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Abstract

This thesis presents the results of a research which develops a technique to design
2 — D filters by approximating an ideal frequency response with sums of separable
FIR components. The technique is independent of the nature of the ideal response,
and can accommodate the inclusion of a weighting function. This approach gives the
designer flexibility in selecting the 1 — D filter orders and the number of separable
filters to be used for best results. The problem is solved for the weighted least
mean squares case, and a rigorous mathematical analysis is used to formulate the
separable design algorithm. This work includes a brief analysis of the computational
complexity of the formulated technique, and simulation results demonstrating the
effectiveness of the design algorithm. It also offers suggestions for further research

in this area.



Chapter 1

Introduction

Computational speed is of prime importance in image processing. Processing here
refers to the filtering of the image in order to reduce noise and enhance the image.
The design of fast-acting 2 — D FIR digital filters is thus a much researched area
in Digital Signal Processing. Several papers have been written on the subject ([2]-
[4], [23]-[30]), which propose new algorithms to achieve good quality designs with
reduced computational complexity. A good quality design is obtained by finding
the optimal filter coefficients that satisfy a given constraint. Reduced computational
complexity is obtained by eliminating redundant operations, making acceptable ap-
proximations and by putting to use the inherent symmetry properties in the desired
filter response. Unfortunately, these two requirements are conflicting in nature, and

there is always a trade-off between them in any standard design technique.

1.1 Historical Background

Consider a linear shift invariant ideal filter discrete frequency response D(wiy, , wax,)
of size My x Mj. The filtering operation on the image is then defined by the model
Y = De X where X and Y are the Discrete Fourier Transforms (DFT') of the input
and output images respectively, and the Hadamard product D e X represents the

element by element multiplication of the matrices D and X. By convention, one



uses discretized frequencies

b= —M;, —M;+1,...,M;—1;i=1,2 1.1
T + : (1.1)

The design of 2 — D digital filters involves the following steps:

i) Approximation

ii) Realization

iii) Implementation

The filtering application imposes certain constraints on the frequency response of
the filter which need to be satisfied. Based on the specifications prescribed, one
must first make a choice of the most appropriate type (usually whether recursive
(I1R) or nonrecursive (F'IR)) of filter to be used. The approzimation problem must
then be solved. This is the process of finding a stable transfer function with real
coefficients such that the required specifications regarding the frequency response
of the filter, are satisfied. This is the most important aspect of filter design, and in
most cases, the solution to the approximation problem is considered the design of
the filter.

The realization problem is one of converting the transfer function of the filter ob-
tained in the first step, into a digital filter network. The implementation problem is
application dependent. Real time processing applications require a hardware imple-
mentation, while for applications where speed is not of primary concern, a software
implementation is more appropriate.

The design of FIR and [IR filters are two distinct problems due to the vastly

different properties of these two filter types. Since this work addresses the design of



FIR filters, the definition of an F'I R filter and some of its important properties are
listed below.
A 2 — D FIR single-input single-output digital filter with support in the rectangle

defined by —N; < n; < N;, 1 = 1,2 is characterized by the transfer function

Ny N2

H(z,2z0) = Z Z h(ny,ng)zy ™ z3"™ (1.2)

n1=—Ni ng=—Nz

where h(ny,ny) represents the impulse response of the filter.

This filter has the following very important properties:

i) It is always stable.

ii) A linear phase response with respect to w; and wy can be easily achieved. This
property is particularly important for image processing applications ([13]).

The subsequent sections present a review of the different approaches adopted in

2 — D FIR digital filter design.

1.1.1 Conventional approaches

The simplest approach to design the 2 — D FIR digital filter is based on the ap-
plication of the Fourier series. Since the frequency response of a nonrecursive filter
is a periodic function of frequency, it can be expressed in terms of the Fourier se-
ries. In this method, the Fourier series representation is used in conjunction with a
special class of functions called windowing functions to give reasonably good results
([14]-[17]). The operation consists of taking the 2 — D Discrete Fourier Transform
(DFT) of the ideal response D, and convolving it with the windowing function
chosen. The designed filter is then given by the inverse DFT on the convolved
result. This entire exercise, though undoubtedly simple, is slow and places a great

strain on the hardware due to excessive memory requirements owing to the large



filter size. Also, it gives sub-optimal results. It has been observed that certain filter
types, notably quadrantally symmetric and antisymmetric filters, always have real
coefficients. The Discrete Cosine Transform (DCT') ([18],[19]) and the Discrete Sine
Transform (DST') ([20],[21]) have been developed, and they operate exclusively on
the symmetric and antisymmetric responses respectively, with a significant reduc-
tion in computational complexity. Now, any 2 — D FIR filter D can be separated
into two components, D. and D,, where D, is the symmetric part and D; is the
antisymmetric part. The DCT and the DST operate on D. and D; respectively,
replacing the original DF'T" operation on D. This results in a reduction in overall
complexity. Particularly, for filters having some special symmetry properties, one
can achieve very efficient designs by the use of these transforms.

Linear phase quadrantally symmetric filters have special properties which allow for
approximations which are easier to work with and which give good quality designs.
This is the motivation behind filter design by use of suitable transformations. The
most widely used design technique based on transformations is the one based on the
the McClellan Transformation ([22],[23]) which gives very efficient designs. Here,
the zero-phase 2 — D FIR filter is first designed, and then the McClellan Transfor-
mation is applied to the transfer function obtained. The McClellan Transformation
attempts to approximate the cosine terms of the designed zero phase response with a
series of terms, leading to linear phase, quadrantally symmetric, F'I R filter designs.
There are other design techniques which aim to produce optimal designs (as defined
by the nature of the application). One example of this is the Chebyshev design
algorithm ([24]-[27]) where the aim is to achieve an equiripple approximation to a
desired frequency response. The minimax design method ([28]-[30]) is yet another

example where optimization techniques are used. Here, the design of the nonrecur-



sive filter is transformed into an unconstrained minimax optimization problem by
defining the objective function as the error function which is to be minimized in the
minimax sense. All the above are some of the most widely used design procedures

in conventional FIR filter design.

1.1.2 Alternate approaches

With the advances in VLSI technology and the advent of high speed processors
which allow a high degree of parallelism, there is new interest ([6]-[11]) in digital
filter design algorithms which readily lend themselves to a parallel architecture. Such
algorithms provide for a fast implementation without deterioration in filter quality
by allowing for several operations to be performed concurrently, thus reducing the
trade-off inherent in the standard design techniques.

The approach taken here is to approzimate a desired filter with sums of simpler and
faster filters. The 2 — D filtering action is now accomplished by several pairs of
1 — D filtering actions, all acting concurrently on the image, with each 1 — D filter
in a pair acting either in the w; or the w;y directions. The transfer function of the

k th such separable F'IR filter is then given by

Hz) = Y Y ax(m)by(ng)z™ =™ (1.3)

ny=—N; ng=—Nz

[6],[7] give the details of one approach to design such filter pairs. This approach
entails the use of the Singular Value Decomposition (SV D) of the desired response
to find the optimal separable responses. These responses are then approximated by
1 — D FIR filters, using standard design algorithms (like for example, the Remez
algorithm ([31])).
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Figure 1.1: Implementation of filtering action using parallel, separable F'I R filters

Once the 1 — D filter pairs have been designed, the filtering action is implemented
in real time as shown in Figure 1.1 ([5]). In the figure, x(n1,nz) represents the
pixels of the input image, and y(n1,ny) the output image pixels after the filtering
action. The {ay} represent the | — D FIR filter coefficients which act on all the
columns of the image concurrently. The {by} represent the 1 — D FIR filters which
act concurrently on all the rows of the partially filtered image to produce the final
output image. Thus, there are n pairs of separable filters, all acting in parallel on
the image. This architecture is most suitable for shared memory machines and pro-
vides enormous speed-up in real-time image processing.

The main drawback of the SV D design procedure is that it involves a further approz-
imation by F'IR filters, once the optimal 1 — D frequency responses are determined.
This leads to a final design which is suboptimal. There is therefore a need to formu-
late an algorithm to design truly optimal 1 — D FIR filters. The following section

provides a synopsis of the research done in this direction, and its implications.



1.2 Synopsis of work

This work develops a parallel separable structure for 2 — D digital filtering and
studies the effect of the type of the desired response on the extent of simplification
achievable. The 1 — D filters are constrained to be F'/R and a complete mathemat-
ical analysis is done to provide a formal algorithm to obtain the optimal 1 — D filter
coefficients, without using any approximation involved in the SV D design method.
These optimal coefficients are obtained as the minimizing solutions of a least mean
square merit index. The problem formulation is general in that it allows for the
inclusion of a weighting function to permit the presence of a transition band in the
filter response.

The most significant aspect of this algorithm is that it seeks to approximate the
ideal filter, with a sum of separable F'I R filters, where the length of each 1 — D filter
can be selected independently. This form permits fast implementation in a shared
memory architecture with a less complicated implementation owing to its separa-
ble nature, and offers the possibility of very high throughput, while remaining very
flexible in its strucuture.

The succeeding chapters describe the development of this separable design algo-
rithm.

Chapter 2 discusses the results leading to the feasibility of obtaining separable ap-
proximations, and studies the effect of the nature of the desired 2 — D frequency
response on the separable filters.

Chapter 3 describes the mathematical development of the algorithm to determine

the optimal 1-term separable filter.



Chapter 4 extends this algorithm to multiple terms, and outlines the modifications
to be made when designing filters with certain special properties.

Chapter 5 illustrates the effectiveness of the algorithm with suitable examples, and
gives an analysis of the computational complexity of this design process.

Chapter 6 provides a discussion of the results and offers suggestions for future re-

search.



