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ABSTRACT

The notions of time, frequency, and scale are generalized using
concepts from unitary operator theory and applied to time-
frequency analysis, in particular the wavelet and short-time
Fourier transform orthonormal bases and Cohen’s class of bi-
linear time-frequency distributions. The result is an infinite
number of new signal analysis and processing tools that are
implemented simply by prewarping the signal by a unitary
transformation, performing standard processing techniques
on the warped signal, and then (in some cases) unwarping
the resulting output. These unitarily equivalent, warped sig-
nal representations are useful for representing signals that
are well modeled by neither the constant-bandwidth analysis
of time-frequency techniques nor the proportional-bandwidth
analysis of time-scale techniques.

1. INTRODUCTION

The concepts of time and frequency are the cornerstones of
signal analysis and processing, for they are the basis for fun-
damental tools such as the Fourier transform and the linear
time-invariant (LTT) system. Joint representations of both
time and frequency have also been developed to indicate how
the frequency content of a signal changes over time. Ex-
amples of time-frequency representations include the linear
short-time Fourier transform (STFT), which can be regarded
as a constant-bandwidth filterbank of LTI systems, and its
generalization, Cohen’s class of bilinear time-frequency distri-
butions [1]. While these joint time-frequency representations
are necessarily redundant, discretization of the STFT on a
lattice of points in time-frequency can result in orthonormal
basis systems whose elements are concentrated in both time
and frequency [2].

While it is unlikely that time and frequency will be sup-
planted as the two key notions for signal processing, other
concepts have also been investigated and found useful. Most
notable at present are the scale-based analysis of the Mellin
transform and the time-scale analysis of the wavelet trans-
form (WT), which can be interpreted as a proportional-
bandwidth (constant-Q) LTI filterbank. The WT in particu-
lar has garnered tremendous interest, mainly because it can
be discretized to form time-frequency-concentrated orthonor-
mal bases with very attractive properties [3]. The theory of
bilinear time-frequency distributions has been also been gen-
eralized from time-frequency to time-scale [4], [5].

Both the time-frequency and the time-scale tools have
proved useful for analyzing certain classes of signals. For
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signals with a constant-bandwidth structure, the STFT and
other time-frequency tools are best suited, while for signals
with a proportional-bandwidth structure, the WT and time-
scale tools are best suited. However, there exist large classes
of signals (frequency modulated and dispersed signals are
two examples) for which neither a constant-bandwidth nor
a proportional-bandwidth analysis is appropriate. The goal
of this paper is to derive new classes of signal representations
and analysis systems that generalize the concepts of time, fre-
quency, and scale. These systems are well suited to analyze
some of the types of signals for which current techniques are
deficient.
2. UNITARY OPERATORS

Before we can generalize the concepts of time, frequency, and
scale, we must define what we mean by time, frequency,
and scale. The approach we will utilize in this paper is
to associate these concepts with operators' on the Hilbert
space of square-integrable functions L?. This space has
inner product (g,h) = fg(r) R*(r)dr for g,h € L? and
norm |[h|* = (h,h). An operator A on L? is simply a
mapping A : L? — L?. For signals in L?, we define the
time, frequency, and scale operators simply as a time shift,
(T: 9)(1) = g(r — t), frequency shift, (F; g)(r) = 2™ 7g(r),
and dilation, (Dag)(r) = |d|_1/2g(r/d), respectively.

We will utilize unitary operators extensively in this paper.
A unitary operator U is a linear, surjective transformation
that preserves distances; that is, |Ug| = |g|- It is easily
verified that the time, frequency, and scaling operators de-
fined above are unitary on L?. Unitary operators have many
important properties; we will introduce them (without proof
— see [6] for more information) as they are required in the
development.

The first important property is that a unitary operator
preserves inner products; that is, (g, Uh) = (g, h). This
in turn results in another useful property: a unitary operator
maps orthonormal bases to orthonormal bases.? That is, if
the set of vectors {by} is an orthonormal basis for L?, then
the set {Uby} is also an orthonormal basis for L2.

