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Abstract

Wavelet-domain Hidden Markov Models (HMMs)
provide a powerful new approach for statistical model-
g and processing of wavelet coefficients. In addition
to characterizing the statistics of individual wavelet
coefficients, HMMs capture some of the key interac-
tions between wavelet coefficients. However, as HMMs
model an increasing number of wavelet coefficient in-
teractions, HMM-based signal processing becomes in-
creasingly complicated. In this paper, we propose a
new approach to HMMs based on the notion of context.
By modeling wavelet cocfficient inter-dependencies via
contexts, we retain the approrimation capabilities of
HMMs, yet substantially reduce their complexity. To
tlustrate the power of this approach, we develop new
algorithms for signal estimation and for efficient syn-
thesis of nonGaussian, long-range-dependent network

traffic.

1 Introduction

Wavelets have emerged as an exciting new tool
for statistical signal and image processing. For
many classes of signals, wavelets provide a compact
and approximately-decorrelated signal representation,
which enables us to develop simple, yet powerful algo-
rithms for signal processing and analysis [1-3].

For statistical applications ranging from compres-
sion to estimation to detection, the key to successful
wavelet-based algorithms is an accurate joint probabil-
ity model for the wavelet coefficients of our signals of
interest. A complete model for the joint probability
density function fw (w), with w the vector of wavelet
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coefficients, is one possibility. However, such a charac-
terization is intractable in practice, from both a com-
putation and a robust estimation viewpoint. At the
other extreme, modeling the wavelet coefficients as sta-
tistically independent, with fw(w) =[], fw, (w;), is
simple but disregards the inter-coefficient probabilistic
dependencies. To strike a balance between these two
extremes, we must model the key wavelet coefficient
dependencies, and only the key dependencies.

By design, wavelet-domain Hidden Markov models
(HMMs) focus on the key wavelet coefficient depen-
dencies, learning them via maximum-likelthood-based
training [4,5]. Hence, HMMs provide a natural setting
for exploiting the structure inherent in real-world sig-
nals and images for signal estimation, detection, clas-
sification, prediction and filtering, and synthesis.

In this paper, we develop a new wavelet-domain sig-
nal modeling framework based on contextual HMM:s.
Contexts provide flexible conditional probability mod-
els for efficiently learning and expressing the depen-
dencies in wavelet transforms. Before we develop these
new models, we sketch some background on wavelets,
mixture models, and wavelet-domain HMMs.

2 Background

2.1 The wavelet transform

The discrete wavelet transform (DWT) represents a
one-dimensional signal z(¢) in terms of shifted versions
of a lowpass scaling function ¢(¢) and shifted and di-
lated versions of a prototype bandpass wavelet function
¥(t) [6]. For special choices of the wavelet and scaling
functions the atoms 5k (t) = 2712 1/)(2_Jt— K),
prr(t) =277 ¢(2_Jt —K), J,K € Z, form an or-
thonormal basis, and we have the representation [6]
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Figure 1. Tiling of the time-frequency plane by the
atoms of the wavelet transform. Fach box depicts the
idealized support of a scaling atom ¢; (top row) or a
wavelet atom 1); (other rows) in time-frequency; the solid
dot at the center corresponds to the scaling coefficient u;
or wavelet coefficient w;. The figures also illustrates our
tree notation for indexing neighboring coefficients.

with
UjK = /Z(t)¢}yK(t)dt WjK = /Z(t)l/);yK(t)dt

The wavelet coefficient wy g measures the signal
content around time 27K and frequency 277 fy. The
scaling coefficient uz x measures the local mean around
time 27 K. The DWT (1) employs scaling coefficients
only at scale Jy; scaling coefficients at scales J < Jy
represent higher resolution approximations to the sig-
nal. Any filterbank or lifting DWT implementation
produces all of the scaling coefficients ujy g, J < Jy as
a natural byproduct [6].