Chapter 2

Preliminary Studies

It was observed in Chapter 1 that computational speed-up can be achieved if some
form of parallelism can be incorporated in the processing of the image. The at-
tempt, in this study, is to outline the basis for incorporating parallelism in the
filtering action, and to carefully study the properties of the commonly used filters
and determine what influences the extent to which they would lend themselves to
a parallel structure implementation. Essentially, the 2 — D filter is separated out
into several 1 — D component filters in the frequency domain, using the approach
given in [6],[7]. These component filters are then analyzed in detail to determine
their properties, which are then experimentally verified using some commonly used

filter configurations.

2.1 Obtaining the 1 — D component filters

This section presents a review of the mathematical basis behind the feasibility of

the separable design approach. The development uses the matrix Kronecker product
which is defined below.

If Ae EMixMz and B € EM:*Ms the Kronecker product of A and B is defined by,
A® B =[AB;;] € pMMex MM (2.1)

Consider the My x M, digital image filter matrix D, representing the ideal frequency

response. One can form the diagonal matrix 7' from D by stacking the columns of
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D from left to right along the diagonal of T'. T' is thus an M; M, x My M, diagonal
matrix.

It is known that 7" admits the parallel Kronecker decomposition ([1]) :

q
T:ZLk®Rk§ qg < M, (2.2)

k=1

One convenient definition for the Ly and R; matrices is Hy and Fj, where H, is the
k th M; x M, diagonal matrix of 7" and Ej is an My x M, matrix of the form
o 1 ifi=j=k
Ek(lv.]) = (23)
0 otherwise
Now, ¢ is determined by the number of H s that form an independent set. The maxi-
mum possible number of such independent decompositions of 7" is n = min( My, M,).

Then, from egs. 2.2 and 2.3, we obtain

q
T=ZHk®Ek; g<n (2.4)
k=1

Let X be the M; x My matrix of the Discrete Fourier Transform of the digital image.
The My M, x 1 vector X, is formed from X by stacking the columns of X from left

to right. The output of the filtering action on X, by T is given by :
Y, =TX,

q
=Y Hi @ Ep)Xy; g<n (2.5)

k=1
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where Y, is an M; M, x 1 vector. The above is equivalent to the following represen-

tation, derived from [1] :

g
Y:DOX:ZHkXEk; g<n (2.6)

k=1

where Y is the M; x M; matrix representation of vector Y,. The component filters
here are the (Hy, Ej) which act in parallel on the image.

In order to reduce computational complexity, one needs to reduce the number (de-
noted here by ¢) of such parallel components. The filter matrix D , as it is usually
structured, is non - zero in only certain specified locations. Hence the diagonal ma-
trix 7" has many zeros along its diagonal. This leads one to explore the possibility
of reducing the number of parallel components by studying the nature of D and ex-
tracting the set of ¢ independent significant component filters, where ¢ < n. Thus,

one needs to approximate the diagonal filter matrix T" as :

q
T:ZAk(@q)k; g<n (2.7)

k=1

where Ay and @ are diagonal matrices of sizes My and M, respectively. Then, the
output image is :

q
Y = Z ArXPr; g<n (2.8)

k=1
The above represents a row - column operation on the elements of X with the Ay
matrices acting on the columns of X and the ®; matrices acting on the rows of X.

This suggests the decomposition of D into two matrices A and ® such that
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where A is the M; X ¢ matrix obtained by stacking the diagonal elements of each
Ay along the k th column, and ® is the ¢ x M, matrix obtained by stacking the
diagonal elements of each ®; along the k th row.

The Singular Value Decomposition (SV D) can be used to find one explicit definition

of the matrices A and ®. From the SV D of D, one obtains :

D=USV* (2.10)

Denoting D(x) as the diagonal n x n matrix whose main diagonal is the vector

x € K", it is easily inferred that

Ay, = \/S(k, k)D(U3) (2.11)

oy = \/S(k, ) D(V}), (2.12)

where Uy, 1s the k th column of U and V* is the k th row of V*.

The 2 — D filtering action D @ X has thus been reduced to a sum of 1 — D filtering
actions. Using the notation D'(X) to denote the vector obtained from the main
diagonal of the n x n matrix X, the 1 — D filters can be represented as the D'(Ay) s
and D'(®;) 's. This gives the most optimal (in the least mean squares sense)

separable decomposition of D in the frequency domain. (Refer to Appendix A for

the proof).
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2.2 Reduction of the number of component
filters

Reduction of the number of the 1 — D component filters Ar and ®; is the next
objective. The simplest way in which this can be achieved is by the truncation of
S, neglecting all singular values o}, below a specified tolerance . The tolerance
value chosen for truncation depends on the nature of the application for which the
filter is to be used. S is thus truncated to a ¢ x ¢ diagonal matrix of significant (
as defined by the nature of the operation ) singular values. U is truncated to an

M, x ¢ matrix and V* is truncated to a ¢ x M, matrix (¢ < n). Hence,

Ay = Dappros = [D'(A1) D'(Az) ... D'(A,)]; (2.13)
D@7 |

Oy = Cappros = D/((_I)Q)T (2.14)
| D'(®)" |

Dy = Dapproz = DapprozPapprox (2.15)

The value of ¢, from now on to be referred to as the reduced order , may be further
reduced by using an error criterion in the filter approximation. The least square
error can be used for this purpose. The approximated filter D, is compared with
the actual filter D, and truncation is done if the normalized least square error of
D, is below a specified limit. It is common, in filtering operations, to specify a
transition region in the frequency response. This could be incorporated in the filter

to obtain further reduction in the number of the 1 — D components.



14

2.2.1 Factors affecting the order of reduction :
Study of symmetry

It is both interesting and important to study what determines the extent of reduc-
tion achievable in a given filter. This knowledge can then be used in the designing
process to reduce the number of filter components to the smallest number possible.
Certain filter types appear to lend themselves more easily than others to reduction,
without noticeable distortion in the output. It can be rather easily inferred that
reduction is directly related to the rank of the filter matrix D since this determines
the number of non-zero singular values. Occurrence of a large number of dependent
rows (columns) suggests symmetry in the matriz structure. The symmetry proper-
ties of the D, and the U, S and V matrices have thus to be studied in detail, to
better understand the factors affecting the order of reduction.

Symmetry in the filter response implies filters whose frequency responses are quad-
rantally symmetric, antisymmetric, or half - plane symmetric. Again, if the fre-
quency response is simply defined, such as square or rectangular, a great deal of
symmetry would be present in the filter matrix D. The singular values, in all these
cases, would be such that S(g¢,¢q) < tol, for ¢ << n. In this discussion, the order of
D is assumed to be even. This implies that D is structured to be perfectly quadran-
tally symmetric, antisymmetric or half - plane symmetric as the case may be. This
is achieved by assigning no values in the frequency response when either w; or ws
is 0.

It is known that the U, S,V matrices resulting from the SV D of a symmetrical re-
sponse matrix have some special properties ([8]). The following is a discussion on
the effect of this on the separable filter nature, and the simplifications achievable on

this account.
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Consider the k th filter component fil; obtained from the SV D of D. From eq.
2.10, this can be obtained as the outer product of U, and V), weighted by the &k th

singular value o = S(k, k).

Ukla'k‘/kt Uklo'k‘/k*MQ
Ffily, = : : 3 (2.16)
Ukpy 0kVi, oo Unyy Uka’ZWQ
Now,
dig  dip ... dimg
D=| : i i (2.17)
dMl 71 dMl ’2 « e dM1 7]\42

It D is quadrantally symmetric, then it satisfies the following condition.

D(w1,wy) = D(—wq,ws) = D(—wy, —wz) = D(wy, —wy) (2.18)

It D is antisymmetric, then it satisfies the following condition.

D(wy,ws) = —D(—wy,wz) = D(—wy, —wz) = —D(wy, —wy) (2.19)

The following theorem is then valid for any D satistying eqs. 2.18 or 2.19 and any
of its components filg.

Theorem 2.1 : The filter filp obtained from the SV D of D and defined as given
in eq. 2.16 preserves the symmetry properties of the filter D, as long as o # 0.
Proof :

(i) Consider the case of a quadrantally symmetric filter matrix D. Such a filter

has the properties outlined by eq. 2.18 and can be implemented by using just one
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quadrant response. Since the filter D is quadrantally symmetric (D),

dij = dipy+1-j,

dij = duy 15,
dij = drrp1-i My 415, where dij = D(1, ) (2.20)
Also, as long as o, # 0, the vectors Uy and Vj are mirror image symmetric, i.e., for

all 1 <i < My;1 <j <Myl <k<gop#0,

Uk, = UkM1+1—i and Vk; = V/'€M2+1—] (2'21)

Hence, on the condition that oy # 0,

* *
Uki O-k‘/kj - Uki O-k‘/kMz +1—y

* *
Uriow Vi, = Ukpyy 4108 Vi,
* *
Ukioe Vi, = Ukpgy 1206 Vi, 4

which implies that the separable filter fil; is also quadrantally symmetric.

