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ABSTRACT

Unitary similarity transformations furnish a simple yet
powerful vehicle for generating new classes of joint distribu-
tions based on concepts different from time, frequency, and
scale. These new signal representations focus on the critical
characteristics of large classes of signals and, hence, prove
useful for representing and processing signals that are not
well matched by current techniques. In particular, we con-
struct distributions to match almost any one-to-one group
delay or instantaneous frequency characteristic. Amazingly,
all distributions that have been used to illustrate more com-
plicated generalized distribution design techniques can be
generated using the unitary transformation method.

1. INTRODUCTION

Recent advances in nonstationary signal analysis can be at-
tributed primarily to the development of two sets of anal-
ysis tools: Cohen’s class of joint time-frequency distribu-
tions (TFDs), which contains the short-time Fourier trans-
form and the Wigner distribution [1], and the affine class
of joint time-scale distributions (TSDs), which contains the
continuous wavelet transform [2]. While these representa-
tions are natural for signals containing pulse, sinusoidal, lin-
ear chirping, or self-similar components, there exist many
other signal classes that are not well described in terms of
the time, frequency, or scale variables. For instance, many
applications (radar, sonar, geophysics, optical communica-
tions, among others) involve dispersed pulses 6(m(z)—t) or
chirping tones ¢/>™7*) to which neither TFDs nor TSDs
are matched. Matching these types of signals requires new
joint distributions with different instantaneous frequency
and group delay localization properties. Historically, new
distributions have been developed in a piecemeal fashion,
with new ones being created for each new signal class of
interest [3, 4, 5].

In this paper, we introduce an alternative methodology
that generalizes TFDs and TSDs to infinite classes of new
joint representations, each of which is perfectly matched to
a specific class of signals [6, 7]. The key to our approach
lies in a special family of “basis changing” operators —
the unitary transformations — which convert traditional
systems into new systems with different properties. Figure
1 illustrates the general scheme: an arbitrary conventional
signal processing tool P (TFD or TSD in this paper) is
cradled between two unitary transformations U and V to
form the unitarily equivalent tool VPU.
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The transformations U and V change the fundamental
coordinate system of P, mapping familiar concepts such as
time, frequency, and scale to new concepts more natural
for analyzing certain types of signals. The effect of the
preprocessing Y on TFDs and TSDs has been documented
in [6, 7]; we review these results in the next section. The
remaining sections concentrate on the surprisingly power-
ful role that the postprocessing V can play in generalizing
TFDs and TSDs, from TFDs and TSDs matched to specific
instantaneous frequency or group delay laws (Section 3) to
distributions of almost arbitrary variables (Section 4).

2. WARPED DISTRIBUTIONS THROUGH
UNITARY EQUIVALENCE

The unitary equivalence concept was introduced to signal
processing in [6, 7]. Operator methods simplify its treat-
ment considerably. To a physical quantity denoted by
the variable ¢, we can associate two operator representa-
tions: one Hermetian, A, and one unitary, A. [1, 7, 8].
The eigenfunctions e of A form the basis for the A-

Fourier transform Fa, with (Fas)(a) def fs(z) eaA*(z) dz.
Due to its covariance to the unitary representation A,
((FAAas)(a) = (FAS)(CL . oz), where o denotes the group
operation induced by Aq; Aa, = Aajea, [9, 10]), we say
that F4 measures the “a” content of the time signal s.

Time and frequency are fundamental concepts for both
TFDs and TSDs. To the time variable t, we associate the
Hermetian and unitary operator representations (1's)(z) =
zs(z) and (7;s)(z) = s(z — t), respectively. The time
eigenfunctions ef (z) = 6(z — t) induce the time trans-
form (Frs)(t) = s(t). To the frequency variable f, we
associate the Hermetian and unitary operator representa-
tions (F's)(z) = 5=3(z) and (Fss)(z) = 2™ s(z), re-

2my
spectively. The frequency eigenfunctions ef(z) = ¢l2nfe

induce the frequency (Fourier) transform (Frs)(f) = S(f).
We will usually omit the subscript F' from the Fourier trans-
form.