To keep the notation manageable in the sequel, we
will adopt an abstract index system for the DW'T co-
efficients: ujx — u;, wrg — w;, with J(7) the scale
of the coefficient i. We will also use w to denote the
vector of all wavelet coefficients.

The DWT has a natural interpretation in terms of a
tree structure in the time-frequency domain (see Fig-
ure 1). In order to describe the relationships between
wavelet coefficients, we will use standard tree notation
for the parent p(7), left {(Z) and right r(¢) neighbors,
and left ¢;(i) and right ¢, (i) children of a node i.!

2.2 Gaussian mixture models

The DWTs of many real-world signals tend to be
sparse, with just a few non-zero coefficients contain-
ing most of the signal energy [3]. Hence, the marginal
density? fyw, (w;) of each wavelet coefficient is typically

1For clarity, we will assume throughout this paper that the
length L of the signal is a power of two and furthermore that
we take the maximum number of scales J = log, L in the DWT.
However, all results extend to signals of arbitrary length, as well
as to DWTs with fewer than the maximum possible number of
scales (in which case, we have a forest of wavelet trees [5]).

2We will use ps(s) to denote the probability mass function
(pmf) of the discrete random variable S and fy(w) to denote

described by a peaky (at w; = 0) and heavy-tailed non-
Gaussian density.

Such densities are well approximated by Gaussian
mizture models [7]. To each wavelet coefficient WW;, we
assoclate a discrete hidden state .S; that takes on values
m=1,..., M with pmf pg, (m). Conditioned on S; =
m, W; is Gaussian with mean y; , and variance O'Zm.
Thus, its overall pdf is given by

Jw,(wi) = Zpsl(m) Jwis; (wilSi=m).  (2)

To generate a realization of W; using the mixture
model, we first draw a state value s; according to
ps,(si) and then draw an observation w; according to

Jwis: (wil Si = s3).
2.3 Hidden Markov models

One simple approach to approximating the joint
density fw(w) would treat the wavelet coefficients as
independent Gaussian mixtures. The result — the In-
dependent Mixture (IM) model — has proven useful for
signal estimation applications [7]. The primary motiva-
tion for this model lies in the fact that the DW'T acts as
an approximate Karhunen-Loéve transform for a wide
class of signals, and therefore the wavelet coefficients
are approximately decorrelated.

However, the wavelet coefficients of real-world sig-
nals are not statistically independent in general. For in-
stance, neighboring wavelet coefficients are often highly
dependent — large/small coefficient values tend to
propagate both within and across scales, creating clus-
ters of large/small coefficients [4, 5].

Wavelet-domain Hidden Markov models (HMMs)
are multidimensional mixture models in which the hid-
den states have a Markov dependency structure. The
idea is to capture the dependencies in the wavelet coef-
ficients through their hidden states. For example, the
Hidden Markov Tree (HMT) model places a tree struc-
ture on the hidden states to capture wavelet dependen-
cies across scale (See Figure 2) [4,5]. The HMT model
is specified via the mixture parameters p; ,, J?ym and
transition probabilities ps,|s,,, (m|n).

Before we process signals using a wavelet-domain
HMM, we first must train the model to capture the
wavelet-domain properties of the signals of interest.
That 1s, we determine the wavelet-domain HMM pa-
rameters that best characterize our observed wavelet
coefficients. This standard HMM training problem can
be efficiently accomplished (in linear time per iteration)

the probability density function (pdf) of the continuous random
variable W.
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Figure 2. Statistical models for the wavelet transform.
We model each coefficient as a Gaussian mixture with a
hidden state variable. Each black node represents a con-
tinuous wavelet coefficient W;. FEach white node repre-
sents the hidden mixture state variable S;. Connecting
the states vertically across scale yields the Hidden Markov
Tree (HMT) model. Removing these links yields the In-
dependent Mixture (IM) model.

using the iterative Expectation Maximization (EM) al-
gorithm [8].3

Although the HMT model is powerful and relatively
simple, in certain applications 1t is crucial to model
more and different dependencies between the wavelet
coefficients (such as across time and across scale si-
multaneously). More sophisticated dependency struc-
tures for the hidden states can be formulated using the
theory of probabilistics graphs [5,9], but the analysis
and training of more complicated HMMs becomes ex-
tremely difficult [9]. For example, graphs with links
that form cycles cannot be modeled using transition
probabilities due to lack of a causal direction.