Hence,

Dqs - fllkqs (222)

(ii) Next, consider the case of D being antisymmetric (Dys). Such a filter has

the property outlined by eq. 2.19 and can also be implemented by using just one
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quadrant response. For such a filter, for all 1 <: < My;1 <35 < M,,

dij = —di My+1-j,
dij = —dm+1-i,
divj = dM1+1—i,M2+1—j7 (223)

In this case, as long as o # 0, the vectors Uy, and Vj, are mirror image antisymmetric,

i.e., for all 7,7 such that 1 <: < My;1 <73 < Myl <k <gq;or#0,

Uy, = _UkMJ+1—z‘ and Vk] = _‘/]CM2+1—] (2'24)
Then, for oy # 0,
Ukz‘akvkt = Uy, Uka*MQH—J’
Uklo-k‘/]:; = _UkM1+1—io-kV;;7

* *
Ukio-k‘/k] - Ule-I-l—i O-k‘/kM2+1_]‘7

which implies that the separable filter fil; is also antisymmetric. Hence,

DCLS - filas (2-25)

From eqgs. 2.22 and 2.25, one can conclude that the component filters fil; of D
obtained in this manner, preserve the symmetry of D.
There is a class of filters which is neither quadrantally symmetric nor antisymmetric,

but whose response is symmetric with respect to the origin of the (wq,ws) plane.
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These filters have the following property :

D(wl, ‘U)Q) = D(—wl, —‘wg) (226)

These are called half - plane symmetric filters. Thus, for a half - plane symmetric

filter D,

dij =dm+1-imp+1—j, 1 <o <M1 <3< M, (2.27)

It filp is assumed to have the symmetry of D, it would imply that U, and Vj
need to both be either mirror image symmetric or antisymmetric, which is true of
only certain filters in this category, like for example, the rotated elliptical filter.
Thus, only in these cases do the component filters have the symmetry properties of
D. These filters can be designed using only the first two quadrants of the desired
response D).

As an extension, consider the component filters in pairs. The ¢ th filter pair is :

Ukyor Vi, + Upgr, 061 Vi,

fil, = : : (2.28)
Ukar, 06 Viy, + Ukirag 061 Vi,

Now, the U,V matrices in some special classes of half - plane symmetric filters, like

the fan and triangular filters, have the property that their columns, when considered

in pairs, k and k+ 1, (k : odd, k+1 : even) are pairwise mirror image symmetric or

antisymmetric, with the singular values also varying in pairs. Thus, for these filters,

U = £Uks1y 11 1 <0 < M,
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Vi, = tVigta, s 1 <5< My

and

o =0opy1, 1 <k <gq

This implies that fil; as defined in eq. 2.28 is half - plane symmetric.
Thus for these half - plane symmetric cases, the component filters when considered

in pairs, k and k+ 1 (k : odd, k+1 : even), preserve the symmetry of D.

2.2.2 Implications

The implications of the results obtained in the last section are significant on the
computational complexity of the design algorithm. If the desired filter response
D is symmetric in any one of the three senses described earlier, it is usually suf-
ficient to design each component filter in either one or two quadrants only. This
leads to an enormous reduction in the memory requirements. There is also a huge
computational speed-up since one is required to work with a smaller number of
frequency sample points. For filters which do not possess any kind of symmetry,
it is possible to decompose them into their symmetrical and antisymmetrical com-
ponents, and design for each component separately. Thus, the particular cases of
symmetry analyzed above may be extended to any class of filters by using a suitable

decomposition.

2.3 Experimental results

In this section, experimental results are presented on the effects of symmetry, filter
shape, the transition region, and the truncation criterion used, on the order of
reduction. The nature of the U, S and V matrices were studied for the three cases

of symmetry in D. In each case, the special properties attributed to these matrices
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were verified, as long as the singular values were non - zero. This establishes that
the component filters do exhibit the symmetry of D, which was further verified from

a simulation of the individual filter components.

2.3.1 Effect of filter configuration

Figure 2.1 presents the filters used for the study of the effect of filter configurations.

In each case, a 128 x 128 ideal response filter matrix was considered.

a) Circular filter b) Elliptical filter

113

Il

Figure 2.1: Filter configurations

The reduced order was first determined based on truncation if o, < tol, where tol

= (0.001. The values obtained for the different cases are listed in Table 2.1.
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Table 2.1: Reduced order based on truncation

Case | q

a 18
22
3
3
52
88

0|l | T

The reduced order ¢ was determined next by truncation based on the least mean
square error using the Frobenius norm. The criterion for truncation was %err < 3,

where
norm[D — Y] _, D'(Ag)D'(®y)]

norm/|D)]

Yoerr = (2.29)

The reduced order values are given in Table 2.2.

Table 2.2: Reduced order based on norm of error

Case | q

a 16
21
1
1
51
76

O alo | T

Finally, the effect of a transition bandwidth in the filter D was evaluated. The value
used for the transition region was 0.17, which is 10% of the defined region of the
frequency response. Table 2.3 gives the reduced orders for the different cases. It can
be observed from the data presented that filters which are quadrantally symmetric
like @, b, ¢, d have lower ¢ values than e, f. Among these, ¢, d have a reduced order
of 1, based on the last two truncation criteriea used. It is to be noted that these are

the most simply structured filter matrices used, having many rows (columns) which
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Table 2.3: Reduced order based on incorporation of a transition band

Case | q

a 16
16
1
1
46
76

Ol | T

are entirely 0, and only 1 independent row (column). Thus, symmetry in the filter
configuration and simplicity of shape contributes to a large reduction in the number

of separable filters required.



Chapter 3

Mathematical Analysis

3.1 Introduction

Once it has been established that parallel filter implementation is both feasible and
desirable, it is necessary to design an algorithm to obtain the optimal parallel F'ITR
filters. [3] describes an algorithm to compute a 2— D non-separable F'I R digital filter
which is optimal in the least mean squares (LMS) sense. [4] details the extension
of this algorithm for the case when we have a general weighting function. In the
absence of any constraints, the SV D of the optimal non-separable filter designed
using [4] gives the 1 — D filters. This approach however, leads at most to a suboptimal
solution since each 1 — D response must then be approximated by FIR filters. In
order to obtain an optimal solution, one needs to incorporate the F'I/R constraint
in the optimization problem. The problem definition and its solution is developed
in the next section. The formulation is quite general and permits the inclusion of
weighting functions which can help to overcome some of the known limitations of

the LMS approach and allow the inclusion of transition bands.

3.1.1 Review

Properties of the trace, the outer product, and the Kronecker product functions are
used extensively in this analysis. For completeness, this section offers a brief review

of the relevant concepts.

(z, Py) = (P z,y) (3.1)

23
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(A,B) = (B, A) (3.2)
tr{AB*} = tr{ BA"} (3.3)
tr{AB"} = (A, B) (3.4)

As stated previously in eq. 2.1, if A € EMi*M2 and B ¢ EM:*Ms | the Kronecker

product of A and B is defined by,

A® B = [AB; ;] € pMMexMaMy (3.5)

3.1.2 Definitions used in analysis

The following linear transformations are used in the mathematical development.

The weight map W is given by

W(E)=W e E. (3.6)

The next development shows that the map is positive semidefinite.

(B, W(A)) = tr{(W(A))"B} = tr{B(W(A))"}

=tr{B(W"e A")}
= Zbi,j(‘wijaf,j)
= Z(bi,jwf,j)af,j

=tr{(BeW)A"}

=tr{(W°e B)A"}
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= W°(B) = W*° e B = W*(B) (3.7)

and if W(B) is real, then W*(B) = W(B). Also, by setting A = B, positivity
follows immediately whenever w; ; > 0.

The frequency map F is defined as

F(A) = 0A0L (3.8)

This map gives the discrete frequency response of a filter with the coefficient matrix

A, and € and €, represent the discrete frequency matrices defined as :

Qiky, ky) = e it k2, (3.9)

kl - _Mi7...7M2'_17k2 - —NZ,,NZ,L: 1,2

Using a procedure similar to the one outlined before, the adjoint can be computed
and is given by

F(A) = Q7 AQS (3.10)

If X € EM*N2 is an N; x N, matrix, one can define an N; N, x 1 vector X, formed
by stacking the columns of X from left to right. This stacking operation is denoted

as
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In particular,

S(ab’)=a®b (3.11)

The vectors ¢ ® b and b ® a have the same components but arranged in a different

order. Hence, they can be related by a suitably defined permutation 7°

T(a®b)=0®a (3.12)

Using the same technique as before, the adjoints of the stacking and the rearranging

operations can be shown to be

S (X,) =X (3.13)
T b®a)=a®b (3.14)

We observe from the above results, that

S =8S8=1

TT =TT =1

Finally, from the definition of ¢ ® b, one can establish the identity,

a®@b=(a® In,)b, (3.15)

where [y, is the identity matrix of order N3, and (a ® I,) is an N1 Nz x Ny matrix.
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3.2 Best separable approximationtoa?2—D FIR
filter

The best separable FIR filter approximation to the ideal filter response D minimizes

the cost function

J(a,b) = tr{(W e E)E*}, (3.16)

where a € EM | b € EM? are the vectors of filter coefficients, and £ = D — Q,abT QT
is the error function matrix. The discrete frequency matrices }; and €23 have been

defined in eq. 3.9.

3.2.1 Development of the necessary conditions

Using the notation defined earlier, the cost function defined in eq. 3.16 can be

written as:

J = (W(D = F(ab")),(D — F(ab")))
= (W(D) = W(F(ab")), (D — F(ab")))
Expanding the inner product, one obtains,
J(a,b) = (W(D), D) — (W(F(ab")), D) — (W(D), F(ab"))
+ (W(F(ab")), F(ab")) (3.17)

Using adjoints, the above expression simplifies to

J(a,b) = (W(D), D) — (F(ab®), W (D)) — (FW(D), ab" )
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+(FW(F(ab")), ab")
= (W(D), D) — (ab”, F*W*(D)) — (F"W(D),ab")
+(FW(F(ab")), ab") (3.18)

Taking variations with respect to the vector a (b fixed), one gets,
8 = — (6ab”, F*W*(D)) — (F*W(D), 8ab" ) + (F*W(F(ab")), sab”)

+(FW(F(6ab™)), ab™)
= — (6ab”, FW*(D)) — (FW(D), 6ab") + (F*W(F(ab")), 6ab")
+ (6ab”, FW(F(ab"))) (3.19)

Using the trace function, and incorporating the fact that the W(D) operation is

real, eq. 3.19 can be written as,

6y = =2r{FW(D)b8a™} + tr{F W(F(ab"))b°6a™} + tr{F*W(F(ab"))b°6a}
(3.20)
= —2r{6a*"FW(D)b°} + 2tr{6a” F*W(F (ab”))b}

Hence, 6J, = 0 if and only if
tr{6a* F*W(D)b°} = tr{sa* F*W(F(ab"))b"}
Now, the quantities within the trace are scalars. Hence,

Sa* F*W(D)b® = §a* F*W(F(ab"))b*
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Since 6a* is arbitrary, this equation is satisfied if and only if
(F*W(D))b* = (F*W(F(ab")))b° (3.21)

Now taking variations with respect to the vector b (a fixed), and proceeding in a

similar fashion, one gets the second necessary condition for optimality.
a*F*W(D) = a* F*W(F(ab"))
Performing the transpose operation on both sides, one gets
(FW(D)) a® = (FW(F(ab"))) a® (3.22)

3.2.2 Solution procedure

Equations 3.21 and 3.22 represent a set of non-linear equations for which no direct
solution exists. They are solved using an iterative technique which is explained in
this section. However, first, one needs an efficient representation for the map F*WJF.
Such an expression is derived below using the SV D of the weighting function matrix
W. This computation is required to be done only once for a given weight matrix,
and does not increase the design time significantly.