Two operators A and A are said to be unitarily equivalent

if we can write A = U~ AU, with U a unitary transfor-
mation. Preprocessing a system P with a unitary trans-
form U (as in Fig. 1, omitting V) maps the variables as-
sociated with the Hermetian or unitary operators A, B, -
to the variables associated with the unitarily equivalent op-
erators A = U AU, B = UT'BU,--- [6, 7. Remapped
signal transforms measure these new quantities; the trans-
form FZ = FaU is obtained by projecting the signal onto

the unitarily equivalent eigenfunctions e = U ~'eZ. Each
choice of U generates a system PU matched to a radically



different set of physical quantities.

The time domain axis warping operators,

Us)(z) = li(e)["”* s[w(z)] (1)

with w a smooth one-to-one function, form a large and in-
dispensable subclass of unitary transformations. Composi-
tion with the Fourier transform yields the frequency domain
. . -1 - .
axis warping F7"UF. The great utility of warping opera-
tors prompts the following abuse of terminology: even if U is
not of the form (1), we will refer to the unitarily equivalent
preprocessed system PU as a “warped system” and refer to

the operators A, B, - - as “warped versions” of A, B, ---

In this paper, we will concentrate on the covariance,
marginal, and localization properties of warped TFDs and
TSDs; for a detailed discussion of other properties, see [6, 7].
Denoting a TFD from Cohen’s class using the operator no-
tation (Cs)(r,v), we define a U—Cohen’s class as the set
of prewarped distributions (CUs)(r,v). Covariance to the
time and frequency shift operators 7 and F and marginals
of time Fr and frequency Fr make the TFDs of Cohen’s
class ideal for studying signals whose components resem-
ble the time and frequency eigenfunctions (pulses and sinu-
soids) [1]. Likewise, simple substitution demonstrates the

covariance to 7 and F
(CU fmﬁ s)(T, 1/) = (CU s)(T —-n, Vv — m)
and marginals of warped time and warped frequency

JCUs)(r,v)ydv = |WUs)(r)* = [(Fzs)(r)]*

(2)

Jeus)(r,vydr = [(FUs)(w)]* = |(Fzs)(v)]®
that make &/—Cohen’s class distributions ideal for studying
signals whose components resemble the warped time and
frequency eigenfunctions.

The freedom of choice of prewarping transformation U
unleashes an endless variety of #—Cohen’s classes, each of
which perfectly matches a particular signal class. For exam-
ple, time domain axis warping transformations of the form
(1) convert Cohen’s class TFDs to distributions matched
simultaneously to the dispersed pulse §(m(z) — ¢) |m(:c)|1/2
and the chirping tone ¢?*™™®) |yn(z)[*/2, with m = w™?.
These elementary signal components are concentrated along
a constant group delay and along the chirping instantaneous
frequency m(z), respectively, and are therefore best rep-
resented in terms of neither time-frequency nor time-scale
coordinates.

The prehyperbolic class of [3] provides a concrete example

of a frequency domain axis warping. The transformation
def ef

Uoy = F~'U4F, with (Us s)(z) def /2 s(e”), maps the
frequency and time coordinates of Cohen’s class to Uog—
Cohen’s class coordinates of scale and “hyperbolic time
shift” [3], a dispersive time shift that translates high fre-
quency signal components less than low frequency signal
components. The covariance and marginal properties of
Uiog—Cohen’s class distributions match signals resembling
the analytic eigenfunctions

(Uslen)(z) = Fgl, Joel>mhlese
: (3)
(UlZglef)(z) = /2 girmeta

The terms hyperbolic time shift and hyperbolic class stem

from the localization of the L{lggl el along hyperbolas in the

time-frequency plane. Figures 2 and 3 illustrate the Wigner
TFD and the Uiog—Wigner (Altes-Marinovich “Q” [3]) dis-
tribution of the sum of two such hyperbolic chirps. The
dramatic increase in clarity from Fig. 2 to Fig. 3 is indica-
tive of the improvement obtainable by matching the anal-
ysis coordinate system to the data. For more U—Cohen’s
class examples, including distributions of “power time” and
“chirp rate,” see [6, 7].