3 Contextual HMMs

In this paper, we will use contexrts to efficiently
incorporate dependencies into our HMMs. We de-
fine the context for W; as a length-P vector V; =
Vi1, Via,...,V; p] formed as a function of the wavelet
or scaling coefficients (see Figure 3). We condition S;
on V; to predict W;. The idea is for V; to provide
supplementary information to the HMM, so that given
the context, we can treat the wavelet coefficients as
independent.

By conditioning (2) on V; (with the added assump-
tion that V; and W; are independent given S;), we
have the context-based mixture model for the wavelet

3EM algorithm intuition: If the values of the states S; were
known, then maximum-likelihood parameter estimation would
be simple. Therefore, we iterate between estimating the prob-
abilities for the states (Expectation) and updating our model
given the state probabilities (Maximization). Under mild condi-
tions, this iteration converges to a local maximum of the likeli-
hood function.
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Figure 3. Context-based models for the DWT. (a) To
each wavelet coefficient-hidden state pair (W;, S;), we aug-
ment a (square) context node V;. The context vector is a
function of the other wavelet and scaling coefficients. (b)
FExample context V; formed using four wavelet coefficients

neighbouring W;.
coefficients:
M
fwivi(wlvi) = psyv.(mlvi) fivys, (w|Si = m).
m=1

(3)
In this case, the mixing probabilities depend on the
value of the context V;. If V; is highly correlated with
W;, then (3) will provide a much more accurate char-
acterization of the distribution of W; than (2). In prac-
tice we do not specify pg,|v,(m|v;) directly, but rather
specify pv,|s,(v|m) and apply Bayes rule*

ps.jv.(mlvi) = ps,(m) pv,s, (vilm)
SiVy i) = =31 ,
Y om=1Ps.(m) pv,s, (vilm)

(4)

Defining ¢; ,, = ps,(m) and a; v,m = pvys,(vi|m),
the context-based HMM (CHMM) is parameterized by
the vector ®@ = {,ul-ym, O'Z%m, €,m s ozl-yvym}. Given an
observation of wavelet data w, we estimate @ using the
EM algorithm below. When only a single signal obser-
vation is available, we make the standard assumption
that the wavelet coefficients in each scale are identi-
cally distributed. Multiple signal observations, mul-
tiple wavelet trees, as well as models for the scaling
coefficients, can be handled as in [5].

EM Algorithm for CHMMs
Initialize: Choose ®° and set I = 0.
Expectation (E): Given ®', calculate (Bayes rule)
€im Qiv,m fw,s, (wilm)

ps, v, wi (mlvi, wi) =
’ St €im Qivim Jws, (wilm)

Maximization (M): Compute the elements of @'}

> psgviaw (mlvi,w),

E st J(k)=J(i)

Ei,m =

4Here, we assume that the context is discrete-valued. We
can model a continuous-valued V; as an M-component Gaus-
sian mixture of its own, replacing py,|s,(vi|m) in (4) with
fviis;(vilm). We will find this useful in Section 4.2.
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Iterate: Increment I — I + 1. Apply E and M until
converged.

In contrast to the HMT E step [5], the CHMM E
step is very straightforward. To ensure fast and robust
training, we keep the number of free parameters in each
context vector to a minimum.

4 Applications

To illustrate the flexibility of the CHMM framework,
we now apply these models to two distinctly different
problems: signal denoising and synthesis of long-range-
dependent data network traffic.

4.1 Denoising

DWT methods have proved remarkably success-
ful for estimating signals corrupted by additive white
Gaussian noise (WGN) [3-5,7]. The superior results of
HMT model denoising have demonstrated that signif-
icant performance gains can be achieved by exploiting
dependencies between wavelet coefficients [5]. Using a
CHMM, we seek similar gains, but with reduced com-
plexity.