From eq. 2.10, one has,

W= U, S,V (3.23)

The operation W(E) can then be obtained from eqs. 2.8 and 3.6 as :

q
W(E) = E Ly, ER,; q¢< m’m(Ml,M2); (3.24)

k=1



where the matrices L,, and R,, are obtained from eqs. 2.11 and 2.12 as :

Lu, = D(Us, )\/Su(k, k)

k

Ry, =/ Su(k, k)D(V, )

Then, from egs. 3.6, 3.8, 3.10, and 3.24,

q
(FW(D))b* = ;> Ly, DR, Q50"

k=1

q
(FW(F(ab))b° = Q5 S Ly, Qab" QL Ry, Q50°

k=1

Note that 8TQL R, Q50° is a scalar. Eq. 3.28 can therefore be written as :

q
(FW(F(ab"))b* = S 67T R, Q5670 L, Qya

k=1
q
= Z bTRkbcha
k=1
where

Lk - Qy{[/wk Ql,

R, = QR Q5

q
(FW(F(ab"))) a = Z(Q}‘kaﬂlabTQngkﬂg)Tac

k=1

q
=3 R, Qba’ Q L, Qfa°

k=1
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Noting that a?QT L,, Q5a® is a scalar, one gets,

(FW(F(ab™)))a® = ZaTQTkaQC Q5 Ry, Qb (3.33)

k=1

Now,

LI =07, 0 = L§
R = 3R, 0y = RS (3.34)

Eq. 3.33 then reduces to :

(FW(F(ab"))Ta® = ZaTL aR$b, (3.35)

The following are defined for convenience of notation.

q
G=0Y Ly DR, Q5 (3.36)
k=1
q
X =) 0" RbLy (3.37)
k=1
q
Y =Y d"Lja°R; (3.38)

The set of necessary conditions (egs. 3.21 and 3.22) is then equivalent to :

Gb = Xa (3.39)

GTa® =Yb, (3.40)
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This set of equations can be solved using successive approximations. The initial
choice of b is arbitrary and the system of equations is solved for a. This value of
a is then used to solve for b. This process is repeated until the minimal optimal
index value is reached and convergence results. The following theorem is presented
as proof of the existence of a solution to this system.

Theorem 3.1: The system of equations defined by eqs. 3.39 and 3.40 has a limiting
solution tf and only if there exists a unique optimal non-separable F IR filter.

The proof of this is given in Appendix B. The proof establishes the existence of
a sequence of ajs, all contained on the closed unit ball, and associated with a
monotonically decreasing sequence of costs. Extracting a convergent subsequence,
and using the limit of this subsequence of ajs, one can derive an optimal filter
coefficient pair (a,°), which defines the best separable F'I R approximation to the

desired frequency response in the weighted least mean squares sense.



Chapter 4

Extension to multiple terms

In Chapter 3, the procedure to obtain the best separable approzimation to any ar-
bitrary 2 — D ideal frequency response was outlined. In most cases, this 1-term
approximation may not be sufficient to meet the given performance specifications.
One would need to design more such separable filters, the sum of which would meet
all performance requirements. This chapter describes the extension of the algorithm
to design any number of separable filters. It also gives the details of the actual

implementation of the filtering action using these filters.

4.1 Obtaining multiple terms

The cost function to be minimized is :
J = (W(D = F(ab")),(D — F(ab"))) (4.1)

Set D = Dy where Dy is the ideal frequency response, and solve the above problem
to find the optimal @ = a; and b = b; using the iterative procedure explained in
Chapter 3. Then F(a;b7) is the best separable 1-term approximation to D;. To find
the second best separable approximation, set D = D; —F(a;b') = D,, and solve the
problem to find @ = ay and b = by. Then, F(aybl) is the most optimal approximation
to Dy, and F(a b?) 4+ F(azbl) is the best 2-term approximation to D;. To find the
best n term approximation to D, one needs to set D = Dy — 3721 F(axbl), and

solve the minimization problem to find a, and b,. Then, S_7_, F(abl) represents

33
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the best n term approximation to D;. Thus, the given ideal frequency response
is approximated by separable filters using the method of successive approzimation.

The process is terminated when all performance specifications are met.

4.1.1 Reduction of the number of channels using SV D

Once the ¢ separable filters have been designed which meet all performance require-
ments, one has a set (ag, by) of ¢ coefficient vectors. These vectors represent the ¢
channels of the filter which operate on the input image. The sum of the outputs
from each channel is then the output filtered image. It has been observed in the
case of F'IR filters ([12]) that the number of channels can be reduced by a significant
factor for any arbitrary filter configuration. For this, one needs to determine the
summation of the ¢ rank - 1 matrices a}cbf, where a}, and b, represent the coeffi-
cient vectors adjusted to the same size by padding zeros where required. Thus, one

obtains the coefficient matrix,

g
C=> aﬁcbf

k=1
From the SV D of C, the set of ¢’ significant (which still meets all performance
specifications) singular values is obtained, where ¢’ < ¢. One can thus obtain the
set of ¢’ coefficient vectors (ay,by) from the SV D matrices, which represent the
¢' channels of the filter, all of which act on the input to produce an output of a
similar quality as before, though with less number of channels than used earlier.
For filters with highly symmetric responses, the factor of reduction achievable using

this technique can be extremely high.
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4.2 Modifications for filters with symmetry

4.2.1 Quadrantally symmetric/antisymmetric responses

The filters which are quadrantally symmetric or antisymmetric (eqs. 2.18 and 2.19)
always have real coefficients. Hence, the necessary conditions for optimality (egs.

3.39 and 3.40) may be modified as :
R(G)b =R(X)a (4.2)

R(GTYa = R(Y)D, (4.3)

In addition, the optimal coefficient vectors are symmetric (/antisymmetric) about

their middle. Hence, it is sufficient to find the coefficients ay,, a,, ..., ary , and

bigs biy sy -+ - b

v, For this, the €); matrices are modified to take into account the

symmetry of D.

Q, =Q;5 (4.4)
where
Iy,
g=1| """ (4.5)
Iy, 0
If D is quadrantally symmetric,
1 if i=N-j+1

]]/V(iv J) =
0 otherwise
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and if D is antisymmetric,

S —1 if i=N-j+1
]N(% ]) =
0  otherwise
Only one quadrant of the frequency response is needed to obtain the optimal co-

efficients, since the response is symmetric. Hence, one considers only the positive

frequencies.

ki=0,1,... M;—1;i=1,2

4.2.2 Half-plane symmetric responses

Now, consider the case when D, is half-plane symmetric. The optimal coefficients
here have a special property which is presented in the following theorem. This
property enables one to design certain special classes of filters which always have
real coefficients.

Theorem 4.1 : Suppose that W(D) is real and half-plane symmetric, if (a,b) is
an optimal solution to the cost function defined in eq. 4.1, then (a®, b°%) is also an
optimal solution.

The proof of this is given in Appendix C. W is chosen to be real and half-plane
symmetric which ensures that the operation W(D) is real and half-plane symmetric.
This property is used to show that the matrix G defined in 3.36 is real, and the
matrices Ly and Ry are either both real or both imaginary, which fact is then used
to establish that the optimizing solutions in this case always exist in conjugate
pairs. A corollary to this theorem is stated below, and it shows that real coefficients
can be obtained under special conditions, with significantly less designing effort, as

explained in the appendix.
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Corollary : Under the assumptions of the above theorem, if W e D = USV™ is the
SVD of W e D, the structure of the U, S, V matrices can be used to obtain real
coefficients in the design process.

Thus, if D is half-plane symmetric, and W is chosen such that W(D) is real and
half-plane symmetric, and satisfies either one of the special conditions stated in the
Corollary in Appendix C, then one can always obtain real coefficients. For the case
where the optimal solutions exist as sums of conjugate pairs, one can obtain m
separable filters by solving the necessary conditions only m /2 times. The remaining
terms can be obtained just by taking the conjugate of the optimal solutions. In
this case, the best separable solution F(a;b?) is first obtained. Then, D is set to
D = Dy — (F(a1bT) + f(aibiT)), and the problem is solved to obtain (as,by). This
process is repeated until all performance specifications are met.

If the ideal response does not possess any symmetry, it is separated into symmetric
and antisymmetric components, and the best n term separable approximation to
each is obtained. This process ensures that the optimal coefficients are always real,

and hence their realization is feasible.