The most general formula for representing the unitary op-
erators on L? uses the following linear superposition:

(Us)(r) = /KZ/{(T,U) s(v) dv,

with the requirement that the “rows” and “columns”
of the integration kernel Ky(7,v) must both form com-

(1)

1Cohen has also associated these concepts with operators [4],
but with a slightly different goal in mind.

2An orthonormal basis in a Hilbert space is a complete, or-
thonormal set of vectors.



plete orthonormal sets for L?; that is, we must have
sz/{(Tl,'u) Kjy(m2,v)dv = 6(r2 — 71) and sz/{(T, v1)
Kf,(r, ’Ug)dT = 6('1)2 — 'U1), where 6 1s the Dirac delta func-
tion. For example, the kernel Ky (r, v) = e/*™7 yields the
Fourier transform operator F, whose unitarity results from
Parseval’s formula. A large and interesting subclass of uni-
tary transformations on L? is the subclass of axis warpings
that can be written as

Us)(r) = |w'(m)"? s[w(r)], (2)
where w is a smooth, monotonic function. Examples of simple
vet useful warping functions include w(r) =log 7, w(r) = €’,
and w(r) = sign(7) |7|*, k # 0.

Because a unitary operator maps L? back onto itself in a
way that preserves exactly its structure — it does not change
the distances or angles between vectors — unitary transfor-
mations can be interpreted as simply “relabeling operators”
that take every function s € L? and give it a new name Us.
This relabeling is equivalent to changing the frame of refer-
ence or changing bases. (For example, recall that the unitary
operators on ordinary Euclidean space IR™ are simply rota-
tions around some axis.) Applying the same reasoning to the
linear transformations on L? leads to the following definition
of operators that are equivalent modulo a change of basis.

Definition 1 Two  operators A and B are
unitarily equivalent if we can write B = UAYV, where U
and Y are unitary transformations.

By analogy to (2), if A and B are unitarily equivalent, then
we will say that B is a warped version of .A. Note that by
considering the operator #. AV for all possible unitary trans-
formations U and V, we can construct equivalence classes of
operators that are unitarily equivalent. In this paper, we
will set V equal to ™" or to the identity operator (both of
which are unitary) for constructing these equivalence classes.
We will find this concept very useful for generalizing the con-
cepts of time, frequency, and scale in linear systems, mapping
them to new concepts that can better match a class of signals
to be analyzed.

3. WARPED WAVELET BASES

As a first example of the utility of unitary equivalence, we
now generalize the time-frequency-concentrated orthonormal
bases that arise from the discretization of the STFT and
WT.? Given a doubly indexed orthonormal basis {by, ,} for

L?, we can decompose any signal s € L? as follows:

> (5,bmn) b

m,n€Z

(3)

s =

The elements of an STFT basis are obtained by translating
and modulating a nonarbitrary but fixed window function

gstft [2] s
BI(T) = (FasoToney g (7)

J2mnfor

(4)
The basis elements can be interpreted as “tiling” the time-
frequency plane in a constant-bandwidth fashion; the tiling
for an idealized STFT basis is depicted in Fig. 1. The ele-
ments of a WT basis are obtained by translating and scaling
a nonarbitrary but fixed wavelet function gw: [3]

bzt,n(T) = (Tmtgdg Ddg gwt) (T)

®Note that these techniques can be applied to bases other than
those arising from the STFT and WT without modification, as well
as to frames in L? [3].

= gan(T —mito)e

= do_"/2 gwt(dg " T — mtp).

(3)
These basis elements tile the time-frequency plane in a

proportional-bandwidth fashion; the tiling for an idealized
WT basis is pictured in Fig. 2.

With the STFT and WT, we have two disparate tilings of
the time-frequency plane that are each well suited for rep-
resenting certain classes of signals. However, as discussed
above, what if the signals we wish to decompose are not
well modeled by a constant-bandwidth or a proportional-
bandwidth analysis? For example, the energy of a frequency
modulated (FM) signal will be spread over many basis coef-
ficients in both types of expansions, since it traces a path in
the time-frequency plane which is not well modeled by either
of the basis tilings shown in Figs. 1 and 2.

