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Abstract

Wavelet-based multi-resolution representation has become a cutting-edge technology
in the area of image data compression. Though the discrete wavelet transform is
closely related to the perfect-reconstruction octave-band filter banks used in subband
coding schemes, wavelets have provided very promising new ideas and insights for
image data compression. Wavelet-based coding techniques have achieved competitive
performance compared with other well-known image coding techniques. This thesis
develops a general framework for wavelet-based lossy image coding. We discuss two
application problems and develop the corresponding fast algorithms using wavelet-
based techniques (e.g., optimum wavelet-packet bases selection, wavelet-domain soft-

thresholding).
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Chapter 1

Introduction

1.1 Motivation

Image data compression is concerned with minimizing the number of bits required to
represent an image [15, 17, 23, 24, 32].

The total number of bits required to transmit or store the digital images and the
digital image sequences (digital video) can be extremely large. Often this number
surpasses the bandwidth of the intended transmission, or the storage capacity of the
storage media, or makes certain digital image communication services economically
infeasible. Since, however, most visual images and video sequences contain a large
amount of statistical redundancy and visual irrelevancy, data compression or source
coding methods can be applied to the data so as to reduce the number of bits and
make widespread use of the digital imagery practical. The data compression is of
importance to many existing and possible future image communication services and
systems, such as archival systems for medical images and museums, remote sens-
ing imaging, geological surveys, multi-media applications, video telephony, digital
video recording, and new video distribution services such as digital television, high-
definition television, and so on. The application of data compression is also possible
in the development of fast algorithms where the number of operations required to
implement an algorithm is reduced by working with the compressed data.

This thesis discusses one of the relatively recently developed compression tech-
niques and its application to the image data compression. This compression technique

uses multiple resolutions of the image and is based on the wavelet theory.



1.2 Fundamentals
1.2.1 Basic Idea

The digital image data can be compressed by eliminating the redundant information
so as to provide a more efficient representation of data while preserving the essential
information contained in the data. In this thesis, we consider only the lossy com-
pression algorithms. There are two types of redundancy that can be exploited by the

image compression systems:

1. Spatial Redundancy. It is related to such factors as predictability, randomness
and smoothness in the image data. For example, in almost all natural images,

the values of neighboring pixels are strongly correlated.

2. Spectral Redundancy. In images composed of more than one spectral band, the

spectral values for the same pixel location are often correlated.

The removal of spatial and spectral redundancies is often accomplished by the pre-
dictive coding or the transform coding. Quantization (including thresholding) is the

most important means of irrelevancy reduction.

1.2.2 Performance Measures

The following outlines those metrics most often used for evaluating the performance of
the compression algorithms. In this thesis, among all the metrics, we mainly consider

bit rate and peak signal-to-noise ratio (PSNR).

Bit Rate/Compression Ratio

The bit rate is the average number of bits per pixel (bpp) in the compressed image.
The compression ratio is the ratio between the number of bits used to represent the

compressed image and the number of bits used to represent the original image.



Numerical Distortion Measure

For n-bit images, or equivalently, 2"-gray-scale images, peak signal-to-noise ratio in
decibels (dB) is computed as

(27— 1)2

PSNR = 1010g10 TSE)

where MSE is the mean-squared error defined as

1 N M
MSE:HX—XHg_—MZZ X(i, )

i=1 j=1
and, N and M are the width and the height, respectively, of the images in pixels, X
and X are the original image and the reconstructed image, respectively. The norm
most often used to measure “distance” is the [?-norm, but that is more because this
is the easiest norm to handle than for any other reason. All experts agree that the
[*-norm is not a good candidate for a “perceptual” norm, but as far as we know, there
is no agreement on a better candidate. Based on the research on the human visual
system, it is argued that in most instances the error incurred in image compression
should be measured in the mean-absolute sense ({*-norm) instead of the mean-square

sense (*-norm) [13].

Perceptual Distortion Measure

The perceptual errors are difficult to quantify mathematically. Also, the numerical
performance is not directly related to the subjective image quality. This means that
an algorithm may have a larger numerical error but appear to be better in visual image
quality. This can happen if one algorithm exhibits greater error in areas or frequencies
which the eye is relatively insensitive. Also, in general, the coding artifacts due to
the coarse quantization, such as the block effect, the contouring effect, the ringing
effect, etc., are not clearly indicated by those numerical distortion metrics, but can

be viewed easily by human eyes.



Algorithm Complexity and Speed

In general, the computational complexity of the data compression algorithms are
evaluated on the basis of the number and the type of operations (multiplies, divides,
look-ups, etc.) performed per pixel. These numbers translate to approximate running
time for a computer platform bench-marked for the speed of each operation assuming

a serial implementation of the algorithm.

Susceptibility to Error

Some algorithms will suffer the localized information loss from the channel bit-error
effects, while others may experience total image destruction. This indicates certain
algorithms may have the different error detection and correction requirements. The
error detection algorithms reduce the loss of information but also increase the over-

head, which in turn increase the total bit rate.