4.3 Implementation of the filtering action in the
time domain

While the optimal coefficients have been obtained, as explained above, using fre-
quency response analysis, the actual filtering operation is carried out in the time
domain. Figure 1.1 shows the parallel separable implementation of the filtering ac-
tion. The image z is loaded onto a shared memory machine. The ¢ separable filters
are then made to operate on the image in parallel, each a; acting on all the columns

of the image concurrently, after which each b acts on all the rows of the image
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concurrently. The actual filtering action of each of the separable filters is a series of

two 1 — D convolution operations. These operations are defined in eqs. 4.6 and 4.7.

q

k1
k17k2 ZZ kl_llka) klz_Mlv"'7M1_17 (46)

q
k17k2 Zzbk 12 yl k17k2—l2) ky=—Ms,...,My—1 (4-7)

k=11=1
Now, the entire filtering action is done in real time, which implies that the filter
coefficients need to be physically realizable, i.e. they need to be real. If the ideal
response is quadrantally symmetric or antisymmetric, the coefficients are always
real, and hence, their realization is not a problem. If the filter is half-plane sym-
metric, and satisfies any one of the special conditions outlined in the Corollary to
the Theorem in Appendix C, then also the coefficients are real, and can be easily
realized. The filters which possess no such symmetry however, pose a problem.
One can overcome this problem by constraining the solution to be real, but this
has the disadvantage of taking too much computation time. Another approach is
to decompose the desired response D into symmetric (D) and antisymmetric (D)
responses in the design stage. The optimal separable solutions are then found for
each of these two components separately, and then combined suitably to give the
complete response. If (ay,, by, ) and (ag., bg,) represent the coefficient vectors for the
symmetric components D, and D, respectively, then the optimal coefficient vectors
for D are given by the SV D of the coefficient matrix hj obtained from hy, = ay, b,
and hg, = ag bl as:
hy, — hg

h — c 8
k 4e ’



where e is defined as

if i=j=0

DO =

e(i,j) = % if 1i=0 or j=0
1

otherwise



Chapter 5

Simulation results

In this chapter, the separable design algorithm enumerated in Chapters 3 and 4
is used to design certain well - known filters. The results of these designs are
presented here and are compared with the designs obtained using the weighted least
mean square non - separable design algorithm ([3],[4]), with respect to quality of

the design and the computational complexity of the design algorithm.

5.1 Experimental results

5.1.1 Design examples

Two aspects of the design algorithm are illustrated here using suitable examples.
(i) For filters which are almost separable in nature, excellent designs can be obtained
using very few terms.

(ii) Approximating the optimal non-separable design ([4]) @ posteriori with lesser
number of terms, to reduce its complexity, results in inferior filters than those cre-
ated with this new technique.

Evidently, since the new technique uses only a limited number of separable terms,
the design will, in general, yield a result no better than the optimal non-separable,
taken as a whole. Consequently, only an equivalent number of terms of the optimal
non-separable are considered for comparison. This is done by first finding the op-
timal non-separable [, x L, filter response coefficient matrix h, by combining the

coefficient matrices of the symmetric and antisymmetric components of the designed
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filter given by h. and h, respectively as follows.

he, — hy
le

where e is defined as given in Chapter 4 as

% if i=j=0
e(t,5) = % if i=0 or j=0
1 otherwise

The SV D of h is then determined and from the U, S and V matrices of this de-

composition, the n term approximation is obtained as :

happroz = U(1 2 L1, 1:n)S(1:n, 1 :n)V*(1:n,1: L)

Example 1

The first example considers a one quadrant fan filter. This filter is almost completely
separable, and is used here to validate this technique. The ideal filter frequency re-
sponse is shown in Figure 5.1. This filter has the I and the III quadrants as passband
and the II and the IV quadrants as the stopband with an internal transition band
of width .17 rad. Figure 5.3 shows the optimal one term separable filter designed
using the separable algorithm. For this design, the filter orders N; and N; were
taken equal to one another, and set at a value of 22. One term here refers to the
optimal solution to the ideal response and its conjugate, taken together, since this
filter has the properties that ensure that the optimal solutions exist as sums of
conjugate pairs. The quality of the approximation is evident from the magnitude

frequency response of the designed filter. The response is smooth ( less ripples )
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and the passband edges are well defined. The error frequency response is shown in
Figure 5.4, and it is seen that the maximum error is well within acceptable error
bounds. The number of iterations required to obtain this one term is 105. The value
of the cost function is 0.1816. Observe that this filter has a quality far superior to
the one term optimal non-separable (Figure 5.2), while using only a small fraction
(% ~ 9%) of the coefficients in the design process. Thus, this example validates
the technique, giving a very good quality design with highly reduced computational
complexity.

Example 2

The second example is that of the elliptical filter, and it was chosen to demonstrate
the efficacy of this design algorithm as against that of the optimal non-separable
with an equivalent number of terms. Here, the ideal filter (Figure 5.5) is a quad-
rantally symmetric elliptical filter with axes of .77 rad and .37 rad and an external
transition band of width .17 rad. The filter orders in the w; and w, directions were
taken to be Ny = N, = 22, as before. The optimal five term non-separable response
is shown in Figure 5.6. It uses 1013 independent coefficients for the design. Figure
5.7 gives the best five term separable magnitude frequency response. This was ob-
tained using only one quadrant of the ideal frequency response, and less than half
the number of filter coefficients (460 for the 10 terms originally designed). The filter
was originally designed using 10 terms, and then the SV D method explained in
Chapter 4 was used to reduce the number of channels from 10 to 5, with almost no
deterioration in the performance. The contour of the magnitude frequency response
is shown in Figure 5.8. From the contour, it can clearly be seen that this filter was
obtained by the addition of several rectangles, underlying the basis of this design

algorithm. From the error response (Figure 5.9), it can be seen that the maximum
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One quadrant fan filter : Ideal frequency response

o
o

o
o

o
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Figure 5.1: Ideal magnitude frequency response of 2-D one quadrant fan filter
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Magnitude response of 1-term non-separable FIR filter:N1=N2=22
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Figure 5.2: Magnitude frequency response of the optimal 1-term non-separable FIR
one quadrant fan filter
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error is less than 10%, even though only very few coefficients have been used. The
variation of the cost function and the number of iterations required for each term
are shown in Figure 5.10. This example shows that superior designs, with respect to
the optimal non-separable, can be obtained using only a few separable terms, with
only an average of 20 iterations, and N; + Ny + 2 = 46 independent parameters per

term.

2-D elliptical filter : Ideal magnitude frequency response
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Figure 5.5: Ideal magnitude frequency response of 2-D elliptical filter
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Magnitude response of 5-term non-separable FIR filter:N1=N2=22
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Figure 5.6: Magnitude frequency response of the optimal 5-term non-separable FIR
elliptical filter
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Magnitude response of 5-term FIR separable filter:N1=N2=22
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Figure 5.7: Magnitude frequency response of the optimal 5-term separable FIR
elliptical filter



20

Contour of magnitude response of 5—-term FIR separable filter
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Figure 5.8: Contour of the magnitude frequency response of the optimal 5-term
separable FIR elliptical filter



o1

Magnitude error frequency response of 5-term separable FIR filter
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Figure 5.9: Magnitude error frequency response of the optimal 5-term separable FIR
elliptical filter
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Variation of the cost function with number of separable terms
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Figure 5.10: Some design results of the optimal 5-term separable elliptical filter
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Example 3

Example 3 is a more difficult filter to design using this algorithm in that it is almost
completely non-separable. The ideal frequency response is shown in Figure 5.11,
and it is a half-plane rotated elliptical filter with axes of .77 rad and .37 rad and
an external transition band of width .17 rad and rotated by 30° counterclockwise
about the w; axis. The optimal 11-term non-separable response is shown in Figure
5.12. This filter has properties such that the Corollary to Theorem 4.1 stated in Ap-
pendix C can be applied. It is therefore designed in a fashion similar to the design of
the elliptical filter with all coefficients constrained to be real. The optimal 11-term
separable response is shown in Figure 5.13, and the corresponding error response is
shown in Figure 5.14. This filter was originally designed using 15 terms, and the
second level SV D was then used to obtain a reduction of 4 terms. Thus, one can
observe that the SV D does not produce any significant reduction in the number of
channels in this case. From the magnitude responses, it can be seen that this filter
compares favourably with the non-separable response using an equivalent number
of terms. Thus, even for almost completely non-separable filter configurations, bet-
ter quality designs are obtained using this algorithm than an equivalent number of

optimal non-separable terms.

5.1.2 Performance variation with parameters

The parameters affecting the filter performance, which one can represent here as
the cost function, are affected by the filter orders in the two directions and also the
number of separable terms used. For a fixed number of coefficients, there are several
different combinations of filter order and number of terms possible. Of these possible
combinations, there might exist one which results in the minimum cost. The aim

in this section is to study the map of the performance variation with respect to the
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2-D rotated elliptical filter : Ideal magnitude frequency response
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Figure 5.11: Ideal magnitude frequency response of 2-D rotated elliptical filter
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Magnitude response of 11-term non-separable FIR filter: N1=N2=22
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Figure 5.12: Magnitude frequency response of the optimal 11-term non-separable
FIR rotated elliptical filter
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Magnitude response of 11-term separable FIR filter:N1=N2=22
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Figure 5.13: Magnitude frequency response of the optimal 11-term separable FIR
rotated elliptical filter
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Magnitude error response of 11-term separable FIR filter
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Figure 5.14: Magnitude error frequency response of the optimal 11-term separable
FIR rotated elliptical filter
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two parameters, for several different coefficient values, in order to determine the
optimal combination. The filter orders in the w; and ws directions are assumed
equal, as also the filter order in every term. The map is drawn for the elliptical filter
of Example 2, and the coefficients are fixed at 100, 200, ..., 800.