While the STFT or WT bases may not be the most appro-
priate for representing certain classes of signals, there may
exist unitarily equivalent bases that are appropriate. Fur-
thermore, these bases are simple to generate. Consider the
effect of operating on each of the elements of the STFT and
WT bases with a unitary transformation . Since U is uni-
tary, both {Ub;ﬁ{t,l} and {UDb} .} are also valid orthonormal
bases for L?; we will refer to them as warped bases.* How-
ever, while the index parameters m and n represent time and
frequency in the STFT bases and time and scale in the WT
bases, they are mapped to new concepts in the warped bases.
To see this, we can write for the STFT basis

U (Tnfo Tmto gstft)
(UFngod™) (UTmeed ™) Ugasse)
and for the WT basis
Ubyl, = U(Tnrgar Dar gu)
= (UTneeand™") (UDanlU™") (Ugwt). (7)

stft
Uuby, , =

(6)

Thus, the effect of U is to warp the original time, frequency,
and scale operators to three new unitarily equivalent opera-
tors, and to map the original window gstfy and wavelet gwe
to two new functions. The key to this procedure is clearly to
choose U so that the warped basis better matches the char-
acteristics of the signals at hand.

As an example, consider the unitary transformation
U = F_lAkF, where Ap is an axis warping de-
fined as in (2) with w(r) = sign(r) |7]*, k #
0 [7]. Operating on an arbitrary WT basis (5) with

U results in a new basis with elements UDb}, . (r) =
. _1 _ ~ —n/2k

(—7kmto)™2 |d, n/k g(d, n/k T)*e_J(ao

g = Ugws and * denotes convolution. Time and scale in the

original basis are mapped to chirp rate m and scale n, re-

spectively. The idealized tiling in the time-frequency plane

for this basis, shown in Fig. 3 for the case k = 2, is quite

different from the STFT and W'T tilings of Figs. 1 and 2.

Note from (6) and (7) that since & works on both the time
and frequency or time and scale operators simultaneously,
there exists a tradeoff in its choice: any changes that we make
to one operator are also imparted in the other. Thus, special
choices of unitary maps can prove useful. For example, the
|T|k warp employed above is interesting for W'T' bases, be-
cause it essentially commutes with the scale operator. In the
next section, we will study in more detail the physical signif-

k
)% [4mtg
) , where

4Note that the problem as posed for time-frequency and time-
scale is equivalent to characterizing all unitarily equivalent repre-
sentations of the Weyl-Heisenberg and affine groups.



icance of the warped time, frequency, and scale operators.

One possible problem with the warped bases of (6) and (7)
is that the coefficients of the warped expansions may be cum-
bersome to compute. However, the unitarity of U/ allows us to
compute the warped coefficients by first unitarily prewarping
the signal and then computing the usual coefficients. That is,
the coefficients of a warped STFT basis expansion are given

by
(s, bid*) = U™'s, UTbIE)
= (U7 B, (8)

with a similar calculation for the WT bases. While indicat-
ing that warped basis expansions can be implemented just
as efficiently (modulo the unitary preprocessing) as the orig-
inal basis expansions, this computation also emphasizes that
warping a basis set to match a signal is equivalent to pre-
warping the signal to match an existing basis.

4. WARPED GEOMETRIES FOR SIGNAL
PROCESSING

The scope of the previous development is not limited to warp-
ing only STFT and W'T bases. In this section, we replace
the basis coefficient calculation (8) with an arbitrary LTI
system® and investigate the properties of unitarily equiva-
lent LTI systems. An LTI system P is a linear operator on
L? that transforms signals through convolution with a one-
dimensional function. Given an LTI system P, we will con-
sider the equivalence class of systems given by PU ™!, where
U is an arbitary unitary operator on L>. Note that this is
equivalent to preprocessing the input signal by U~ before
feeding it into the system P — in effect changing bases or
frames of reference.” By picking the transformation U in-
telligently, it will be possible to analyze and process certain
classes of signals more efficiently than with traditional LTI
techniques alone.

4.1.