The TSDs of the affine class offer an alternative anal-
ysis to that of Cohen’s class [2]. TSDs are covariant
to time shifts 7 and scale changes D and are based on
marginals of time Fr and inverse frequency (Fy, r s)(r) =
(Fs)(fo/r) [8]. Just as above, we can define a U-affine
class [6, T] containing distributions of the form (GUs)(r,r),
where (Gs)(r,r) denotes a generic TSD. As a simple ex-

ample, consider the frequency-domain power warping in-
def

troduced in [5]: Ue = F~'UyF with Us of the form (1) and
w(z) = |z|*/°sgn(z). The U.-affine class coincides with the
power class [4] of “chirp time” and scale distributions and
contains the scale-shear metaplectic transform from [11].
The commutation of U, with the scale operator [4, 5] lends
this warped class to studying scale-invariant, power-law sig-
nals.

3. DOUBLY WARPED DISTRIBUTIONS

Up to this point, we have concentrated exclusively on uni-
tary preprocessing transformations; however, the postpro-
cessing transformation V from Fig. 1 also merits careful
consideration. Postprocessing adds considerable richness to
the already powerful f—Cohen’s and U-affine classes. We
define a VU-Cohen’s class as the set of distributions VCUs,
with Cs a Cohen’s class TFD, U4 a unitary preprocessing
signal transformation, and V: L?*(IR?) — L*(IR?) a unitary
postprocessing transformation [7]. Note that V operates
on the warped time-frequency plane. A VU -affine class is
defined similarly.

3.1 Warping back to time-frequency. While warped
TFDs show considerable promise for matching signals non-
coincident with constant or linear group delays and in-
stantaneous frequencies, certain applications demand rep-
resentations with time and frequency axes rather than
warped time and warped frequency axes. Fortunately, we
can use V to invert the action of & on the warped time-
frequency plane, warping the (7, v) axes of #—Cohen’s class
distributions to new axes (p,q) providing correct time-
frequency localization. While these VU{—Cohen’s class dis-
tributions measure time-frequency content in signals, they
remain matched to the same group delay or instantaneous
frequency characteristics as the corresponding U—Cohen’s
class.

Our procedure for inverting the effect of U is best inter-
preted graphically on the warped time-frequency plane [7].
A U—Cohen’s class distribution CUs maps the time eigen-
function eg(z) = §(z — p) localized at time p and the fre-
quency eigenfunction eqF(z) = ¢72™%% Jocalized at frequency
¢ to distributions localized on curves in the (r,v) plane.
The equations of these curves can be obtained from the -
Cohen’s class analogues of the time-frequency concepts of
group delay and instantaneous frequency. Modifying the
usual definitions of these quantities [1] to account for the
preprocessing by U, we obtain a curve for the localization
of eg (its “U—group delay”)

def 1 0

plvip) = —o- - arg(Flle,)(v) (4)



and a curve for the localization of eqF (its “U—-instantaneous
frequency”)

o(r0) - arg(Ue]) (). (5)

If V reparameterizes the axes of the (7, v) plane in terms
of these curves, then eg and eqF will be localized along
straight lines at time p and frequency ¢, and correct time-
frequency localization will result, albeit with nonuniform
resolution. The requisite reparameterization is given by

(VCUs)(p,q) = (CUs) (z(p,q),(p, 7)),

where the functions 7(p, ¢) and v(p, ¢) denote the solution
(when one exists) to the system of equations 7 = p(v, p),
v = 0(r,q) for 7 and v in terms of p and ¢q. The reverse
reparameterization is also useful and is given by

(VCL{S)( (r,v), q(r, 1/)) = (CUs)(r,v),

where the functions p(r, v) and g¢(,v) denote the solution
to 7 = p(v,p), v = (1, ¢) in terms of 7 and v."!

In effect, V changes the geometry of a Y—Cohen’s class so
that: (1) impulses and sinusoids lie concentrated along lines
parallel to the (p,q) axes, and (2) the warped eigenfunc-
tions lie concentrated along their true instantaneous fre-
quencies or group delays. Reconsidering the Uiog—Cohen’s
class example from the previous section, the formulas in
Footnote 1 below give r(p,q) = pq, v(p,q) = log g as the
required axis reparameterization. Making these substitu-
tions, as (Viog C Uiog )(p, q) = (Cliog s)(pg, log q), yields the
hyperbolic class of TFDs [3]. The hyperbolic geometry of
the warping Viog is evident in the WVioglhog—Wigner distri-
bution (Q TFD of Altes [3]) of the sum of two hyperbolic

chirp functions given in Fig. 4.