For each given fixed value of coefficients, the number of terms and filter order are
varied in order to determine the optimal combination of filter order and number of
terms that produces the smallest cost function. The optimal combination values of
filter order and number of separable terms, together with the corresponding cost,

are tabulated in Table 5.1. It can be observed from the table that the optimal

Table 5.1: Optimal combination values of filter order N and number of separable
terms q for minimum cost

No. of coefficients | N | q | Cost
100 12 ] 4 | 1.5089
200 16 | 6 | 0.5284
300 18| 8 | 0.2267
400 19 | 10 | 0.1258
500 20 | 12 | 0.0849
600 22 | 13 | 0.0528
700 20 | 17 ] 0.0397
800 23 | 17 | 0.0320

filter order is around 20 in each direction, with the number of terms varying rather
widely, but with a value around 12. Quite naturally, the cost function decreases as
the number of coefficients increases, as can be concluded from Figures 5.15 and 5.16.
Figure 5.17 shows the variation of the minimum value of the cost with the number
of independent coefficients used for the design. It can be observed from the graph
that no significant improvement is achieved by increasing the number of coefficients
beyond about 500. This result can be used to determine the optimal combination of

number of coefficients, number of separable terms, and order of the 1 — D filters in
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each term, for each design. This map was obtained without the further reduction

using the SV D, which was explained in Chapter 4.

No. of coeff = 100 No. of coeff = 200
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N<—— 00 ——>q N<-- 00 ——>q

Figure 5.15: Cost function values with variation of filter order and number of chan-
nels

5.1.3 Computational complexity considerations of the
algorithm

Now, the most serious problem in applying optimization techniques for the design of
FIR filters is the fact that these filters have very low selectivity. This implies that

even a moderately demanding application requires a very high order filter i.e. a large
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Figure 5.16: Cost function values with variation of filter order and number of chan-
nels
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Variation of minimum cost with number of coefficients
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Figure 5.17: Variation of the minimum cost with the number of independent coefhi-
cients
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number of coefficients. This problem can be reduced by minimizing the number of
independent parameters, and this, in turn, reduces the computational complexity of
the algorithm. This section presents a simplistic analysis of the complexity of this
algorithm as a function of the number of independent coefficients, when compared
to the weighted least mean square non-separable algorithm.

Consider first the 2 — D non-separable F'IR filter design algorithm ([4]). For a filter
of order Ny and N, in the w; and wy directions respectively, the number of free
parameters is py = 2N; Ny + Ny + Ny + 1 and one is required to solve a linear system
of equations. Hence one can estimate the complexity as O(p?) In the separable filter
design, the number of such parameters is only py = 2N; +2N; +2 for each separable
filter.  Assuming initially a similar complexity, and N = N; = N;, one can see
that the two techniques will have the same overall complexity if the single separable
filter is solved approximately N?/4 times. This is of course a very simplistic estimate
but points out the well known fact that oftentimes the divide-and-conquer-strategy
leads to more efficient algorithms. A more complete complexity analysis needs to
take into consideration the fact that the non-separable case is a linear problem
while the new method requires the solution of non-linear equations. Even with
the more complete complexity analysis, one would expect, and the experiments
confirm, computational advantages in the separable design. It is to be noted that
for an order of say N = 20, N?/4 = 100, which is almost 10 times the number
of separable filters needed for most filters in order to achieve a reasonable design.
Hence, the overall complexity of the algorithm is, at worst, no larger than that
of the optimal non-separable. For filters having some special symmetry features,
the number of independent parameters is reduced by almost half. In particular,

quadrantally symmetric and antisymmetric filters are designed using only N;+ Ny+42
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free parameters, as against 2N; Ny + N7 + Ny + 1 in the non-separable case. Most
half-plane symmetric filters require only Ny + Ny 4+ 1 independent coefficients for
each term on an average, since they are considered in pairs. This results in a large
reduction in computational complexity for such filters, when designed using this

algorithm.



Chapter 6

Conclusions

The design of fast-acting 2— D FIR digital filters was the objective of this research
effort. The aim was to formulate an algorithm to design a separable 2-D FIR filter
that is especially suited to real time processing applications, and lends itself readily
to a parallel hardware tmplementation. The attempt was successful in that such a
rigorous algorithm was devised after a complete mathematical analysis, and it ac-
commodates a parallel architecture. In addition, this new technique permits more
flexible designs and, according to the simulation results, one can get acceptable per-
formance with less number of parameters.

At first, an extensive study of some common filter types was done, and some gen-
eral observations on the behaviour of the individual filter components were made.
These were used later, in the actual design and simulation, to simplify and speed
up the process. An example of this is the reduction of the weight map W using
the idea of the truncation of the SV D matrices outlined in Chapter 2, to reduce
computational effort. Another example is in the design of filters with certain special
kinds of symmetry, discussed in Chapter 2. The study sheds light on the conditions
under which constraints can be incorporated in certain filter configurations to speed
up the design process, and provide for realizable designs. The constraint of real
coefficients, and that of considering coefficients as sums of conjugate pairs are some

examples.

64
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The simulation results demonstrate the significant gains to be achieved, when using
this algorithm to design 2 — D separable F'IR filters, especially in cases of symmet-
rical filter shapes. The examples of the half - plane symmetric, almost separable
one quadrant fan filter, and quadrantally symmetric elliptical filter, show that ex-
cellent quality designs are achievable with very little computational effort. Also,
these designs are perfect for a fast, and simple implementation owing to very few
coefficients, and a small number of channels. For more complicated shapes, which
are almost completely nonseparable (e.g. rotated elliptical filter), better designs are
obtained with this approach than equivalent designs obtained with the nonseparable
design algorithm.

For shapes which are neither symmetric nor almost separable, however, a suitable
decomposition of the ideal response needs to be done before designing, in order
to avoid excessive computation time, and the SV D of the final coefficient matrix
is used to obtain the separable filter coefficients. This entire process involves the
solving of the necessary conditions for each component obtained from the decom-
position, and the final results may not be the most optimal achievable. Also, it
has not been conclusively proved that the optimal n term approximation obtained
using this approach of successive approximation, is equivalent to the optimal n term
approximation, obtained as a whole without adding terms successively. Again, there
are several possible decompositions which result in separable components, different
from the SV D used here. Examples of these are the LU decomposition, and the
decomposition using Interlocking Factors. A comparative study of the use of such
alternate decompositions as against the use of the SV D, might lead to better, or
more efficient, designs. The above issues need to be considered in greater depth, and

a more comprehensive computational complexity analysis of this algorithm should
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be done, to complete this research effort. Possible extensions to the design of 2 — D
separable IR filters is also a topic for further research in this area.

To conclude, an algorithm to design 2 — D separable F'IR filters has been formu-
lated. The significant features of this algorithm are :

o It offers great flexibility in design since the length of each 1 — D filter can be
selected independently, as also the number of such filters to be used.

e Simpler and faster filtering action implementation owing to the parallel structure.
o Greatly reduced computational complexity for filters having some special symme-
try properties.

e This approach thus integrates 2 — D filter design and parallel implementations to

create filters with high throughput.
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Appendix A

Theorem : Suppose D € EMM ¢ pMixl g ¢ pMexl’ gnd suppose J =

tr{(D — pg*)(D — pq*)*}, defines the merit index, then the minimizing solution to
this is obtained from the SV D of D.
Proof :

J =tr{(D—pg")(D —pg")"} (A.1)

= tr{(D = pq")(D" — qp")} (A.2)
Let g be fixed at gg. Then,

6Jp = tr{(D — pqg)(—qo)op™} + tr{(—dp)g5 (D™ — qop™)}

Equating 6.J, to 0, we obtain,
tr{(D = pgg)(—90)0p"} + tr{(—=ép)g5(D" — qop™)} = 0

= tr{(D — pg5)(—q0)op™} + tr{((D — pgg)(—qo)ép™)"} = 0
= 2tr{(D — pgy)(—q)ép"} =0
= tr{(Dqo — pg590) }6p™ = 0 (A.3)

= {(Dgo — pgsqo)} is orthogonal to ép*.
Since Op is arbitrary,
= (Dgo — pggq0) = 0

= (Dgo = pg;qo)

Now, ¢5qo is a scalar = || o ||?
Dgo=p | o |I*
Hence,
Dqo
Popt = A4
"o P A
From eqgs. A.1, A.2 and A4,
J = tr{(D = popg™) (D" = qp;0)}
= tr{(D = poptq") D" = (D = poptq™)qp5pe) }
From eq. A.3, tr{(Dgo — pg3qo) }6p* = 0 when p = p,,:. Hence,
J = tr{(D — popeg™) D"} (A.5)

=tr{(DD* — poprq"D")}
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The minimum of this is :
Jmin = ma‘r(tr{poptq*D*}) (‘A6)

Dq(Dq)*
g
(Dq)*Dq
| g2

= max(tr{

)

= maz(tr{

1

which is a scalar. Hence,

;. Do Dg _ ¢D"Dg
g II? g II?

Eq. A.7 is the representation of the SV D of D. Thus, the minimizing solution to
the merit index defined in eq. A.l is obtained from the SV D of D.

If D represents the ideal filter frequency response matrix, then eq. A.l represents
the cost function to be minimized in the least mean squares sense without any
constraints. The vectors p, ¢ represent the 1 — D FIR filters in the w; and the w,
directions, and are optimized using the SV D of D.

(A7)



Appendix B

Theorem : The system of equations defined by egs. 3.39 and 3.40 has a limiting
solution tf and only if there exists a unique optimal non-separable FIR filter.
Proof :

Suppose the original general non-separable 2 — D F'IR filter minimization problem
with cost function defined by

J(A) = tr{(W e (D — QAQL))(D — Q, AQT)*}

has a unique solution, given by A = Ay. Following the development in Chapter 3,
Ag must satisty the following necessary condition for the minimum cost function.