Since the orthogonal DWT of zero-mean WGN is
again zero-mean WGN of the same power, the signal
estimation problem can be posed in the wavelet domain
as: Estimate the wavelet coefficients y; of a signal given
the noisy measurements w; = y; +n;, with {n;} a WGN
process of variance 2. As in [5], we adopt an “empir-
ical” Bayesian approach and model the signal wavelet
coefficients Y; using a two-component Gaussian mix-
ture (M = 2) with ;1 = pi2 = 0.

If we knew the hidden state S; of Y;, then
the minimum-mean-squared-error (MMSE) estimate
would be the conditional mean estimate of a Gaussian
signal in Gaussian noise

0.2

E[Yi|w;, Si =m] = ——2" w;. (5)

2 2
O-i,m + On

Given probability estimates for the hidden states S;,
we estimate Y; as the conditional mean

2
EY;lwi, vi] = Y psijuwiv. (mlwi, vi) E[Vi|w;, S; = m].
m=1

(6)
If Y; is a mixture of zero-mean Gaussians, then W; is
also a mixture of zero-mean Gaussians — the addition
of zero-mean independent Gaussian noise increases the
variance of each mixture component by o2, but leaves
the state S; unaffected. Hence, we train our CHMM
on the the noisy wavelet data W to estimate the hid-
den state probabilities of the signal pg,|w, v, (m|w;, v;)
and (by subtracting ¢2) the signal mixture variances
O'Z'Z,m~ We then calculate the estimates (6) and invert
the DWT to obtain the denoised signal. (See [5] for
more details on a similar denoising approach.)

What remains is to specify contexts that are sim-
ple, yet effective, for gleaning information on the hid-
den states. Two simple discrete contexts that exploit
clustering of signal energy in the wavelet domain [5] il-
lustrate our approach. Define ¢; as the quantized value
of the wavelet coefficient w;: Set ¢; = 1 if |w;|? is
greater than the average energy in its scale, otherwise,
set q; = 0. The first context contains quantized values
of the neighboring wavelet coefficients

Vz(l) = I:Qp(l)a HOB IO ch(,)a (]cr(,)] ) (7)

and thus conveys gross information about the size of
the neighboring coefficients. Our intuition is that if
w,(;) and we,,, are large, then there is a good chance
that w; will be large as well. To encode such infor-
mation (“large” vs. “small”), even crudely quantized
information is sufficient. To further reduce complexity,
we also assume that the context probabilities factor as
pvis: (vilm) = [Tiz; pv, s, (vi jm).

In Table 1, we provide the MSE results for denois-
ing Donoho and Johnstone’s standard test signals [3]
using CHMMs versus other state-of-the-art algorithms.
CHM corresponds to our proposed algorithm using the
context defined in (7). Implementation details such as
the exact DWTs used are provided in [5].

The key benchmarks for comparison are the IM and
HMT models from [5]. TM denoising employs a mix-
ture model that treats the signal wavelet coefficients
as independent. Improvements over IM signify the
context’s ability to capture and exploit dependencies
between coefficients. Overall, the MSE performance
of the context-based approach is roughly comparable
to the considerably more complicated HMT denoiser

of [5].



Table 1. Denoising results for Donoho and Johnstone’s
length-1024 test signals [3]. Noise variance 02 = 1.