Comparison of Figs. 2 and 4 reveals the salient feature
distinguishing Cohen’s class from a VU{—Cohen’s class, both
of which measure the time-frequency content of signals: the
geometry of Cohen’s class perfectly localizes the impulses
el and sinusoids ef, while the geometry of a VU- Cohen’s

class perfectly localizes the functions ¥ ‘el and U~
Thus, for example, the hyperbohc class contains the TFDS
of ch01ce for studying in time-frequency signals localized
along either constant instantaneous frequencies or hyper-
bolic group delays.

While VU—Cohen’s class distributions remain covariant to
the warped time and frequency operators 7 and F, trans-
lation covariance is replaced by a different sort; see [7] for
the details. The distortion introduced by V also changes
the marginal properties from the straight line integrals of
(2) to the path integrals

(Us)p)* (6)
[(Fus)(g)f*. (7)

[, v -
/(VCUS)(g(p,q), a(p,q))dp =

1For preprocessing transformations U of the warp type
(1), these functions reduce to r(p,gq) = w_l(p)7 v(p,q) =
qtb(w_l(p)), p(r,v) = w(r), q(r,v) = w(T), while for fre-
quency axis warping transformations of the form F— u F, the
functions reduce to 7(p,q) = ptb(w_l (q))7 v(p,q) = w™i(q),
p(m,v) = ﬁ, g(7,v) = w(v). The unitarity of V on L*(R?) is
readily verified.

In the hyperbolic class, for example, we integrate along hy-
perbolas in (6) and parallel to the p axis in (7).

3.2 Warp synthesis. Up to now we have considered how
particular choices of 4 and V transform Cohen’s class TFDs
into distributions matched to particular group delay or in-
stantaneous frequency characteristics. We now consider the
inverse problem of warp synthesis [7], which can be stated
as: find the unitary operator U giving a VU—Cohen’s class
that perfectly localizes two types of signals — those whose
group delay lies along the curve v2(g) in the (p, ¢) plane and
those whose instantaneous frequency lies along the curve
71(p) in the (p, ¢) plane.

When a solution exists to the warp synthesis problem, it
can be found by reversing the procedure of Section 3.1. The
two paths y1 and vz specify p(v,p) and §(r, q); integration
yields functions from which the form of U can be inferred.
Clearly, a key consideration is the invertibility of the system
of equations (4), (5). The solution is straightforward when
U is constrained to be a time or frequency axis warping,
however. In the time domain case, with U of the form (1),
only the instantaneous frequency localization can be ad-
justed, the group delay localization being fixed along lines
parallel to the frequency axis. Given a desired, one-to-one
instantaneous frequency function +1(p), the corresponding
warping function w for U is given by the inverse of the in-
definite integral of 41; that is, w = 27!, z(u) :f['yl(u) du.
In the frequency domain case, for operators ot the form
F~'UF with U from (1), the calculation is identical and
vields TFDs that localize along group delays of the form
v2(q)-

This design procedure, while quite simple, works for sig-
nal sets concentrated along arbitrary one-to-one group de-
lays or instantaneous frequencies. For example, a desire
to localize signals having hyperbolic group delays would

c

prompt the selection of y2(¢) = <. Integration of v, fol-
lowed by inversion yields the warping function w(z) = e*le
and the preprocessing operator F7'U F = Uog. The prehy-
perbolic and hyperbolic classes of hyperbolic time and scale
distributions result from this processing.

The TSDs of the affine class can also be doubly warped

to generate classes of distributions based on the warped op-

erators 7 and D yet indicating true time-scale (or, more
precisely, time and inverse frequency) content. Space con-
siderations limit a complete discussion; see [7] for more de-
tails.