FW(D) = FWF(A,y) (B.1)

Hence, Ay exists and is unique, if and only if *WUF is an invertible map. Since it
is clearly self-adjoint,

FWF >0 (B.2)

In particular, the matriz representation of F*WUIF s positive definite.

The separable case considered here, is characterized by the condition that the A in
the minimization problem is replaced by ab’. The cost function can therefore be
written as :

J(a,b) = (W(D — F(ab")), (D — F(ab"))) (B.3)
= (W(D), D) — (ab”, FW(D)) — (F*W(D),at")
+(FW(F(ab")), ab")

For a fixed vector @ € E™ | this is a minimization with respect to b € E™2. Using the
notation defined in Chapter 3, one can explicitly state this problem as a conventional
quadratic minimization problem. Let Jo = (W(D), D). From eqgs. 3.11 and 3.13,

J(a,b) = Jo = (S (a @ b), FW(D)) = (FFW(D),S5"(a @ b))
+ (FWFS™(a®b),S (a ® b)) (B.4)
From eq. 3.15,
J(a,b) = Jo = (S7((a @ In,)b), FW(D)) = (FW(D), 5 ((a @ In,)b))
+(FWFS*((a @ In,)b), S ((a @ In,)b))
J(a,b) = Jo = (((a @ In,)b), SFW(D)) = (SFW(D), ((a & In,)b))
+(SFWFS*((a @ In,)b), ((a @ In,)b))
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J(a,b) = Jo — (b, (a* @ In, ) SFW(D)) — ((a* ® In,)SFW(D), b)
+ (0" @ In,)SFWFS*((a @ In,)b), b) (B.5)

For fixed ag € E™, this is a standard minimization problem with respect to b € EN?
and it is in quadratic form. The solution b, exists if and only if

(ag @ In, ) SFW(D) = (ay @ In,)SFWFS* (ao ® In, )1 (B.6)
Let
Qa = (CLS ® INQ)Sf*WFS*(CLO ® INQ)
Therefore, by exists if and only if ), is invertible. Now, for ag # 0,5, # 0, @, is
invertible if and only if 7*WUF is invertible, since,
(b, Qab) = (b, (ag @ In, )SFWF S™(ao @ In,)b)

= (ab”, FWF(ab"))
F*WUEF is positive definite by eq. B.2. Then

(ab”, FWF(ab")) >0

and this implies, ), > 0. Hence, i.e. the separable minimization problem has a
solution with respect to b for fized a.

Now consider the minimization problem with respect to a for b fixed at b;. The cost
function, in this case, can be obtained from eqs. 3.12 and B.4 as :

J(a,0) = Jo = (ST (b® a), FW(D)) = (FW(D),S"T(b® a))

H(FWEFST(b@ a),S*T (b a)) (B.7)
= Jo— ((b® In,)a, T*"SF*W(D)) — (T*SFW(D), (b® Iy, )a)
H(T*SFWEST(b® Iy, )a, (b Ly, )a)
= Jo — (a,(b" @ In,) T*SFW(D)) — (" ® In, ) T*SF*W(D), a)
(0" @ In ) T*SFWFS™ T (b Iy, )a, a)

This is also a standard minimization problem in quadratic form, but with respect
to a € EM with b fixed at by € EN2. From the earlier analysis, the solution a; to
this problem exists if (b @ In, )T *SFWFS*T (by @ Iy,) is invertible. As in the
previous case, this is equivalent to F*WJF being invertible, which is true from eq.
B.2. Hence, a; exists; i.e. the separable minimization problem has a solution with
respect to a for fized b.

Once it has been established that the system of equations defined by eqs. 3.21
and 3.22 has a solution for each iteration, one needs to establish next that the
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solution is a limiting one i.e. the solution converges towards the optimal in each
successive iteration. The approach adopted here is to show that the system defines
an optimizing sequence of the cost function on the compact set given by || a ||= 1.

From eq. B.2, F*WJF > 0 which implies,
i > 0 such that (ab”, FWF(ab")) > p |l ab” |*= p ]l a |* b

= (0,Qub) = pllall b (B.8)
Let p be the mingop(F*WF). For fixed a = ag, b must satisfy eq. B.6. Hence,

bao) = Qq, (a5 ® In, ) SF W(D)

1 * %
=l b(ao) |I*< R I (a5 @ Iny) Pl SE"W(D) |I*
_°
~ i a1

where ¢ is a constant. This implies that b is bounded above and is therefore finite
for any arbitrarily fixed a.

Now, suppose, || ag ||[= 1. One needs to minimize the cost function J for this fixed
a over all possible b. Let Ji = minyJq, (). Suppose the solution to this problem is
b = by, i.e.,

J(ag, bo) = J;

Now, b is fixed at b = bAo, and the necessary condition for minimization of J over all
possible a is solved. Let the solution to this problem be a = dy. Obviously,

J (dy, 1;0) = min,J (a, l;o) < J{(ao, 60)
Set

do

5 and blszol

do

a1 =

A

Gg

|
| do |
Then J(ai,b1) = J(cio,bAo) < J(ao,bAo). This process is applied iteratively on the
equation set. Noting that || ao ||= 1 and || a1 ||= 1, i.e. they are both on the unit
sphere, we conclude, from the above analysis, that the procedure defines a sequence

of vectors {a;} on the unit sphere and a sequence of monotonically decreasing costs.
Since the unit ball is a compact set, we can extract a subsequence {ay,} which is
convergent, converging to a limit ¢°. For this limit, the minimization with respect
to b defined by min,J(a®, b) must then yield a minimum cost for some b = °. The
optimal solution yielding the minimum cost is thus (a?,5°), and this gives the best
separable F'I R approximation to the desired response in the weighted least mean
squares sense.



Appendix C

Theorem : Suppose that W(D) is real and half-plane symmetric, if (a,b) is an
optimal solution to the cost function defined in eq. 4.1, then (a® b%) is also an
optimal solution.

Proof :

Suppose the ideal response D is half-plane symmetric. Choose W such that W is
also half - plane symmetric and real. Then,

W(D) s real and half — plane symmetric (C.1)

Suppose (a, b) are one set of optimal solutions for the approximation problem defined
in eq. 4.1. Then, (a,b) must satisfy eqs. 3.39 and 3.40. From eqs. 3.36, 3.37, 3.38,
3.39, and 3.40,

q
Gb* =D b RybLya = X(b)a (C.2)
k=1
q
GTa® = Z al Lya®Ryb = Y (a)b, (C.3)
k=1

Taking conjugates of eqs. C.2 and C.3, we get,

g
G°b=> b R;bLja° (CA4)
k=1
g
G*a = Z a"LyaRb°, (C.5)
k=1

Let a = a®, 8 = b°. Then, eqs. C.4 and C.5 can be written as :

Gepe =Y TR B Lia = X(B)a (C.6)
k=1
G*a’ = ij ol Lia’Ri 3 = Y ()8, (C.7)

The following steps show that L; = £L,, R = + Ry, and G is always real under
the assumptions of this theorem. From eqs. 3.31, Ly = Q7L,, 0, Ri = QQTka Q5.
Consider any element of Ly, say Li(l1,12).

M] 1
(1, 1) = Z SN (k)T

(ke

g (C.8)
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M;—-1 (2k41)

(1, 1) = Z & T L (k) (C.9)

From eq. 3.34
L;(lh 12) = L{(Zh 12) = Lk(l27 Zl)

Hence,

=gk k) (C.10)

ll,lg = Z 6]7T

Let ¥ = —(k+ 1). Applying a change of variables, the above becomes,

—M, ’
c g E2E 24D (1,1 / /
()= S & o Loy (—k' —1,—k — 1) (C.11)
k'=M; 1
M;—-1
1 gzk )
L) = Y e T gy ) (C.12)
k!'=—M;

Since W is chosen to be real and half-plane symmetric, the matrices U,, and V,,
resulting from the SV D of W are columnwise mirror image symmetric or antisym-
metric. Therefore,

Ly (=K —1,—k' —1)=+L,, (K k)
Eq. C.12 then reduces to

<2k+>
Li(h, 1) = + Z (h=t2)

k'=—M.

ka(k/,k/) = :i:Lk(ll,ZQ) (013)

by which one can conclude that L{ = £L;. By a similar reasoning, Rj = £R;.
Therefore, eqs. C.6 and C.7 are equivalent to

G°p° = Zq: BYRLB° Lo = X(B)a (C.14)

k=1

g
Ga® = ol LyaRiB =Y (a)B, (C.15)
k=1
Now, from eq. 3.36, G = Qi3> 1_, Ly, DR, Q5. Consider any element of G, say
G(h, ).

Myt Ml ekgy, RCIUEE0
G(ll,lg) = Z Z 2My W D)(kl,k‘g) 2Mp (016)

ky=—My ky=—M,




7

My;—1  M;—-1 (2k1+1)l +(2k2+ )l

= Y ¥ o (W o D)(ky, ky) (C.17)

ky=—My ky=—M,

Now consider the corresponding element of G°.