Method Mean-squared error
Bumps | Blocks | Doppler | Heavisine
Sure [3] 0.683 0.222 0.228 0.095
Bayes [7] | 0.350 0.099 0.165 0.087
M 0.335 0.105 0.170 0.080
HMT 0.268 0.079 0.132 0.081
CHM 0.252 0.101 0.141 0.081

4.2 Signal synthesis

Recent studies have shown that data network traffic
is statistically self-similar and exhibits the long-range
dependence characteristic of slowly-decaying correla-
tion functions [10]. These properties are difficult to
model using classical traffic models involving Poisson
or Markov processes. Complicating matters further
is the fact that actual network inter-arrival times are
nonGaussian, positive, and heavy-tailed [10]. Classical
self-similar process models, such as fractional Brownian
motion (fBm) can capture the long-range dependence
of network traffic; however, fBm is a Gaussian process,
and current methods for its synthesis are computation-
ally intensive (up to O(L?) complexity for an L-point
trace). New tools for analyzing and synthesizing very
long traces of such data are important for network de-
sign and control, since classical models can severely
overestimate network performance.

Wavelets have proven extremely effective for analy-
sis and synthesis self-similar and long-range-dependent
processes [1,2,11]. For instance, approximate Gaus-
sian self-similar processes can be synthesized by gen-
erating in the wavelet domain independent Gaussian
noise with scale-varying power, and then inverting the
wavelet transform [1].

Our goal is to develop a fast wavelet-based synthesis
algorithm consistent both with the long-range depen-
dence and the positive, nonGaussian marginal statistics
of network traffic. Our approach will be to first train a
CHMM on an actual traffic trace, and then synthesize
artificial traffic with “equivalent” statistical properties.
By characterizing how the wavelet coefficient variances
change with scale. By using the Haar scaling coeffi-
cients as contexts, CHMMs can capture the positive,
nonGaussian marginal properties of the traffic as we
now demonstrate.

Using a Haar DWT [6], we will associate with each
w; (wy i in the notation of Section 2.1) its correspond-
ing scaling coefficient u; (uyk in the notation of Sec-
tion 2.1). Since u; corresponds to a local mean of the

(positive) signal, we know that u; > 0, ¥i. Moreover,
since for the Haar DWT u,, ;) = 2_1/2(1@ + w;) and
Ue, (i) = 21/2(112' — w;), we must have |w;| < u;, Vi.

Because of this clear dependence, we use the ran-
dom variable V; = U; as the context for the random
variable ;. We model U; as a Gaussian mixture, with
the parameters ﬂiym,ﬁim updated in the M step in a

fashion similar to the updates for p; m, af’m.

In essence, this procedure employs a mixture model
to approximate the 2-d density for (U;, W;) and then
uses the 2-d density to obtain a conditional density for
W; based on U;. With enough mixture parameters,
this approach in theory can approximate (U;, W;) to
arbitrary precision, hence automatically learning the
constraints U; > 0 and |W;| < U;.

In practice, to simplify our modeling, we map the
cone U; > 0, |W;| < U; to the plane through the in-
vertible map g: (U;, W;) — (log(Ui), —sgn(W;) log(1—
|VVZ|/UZ)) By modeling g(U;, W;) and then inverting
to form (U;, W;), we automatically enforce the positiv-
ity constraints. To synthesize W; given U;, we map U;
to log(U;), use it as a context to synthesize the trans-
formed data, generate a realization, and then invert the
map ¢ to produce W;.

To synthesize an entire wavelet transform W, we
work in “top-down” fashion starting from the root of
the wavelet tree by synthesizing the single coarsest
scale wavelet coefficient. (We assume its context, the
global mean of the signal, is already specified.) We it-
erate down the tree using the fact that summing and
differencing U; and W; provides the context informa-
tion for synthesizing W, ;y and W, ;).

As atest, we trained the CHMM synthesis algorithm
on a portion of the Bellcore Ethernet data (the first
105 arrivals of the day-long trace started August 29,
1989) [10]. The model was equipped with ten mixture-
components (M = 10) at each wavelet scale. In Figure
4, we compare, over different time scales, a random
realization from our synthesis algorithm with the ac-
tual data. In Figure 5, we illustrate the histogram
fit that our synthesis algorithm achieves over different
time scales.