Eigenanalysis is a powerful tool for studying the character-
istics of linear operators. Given a linear operator A on L2
solution of the eigenequation

(Aua) (1) = Aaua(r) ()

vields the eigenfunctions {u.(7)} and the eigenvalues {A.}
of A, both of which are indexed by the parameter a. If A is
unitary, then the eigenfunctions form a complete orthonormal
set for L?, and we can can define another unitary transform,
which we will refer to as the A-Fourier transform F4. The
forward transform is given by

S(a) = (Fas)(a) = (s(7), wa(7)),

while the inverse transform is given by

s(r) = (FA'S)(r) = (S(a), ui(r)) (11)
(in an abuse of notation, we retain the index of the functions

inside the inner product symbol to indicate the variable of
integration — 7 in (10) and a in (11)).

Eigenanalysis of Linear Systems

(10)

5Identical techniques can be applied to linear time-varying sys-
tems; however, space limitations preclude their inclusion in this
paper.

SThe application of unitary equivalence to systems is not a new
concept, and has been used to great advantage in a number of
applications, including transform coding, transform domain adap-
tive filtering, “beamspace” sensor array processing, and dynamic
time-warping of speech signals, However, this paper represents the
first application of this technique to general time-frequency and
time-scale systems.

4.2. Eigenanalysis of LTI Systems

Eigenanalysis provides a natural justification that the time
and frequency operators defined in Section 2 are the funda-
mental operators for LTI systems. The time operator is ob-
viously fundamental, since, by definition, an LTI system P
is invariant’ to time shifts; that is (PTis)(t) = (T:Ps)(r) =
(Ps)(r — t). Furthermore, since P and 7; commute, they
share a common set of eigenfunctions, which are easily shown
to be the complex exponentials uf(7) = e??™f T _ precisely
the weighting functions in the frequency-shift operator Fy.

Thus, the concept of time can be defined abstractly as the
parameter of the time-shift operator 7:, and the concept of
frequency can be defined abstractly as the index parameter of
the eigenfunctions of 7; (and therefore also as the parameter
of the 7;-Fourier transform, which in this case is the usual
Fourier transform.)

4.3. Eigenanalysis of Warped LTI Systems

What happens to the fundamental concepts of time and
frequency after we place a unitary prewarping at the in-
put of an LTI system? This problem can be solved us-
ing the same procedure as above. A simple calculation
shows that since P is invariant to 7;, the prewarped sys-
tem PUT! is invariant to the operator U7 U~'; that is,
[(Pu_l)(UZ/U_l)s] (r) = (PUT's)(r —t'). Therefore,
the time operator and the concept of time are warped to
the operator YT, U~" and its parameter t'. Moreover, the
eigenfunctions of U7TuU ™", which correspond to the warped
frequency operator and warped concept of frequency, are
given by (Uuys/)(r), where uys(r) = 927’7 Note that the
warped time and warped frequency domains are related by the
UT.U~ -Fourier transform, which for ¥ from the axis warp
subclass is essentially the FAM transform [8]. (See also [9]
for another approach to generalized Fourier transforms.)

Thus, given an LTI system P, for each choice of unitary op-
erator U, we generate a new linear system PU ! with general-
ized notions of time and frequency. Furthermore, by the “rela-
beling property” of U, all familiar LTI properties — support,
bandwidth, and group delay are examples — are remapped to
new properties that change with . The key issue is therefore
to choose U so that these quantities correspond to something
meaningful for the signal class of interest.

As a first example, consider the axis warping unitary trans-
formation U; defined as in (2) with w(7) = log 7. For single-
sided signals (s(7) = 0, 7 < 0), this transformation maps
the time operator 7; to the scale operator D.:, and thus
transforms an LTI system to a linear scale-invariant sys-
tem [4]. The eigenfunctions of such a system are the “hyper-
bolic chirp” functions h.(7) = r1/2327el08 T Ghose parame-

ter ¢ corresponds to warped frequency. The U ’Ttul_l—Fourier
transform in this case is the Mellin transform.

As a second example, consider the axis warping unitary
transformation i> defined as in (2) with w(r) = 72. For one-
sided signals, this transformation maps the time operator 7;

to the operator (7 g)(7) = 2_1/2(7'2 — t')_l/4 g (m>, a
kind of time-shift/warping combination, to which the system
PU2_1 is invariant. The eigenfunctions of ﬁ/, computed as
(Usugr)(7), where up(7) = eﬂ’rflT, are the linear-FM chirp

functions (27')1/2 27 The U, ZU{l—Fourier transform in
this case represents signals in terms of these chirp functions.

