlation graphs of the discretized CWT with each S;
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