As is evident from the Figures, CHMM synthesis
captures both the marginal properties of the traffic
and, because of the match over a number of time scales,
the long-range dependence as well. For synthesis ap-
plications, CHMMs are both accurate and fast (O(I)
operations), demonstrating the power of the context-
based framework.
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Figure 4. Network data traffic synthesis via CHMM.
Inter-arrival times as a function of packet group number
plotted for (top) one, (middle) ten, and (bottom) one-
hundred packets. The actual traces consist of approxi-
mately 108 packet arrivals, but only the inter-arrival times
of the first groups of packets are shown.
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Figure 5. Histograms of the inter-arrival times corre-
sponding to the data from Figure 4 for groups of (top)
one, (middle) ten, and (bottom) one-hundred packets.

5 Conclusions

CHMMs have a number of potential advantages over
conventional HMMs for exploiting the wavelet-domain
structure inherent in real-world signals. First, CHMMs
allow the user to characterize dependencies that may
be too complex or even downright impossible to model
using standard HMMs. Second, although efficient al-
gorithms exist for HMMs based on trees, for more com-
plicated graph structures (such as 2-d HMMs for im-
ages), the training procedure can become intractable.
CHMMs deal naturally with noncausal information,
yet retain the simplicity of a causal model. The ex-
planation lies in the fact a CHMM consists essentially
of a series of local models, each with a small number of
parameters, that can be trained independently. More
traditional HMM models, on the other hand, adjust
their parameters to optimize a complicated global ob-
Jective function.

The primary disadvantage of the CHMM framework
is that it lacks the feedback mechanism of more tradi-
tional HMMs that allow the model to propagate infor-
mation from variables across the entire model, hence
capturing dependencies from more than just neighbor-
ing wavelet coefficients. However, in many instances,

we expect the convenience and efficiency of the context
approach to outweigh this potential limitation.

References

[1] G. W. Wornell, “A Karhunen-Lo¢ve like expansion
for 1/f processes via wavelets,” IEEE Trans. on

Inform. Theory, vol. 36, pp. 859-861, Mar. 1990.

[2] P. Flandrin, “Wavelet analysis and synthesis of
fractional Brownian motion,” IEEE Trans. In-

form. Theory, vol. 38, pp. 910-916, Mar. 1992.

[3] D. Donoho and I. Johnstone, “Adapting to un-
known smoothness via wavelet shrinkage,” J.
Amer. Stat. Assoc., vol. 90, pp. 1200-1224, Dec.
1995.

[4] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk,
“Signal estimation using wavelet-Markov models,”
in IEEE Int. Conf. on Acoust., Speech, Signal
Proc. — ICASSP 7 97, (Munich), pp. 3429-3432,
April 1997.

[5] M. S. Crouse, R. D. Nowak, and R. G. Bara-
niuk, “Wavelet-based statistical signal processing
using hidden Markov models,” IEEE Trans. Sig-
nal Proc., 1998. To appear. Technical report at
http//www.dsp.rice.edu/.

[6] I. Daubechies, Ten Lectures on Wavelets. New
York: STAM, 1992.

[7] H. Chipman, E. Kolaczyk, and R. McCulloch,
“Adaptive Bayesian wavelet shrinkage,” Journal
of the American Statistical Association, vol. 92,

1997.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelithood from incomplete data via
the EM algorithm,” J. Royal Stat. Soc., vol. 39,
pp. 1-38, 1977.

[9] H. Lucke, “Which stochastic models allow Baum-
Welch training?,” IEEE Trans. Signal Proc.,
vol. 11, pp. 2746-2756, Nov. 1996.

[10] W. Leland, M. Taqqu, W. Willinger, and D. Wil-
son, “On the self-similar nature of Ethernet traf-
fic,” IEEE/ACM Trans. on Networking, vol. 2,
pp- 1-15, Feb. 1994.

[11] L. M. Kaplan and C.-C. J. Kuo, “Fractal estima-
tion from noisy data via discrete fractional Gaus-
sian noise (DFGN) and the Haar basis,” IEEE
Trans. on Signal Proc., vol. 41, pp. 3554-3562,
Dec. 1993.