7 Covariant is actually a more accurate term for this property.



4.4.

A very useful application of unitary prewarping is the con-
struction of unitary equivalence classes of time-frequency dis-
tributions (TFDs). We will outline the procedure for Cohen’s
class of bilinear TFDs [1], which can be considered as a gen-
eralization of single-input, multiple-output LTI systems. For
full details, see [10].

Let (Cs)(r,v) denote a bilinear mapping from signals s €
L? to the time-frequency plane, with 7 and v representing
time and frequency, respectively. Cohen’s class is defined as
the set of all such functionals that are invariant to both the
time and frequency shift operators [1]; that is, for each TFD
in Cohen’s class we have (CF;T;s)(r,v) = (Cs)(t — t,v — f).
In addition to being invariant to the time and frequency oper-
ators, these TFDs are also fized for the eigenfunctions of these
operators. That is, for the time operator, the eigenfunctions
are sinusoids us(r) = ¢/*™/7  and we have (CTiuy)(r,v) =
(Cug)(r,v). For the frequency operator, the eigenfunctions
are easily shown to be impulses ui(7) = (7 — t), and we
have (CFsu:)(r,v) = (Cus)(7,v). Some TFDs from Cohen’s
class have the marginal properties f(CS)(T, vydv = |s(r)|?
and f(Cs)(T, v)dr = |(Fs)(v)|?, and all can be computed via
a 2-d Fourier transform of a symmetrized form of the ambi-

guity function (AF) of the signal A(a, B) = (s, FaTss).

The application of a unitary prewarping to Cohen’s class
remaps all of these properties, but in predictable and poten-
tially useful ways. We will call the unitarily equivalence class
of bilinear distributions generated by CU{~' the U-Cohen’s
class. It is easily shown that distributions in a {{-Cohen’s class
have the following properties [10]: 1) they are invariant to the
operators UT,U ™ and UFsU ™", and therefore the U-Cohen’s
class consists of distributions not of time and frequency, but
of warped time and warped frequency; 2) the signals for
which they are fixed are precisely the eigenfunctions Y uy and
Uu; of the warped time and frequency operators; 3) their
marginals are remapped to f(CL{_ls)(T, v)dv = [Uts(T)]?
and f(CU_ls)(T, v)dr = |(Fus)(1/)|2; 4) they can be com-
puted as the 2-d Fourier transform of a symmetrized form of
the U-AF of the signal Ay(w, B) = (s, UF U YUTU")s).
As with the warped STFT bases of (6), U warps both time
and frequency in the same fashion, so care has to be taken to
balance the effect of & on both variables.

Continuing the examples of the previous section, we see
that the Uz-Cohen’s class corresponds to joint bilinear distri-
butions of “time” and linear chirp rate. On the other hand,
the unitary operator FU1F~! maps the frequency operator
to the scale operator and the time operator to a “hyperbolic
time shift.” Thus, the FUsF~'-Cohen’s class corresponds
(within a simple variable transformation) to the proportional-
bandwidth analysis hyperbolic class introduced recently in [5]
and independently in [4].

Warped Time-Frequency Systems

5. CONCLUSIONS

Using unitary operators, we have developed an infinite num-
ber of new signal analysis and processing tools that go beyond
the confines of a strict time-frequency or time-scale analy-
sis. These new tools are very easily implemented simply by
prewarping the signal by a unitary transformation, perform-
ing standard processing techniques on the warped signal, and
then (in some cases) unwarping the resulting output. Note
that while we emphasized the time-frequency analysis of Co-
hen’s class in the last section, we can also warp time-scale
(as we did for the WT orthonormal bases) and other sys-
tems. The only limitation to this procedure is that the effect
of the unitary operator is distributed equally on all analysis
variables of the original system (see (6), for example). Thus,
while a warping may result in desirable properties for the
warped system (scale invariance, for example), it may also
result in a loss of some of the desirable properties of the orig-
inal system (time-shift invariance, for example). In spite of
this possible limitation, there do exist warped systems that
are useful; the hyperbolic class mentioned above is one ex-
ample. In the future, we can imagine the choice of a warping
operator being made automatically to best fit a certain style
of analysis to a given set of data.
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