4. DOUBLY WARPED DISTRIBUTIONS FOR
“ALMOST ARBITRARY” VARIABLES

Unitary preprocessing can map the operator pair 7', F' fun-
damental to Cohen’s class TFDs to a wide variety of uni-

tarily equivalent operator pairs T, F generating H/—Cohen’s
classes. However, the “structure preserving” nature of uni-

tary transformations constrains the relationship between T

and F to be the same as that between T and F.?2 Thus,
once we select a U to localize on a particular group delay,
we also fix the instantaneous frequency localization of the
U—-Cohen’s class. Equivalently, specification of U locks in

both marginal properties simultaneously. For example (see
(2), (3), and (6), (7)), while the Uh,s—Cohen’s class possesses

2Using the commutator [A, B] = AB — BA as a measure of
structural similarity, we have that [T, F| = U~ [T, FlU = [T, F],
where [T, F] = ﬂLﬂ_I with 7 the identity operator.



a potentially desirable Mellin transform for one marginal,
we are forced to accept the potentially undesirable log fre-
quency transform for the other. Distributions with Mellin
and time or frequency marginals cannot be generated as a
U—Cohen’s class.

To construct distributions based on operator pairs A, B
with [A, B] # [T, F], we have been compelled in the past
to resort to more complicated general methods [8, 9]. How-
ever, with a clever choice of prewarping and postwarping
transformations we can generate joint distributions for a
very large class of variables (hence our usage of “almost ar-
bitrary” above). This new double warping procedure differs
fundamentally from that of the previous section.

Theorem: Let A, B be a Hermetian operator pair such
that A = Z71TZ and B = U7 FU, where U and Z are
unitary transformations having a composition ZU~! that
is a smooth axis warping operator of the form s(z) —
|o(z)|*/2 s[v(z)]. Then joint distributions having Fa, Fp
as marginals can be obtained from Cohen’s class TFDs as
(VCUs)(a,b), where (VCUSs)(z,y) = |o(z)|(CUs)(v(z),y).
These distributions localize signals along group delays equal
to that of Z7'e] and along instantaneous frequencies equal
to that of L{_lef.

The proof of this result follows by direct substitution in
the integrals of (VCUs)(a,b) with respect to a and b. Note
that the transformations ¥ and Z need not be axis warp-
ing operators themselves. Similar results hold for doubly
warped affine classes, the primary departure from the above
theory being different covariance properties.

Double warping can generate many new joint distribution
classes, including all the examples used in [8, 9] for illustrat-
ing more complicated general techniques. In particular, all
distributions with marginals of time and transforms of the
form (Fxs)(k) = fs(:c) e_ﬂ’rkw(m)|'u')(:c)|1/2 dx fall within
its grasp. Each different Fx (the Fourier, Mellin, and chirp
[6, 7] transforms are three examples) matches a distinct
class of instantaneous frequency characteristics.

5. CONCLUSIONS

Unitary transformations have given us an interesting new
“warped perspective” on time-frequency and time-scale
analysis. While perhaps surprising, the power of the cas-
cade in Fig. 1 should not be underestimated, because this
simple processing at once obviates piecemeal generaliza-
tions of signal analysis tools. In particular, double warp-
ing can generate distributions that localize on almost arbi-
trary group delay and instantaneous frequency character-
istics. Since unitary transformations merely change bases,
study of VU—Cohen’s and VU-affine classes is easy: each
property of Cohen’s class and the affine class simply trans-
forms in a one-to-one fashion to a corresponding property
in the warped class [6, 7].

In this paper we have considered but two methods for co-
ordinating pre- and postprocessing transformations to gen-
erate new distributions; other methods should expand the
already extensive possibilities even further. So large is the

number of new distribution classes attainable through dou-
ble warping that more general methods may not be required
for quite some time. Furthermore, any tools outside the
reach of warped Cohen’s and affine classes will immediately
seed new warped classes of distributions.
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Figure 1. The prototype unitarily equivalent system.
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Figure 2. Wigner distribution of the test signal L{lggleg
from (3).
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Figure 3. Uoz—Wigner (Q) distribution of the test signal
Uslel from (3).
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Figure 4. Vioglhog —Wigner distribution (Q TFD) of the test
signal L{lgglez from (3).