Mp—1  Mi—1 CIEE)) (2ky +1)

Go(ly, ) = > Y eI (W e D) (ky, ky)e T oM (C.18)

ky=—My ky=—M,

My—1 M;—-1

= 2. D e

ky=—My ky=—M,

(2k1 +1)l +(2k2+1)l )

(W o D)*(ky, k) (C.19)

Let k] = —(k1 + 1), k) = —(k2+1). Applying a change of variables, one gets,

—M> —M; _ w((_2ki_2+1)l +(—2ké—2+1)l )
Go(h, 1) = Z Z e’ aMy 2 (Woe D) (—ky — 1, —ky — 1)

ké:Mg—l k{ =M;-1

(C.QO)
lz)(W o D)C(—ki —1, _k; — 1) (C.Ql)

My—-1  M;-1 (2K} +1) (2k +1)

= > > smmh

ké:—Mg ki:—Ml

Since W(D) is real and half - plane symmetric from eq. C.1,
(WeD)Y(—ki —1,—ky—1)= (W e D)(kj, k)
Hence,
Mz—1 M1 <2k +1), | (2K5+1)

GC(zl,zg): Z N T SR (W e D) (K, k) (C.22)

=—M; k| =—M,

From eqs. C.17 and C.22,
G(Zl, 12) = Gc(h, 12)

Therefore, GG is real.
Eqgs. C.14 and C.15 can then be written as :

Gp° = zq: BYRyB° Ly = X (B)a (C.23)

k=1

g
GTaf = > oLy’ RiB =Y (a)B, (C.24)
k=1
The above represent the necessary and sufficient conditions for optimality, obtained
using the vectors («, ) i.e. (a® b°). Hence, if (@, b) are solutions to the optimization
problem, (a®, b°) are also solutions to the problem.
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The above result has an interesting and significant application to the separable de-
sign algorithm, which is stated in the following corollary.

Corollary : Under the assumptions of the above theorem, if W e D = USV* is
the SVD of W e D, the structure of the U, S, V matrices can be used to obtain real
coefficients in the design process.

Let W e D =USV* be the SVD of W e D. Then,
WeD=U(1:m)S(1:m,1:m)V*(:,1:m), m =rank(S)

Now,
m

(W o D)(ki, k2) = ZU (k1, 0)S (2, 1)V (2, k),

m

(W e D)(—ky —1,—ky — 1) = ZU —ky — 1,8)S(2,0)V*(i, —ky — 1),

and they are equal as proved in the theorem above.

For filters with frequency responses such that the U and V matrices are columnwise
mirror image symmetric or antisymmetric, U(ky,¢) = U (=ky — 1,1), V*(i,k2) =
+V*(i,—k2—1) for each i. The optimal solutions in these cases are real, and this
constraint can be included in the problem construction by modifying the necessary
conditions suitably using eqs. 4.2 and 4.3.

There are filters with frequency responses such that the U, S and V' matrices have
the property that U(k},:) = £U(=k;s — 1,2 + 1), V*(t,ko) = £Vt + 1, —ky —
1), S(i,¢) = StE+1,i+1) for each odd wvalued i, and m is always even,
t.e. the matrices U and V are pairwise, columnwise mirror image symmetric or
antisymmetric, with the singular values also varying in pairs. In these cases, the
optimal solutions always exist as sums of conjugate pairs (a + a°,b 4 b°). This
implies that if (a,b) is an optimal solution, then (a®, b°) is also an optimal solution
by the theorem proved above, and in addition, in such cases, (R(a), R(b)) is also
an optimal solution, thus ensuring that the optimal coefficients are real. It is to be
noted that the above conditions hold for frequency responses where the frequency

sample points are taken as w;, = %k:), ki=—-M;, ....M;; 1=1,2.



Appendix D

The following is a listing, together with a description, of the programs used in the
design of separable filters using the successive approzimation algorithm developed
in the preceding chapters.

(i) symm.m

This is a MATLAB program to design a 2— D separable, F'I R digital filter which has
an ideal frequency response that is either quadrantally symmetric or antisymmetric.
The program computes the optimal filter coefficients by the method of recursion,
with a randomly chosen starting point. Only the first quadrant of the ideal response
is needed for the design, and the coefficient vectors are constrained suitably, to ac-
count for the symmetry in the ideal response.

Parameters :

D is the matrix representing the first quadrant of the ideal frequency response,
of size my X may.

a, b are the optimal coefficient vectors, of sizes (n; + 1) x 1, and (ng + 1) x 1,
respectively, ny, ny being the filter orders in the w;, wy directions.

W is the matrix representing the weighting function in the first quadrant, of size
my X mg, and having the symmetry of D.

4, and Q are the discrete frequency matrices, of sizes mq x (n1+1) and my x (ny+1)
respectively. They are obtained from the function omega.m, and are suitably mod-
ified by multiplication with the matrices 57, S, defined in eq. 4.5.

apr is the matrix representing a separable approximation to D, of size my X mq. It
is initially set to zero.

fil is the matrix representing the designed separable filter frequency response, of
size my X mq. It is also initially set to zero, and is obtained as the summation of
each separable term, given here by apr.

coef f is the matrix representing the summation of the optimal filter coefficients

of each separable term given by ab’, and is of size maz(n; + 1) x maz(ny + 1). It
is initially set to zero.
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Ly, Ry, are matrices of sizes (ny +1) x (ny +1), and (ng+1) X (ng+ 1) respectively.

G, X, Y, are matrices of sizes (n141)x(ng+1), (n1+1)x(n1+1), (na+1)x(n2+1),

respectively.
count represents the number of separable terms used in the design.

iter is the vector containing the number of iterations required for convergence to
the optimal solution, for each separable term.

Algorithm :

1) Find the SV D of W, and truncate based on the Frobenius norm, as explained in
Chapter 2, using the function reduc.m.

2) Set count to 1.

3) Determine the Ly, and Rj matrices, using eq. 3.31.

4)Set D = D —apr

5) Determine GG from eq. 3.36, and extract the real part.

6) Set iter(count) = 0.

7) Start the loop for recursion, with a, b set to random real numbers. ag, by are
used as dummy variables in the recursive process. A flag done is used to indicate

convergence. Increment iter(count) for each iteration.

8) Determine X using eq. 3.37, and extract the real part. Determine ag using
eq. 3.39. If abs(max(ag — a)) < 0.00001, solution is assumed to have converged.

9) Set a = aq.

10) Determine Y using eq. 3.38, and extract the real part. Determine by using
eq. 3.40. If abs(max(by — b)) < 0.00001, solution is assumed to have converged.

11) Set b = by.
12) Repeat 8-11 until both a and b converge, when flag done is set to 1.

13) Determine apr = Q,ab Q1.
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14) Determine coef f = coef f + ab?, with suitable padding of the vectors a, b.
15) Determine fil = fil 4+ apr
16) Set count to 2, and repeat 3-15 to obtain the 2-term approximation.

17) Add terms, proceeding in a similar fashion, until the maximum ripple of the
designed filter is within acceptable bounds.

18) Determine the SV D of coef f.

19) Truncate coef f using as many singular values as necessary to obtain the same
maximum ripple as obtained before.

20) Determine the final filter coefficients from the truncated coef f, and also the
final designed filter using these coefficients.

ii) conj.m

This is a MATLAB program to design a 2 — D separable, F'I R digital filter which
has an ideal frequency response that is half plane symmetric, and has properties
such that the optimal solutions can be considered as sums of conjugate pairs. The
parameters are the same as in symm.m, except for the following :

Parameters :
D is the matrix representing the complete ideal frequency response, of size my x mo

a, b are the optimal coefficient vectors, of sizes (2ny + 1) x 1, and (2ny + 1) x 1,
respectively, ny, ny being the filter orders in the wy, wy directions.

W is the matrix representing the weighting function in all four quadrants, of size
my X mg, and having the symmetry of D.

Oy, and Qy are the discrete frequency matrices, of sizes my x (2ny + 1) and my x
(2ny + 1) respectively. They are obtained from the function omega.m.

coef f is the matrix representing the summation of the optimal filter coefficients
of each separable term given by ab?, and is of size maz(2n; + 1) x maz(2ny + 1).
It is initially set to zero.
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Ly, Ry, are matrices of sizes (2n; + 1) X (2ny + 1), and (2ny + 1) x (2ng + 1)
respectively.

G, X, Y, are matrices of sizes (2n1 + 1) x (2ny + 1), (2ny + 1) x (2ny + 1),
(2ny + 1) x (2ny + 1), respectively.

Algorithm :

1) Perform 1-6 as in the symm.m.

2) Perform 7 as before, except that a, b are set to random complex numbers.
3) Perform 8-12 as before, except that X and Y are not constrained to be real.
4) Determine apr = Qq(a + a®)(b + bC)TQQT.

5) Determine coeff = coeff + (a + a)(b + %), with suitable padding of the

vectors a, b.
6) Determine fil = fil + apr

7) Proceed as before to obtain the designed filter, satisfying a given specification.

iii) real.m

This is a MATLAB program to design a 2 — D separable, F'IR digital filter which
has an ideal frequency response such that the optimal coefficients are always con-
strained to be real. The quadrantally symmetric or antisymmetric responses are
special examples of this case. Hence, this program is almost entirely similar to
symm.m, except that two or all four quadrants of the ideal response need to be
used for the design, and the discrete frequency matrices are not modified. Also, the
coefficient vectors have no symmetry constraints on them.

iv) map.m

This is a MATLAB program to obtain the map of the performance variation with
number of coefficients. Here, the number of independent coefficients is fixed at some
value. For this value, the number of separable terms is fixed at several values, and
the separable filter orders are determined for each of these values. The programs
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(i,ii, or iii) are then run for each set of values to determine the optimal separable
filter, from which the cost function can be calculated. The reduction using the SV D
on the coeff matrix is not performed. This entire process is repeated for a new
fixed value of coefficients. The performance map is thus obtained.
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ABSTRACT

This thesis presents the results of a research which develops a technique to design
2 — D filters by approximating an ideal frequency response with sums of separable
FIR components. The technique is independent of the nature of the ideal response,
and can accommodate the inclusion of a weighting function. This approach gives the
designer flexibility in selecting the 1 — D filter orders and the number of separable
filters to be used for best results. The problem is solved for the weighted least
mean squares case, and a rigorous mathematical analysis is used to formulate the
separable design algorithm. This work includes a brief analysis of the computational
complexity of the formulated technique, and simulation results demonstrating the
effectiveness of the design algorithm. It also offers suggestions for further research

in this area.