1.2.3 Distortion Rate Functions

The rate distortion theory is a branch of the information theory that allows us to cal-
culate the performance bounds without teh consideration of a specific coding method.
The distortion rate function, D(R), provides a lower bound D on the average distor-
tion for a given rate R, and hence an upper bound on the performance of the practical
coders. It can be shown that D(R) is a monotonically decreasing, convex function
[6]. Unfortunately, the theory does not provide us with a method on how to construct
a practical optimum coder. However, the D(R) bounds provide the characteristics

curves of the coders and serve as calibrators of the coding performance (see Appendix).



1.3 Image Coding Techniques
1.3.1 Predictive Coding—DPCM

The philosophy underlying predictive techniques is to remove the mutual redundancy
between successive pixels, and encode and transmit only the new information [17,
23, 24, 32]. The differential pulse coded modulation (DPCM), one of the most widely
used predictive coding techniques, is based on quantizing and coding a prediction
error signal (Figure 1.1). The DPCM performs well at high bit rate, but worse than
transform coding techniques at low bit rate. Usually, the DPCM is combined with

other techniques in many coding systems.

S Quantier [ Ptrony ey gy :
.\ |
Predictor f\_{_ | Predictor
|
|
Decoder | Encoder

Figure 1.1 A DPCM codec

1.3.2 JEPG/DCT

A joint ISO/CCITT* committee known as JPEG (Joint Photographic Experts Group)
has established the first international compression standard for the continuous-tone
still images [33, 42]. A generic scheme is specified as a baseline JPEG method for

the lossy compression (Figure. 1.2). The method is based on a division of the image

*ISO standards for International Standardization Organization. CCITT standards for International
Consultative Committee for Telephone and Telegraph.



into blocks of 8x8 pixels, after which each block is transformed with a discrete cosine
transform (DCT). The transform coefficients are quantized, where each frequency
is weighted according to its importance to the human visual system (HVS). The
quantized DC coefficients are differentially coded using the DPCM method and the
quantized AC coefficients are ordered into a zig-zag sequence and coded by a run-
length coder and a Huffman coder block-wise. The cosine functions used in the
DCT are nearly optimal for stationary signals, but images are rarely stationary. So,
the DCT-based algorithms do not tolerate the high compression ratios. Also, the
JPEG method cannot efficiently exploit the redundancy among the blocks. Therefore,
the JPEG method performs very well at high or medium bit rates and introduces
perceptibly annoying blocking artifacts (horizontal and vertical artificial edges due to

the block-wise transform coding) at low bit rates.

Encoder
X Block-wise Uniform Entropy
8x8 DCT Quantizer Encoder
Table
Specifications
¢ Block-wise
<X— Inverse De-quantizer Entropy
8x8 DCT Decoder
Decoder

Figure 1.2 JPEG baseline coding algorithm



1.3.3 Vector Quantization

The vector quantization (VQ) is a popular and powerful scheme for compressing
the correlated discrete signal sets whose characteristics have been “trained” initially
[17, 19, 31]. We define a vector quantizer () of dimension k and size N a mapping from
a vector in k-dimensional Euclidean space, R*, into a finite set C (called a codebook)
containing N output or reproduction vectors (called codewords), ) : R* — C, where
C = (y1,92,---,yn} and y; € R* for each : € J = {1,2,...,N}. The potential

advantages of vector quantizers are:

1. the ability to exploit both the linear dependence and the nonlinear dependence

among the vector coordinates,
2. the extra freedom in choosing the partition geometry on the vector space,

3. the ability to achieve fractional values of resolution (measured in bits per sample

or bits per vector component).

The last feature is particularly important when the optimal bit-allocation algo-
rithms are used. These features indicate that the scalar quantization (SQ) is simply a
restricted special case of the VQ. According to Shannon’s rate distortion theory, bet-
ter results are always obtained when vectors rather than scalars are coded. Therefore,
the VQ can indeed give superior performance over the SQ. It can be shown that the
VQ can approach the rate distortion limit as the vector dimensionality becomes large.
However, one obvious disadvantage of the VQ is the high computational cost for the
design of a sufficiently good vector quantizer, which grows exponentially with the

vector dimensionality.

1.3.4 Subband Coding

The subband coding (SBC) first appeared in 1976 [11]. It is an important and widely

used type of analysis-synthesis coding systems where the signal is decomposed onto



a set of narrow-band signals that in some sense offer a more fundamental or more
primitive representation of the signal [39, 40, 41, 45, 47]. The quantized subband
signals are then used to synthesize a reproduction of the original signal. Thus, the
highly correlated signals are amenable to the efficient removal of redundancy by the
SBC. A general one-dimensional SBC scheme is illustrated in Figure 1.3. Most two-
dimensional subband decompositions are built by cascading one-dimensional subband
filter banks. The input signal X is convolved in a bank of M bandpass analysis filters
with the frequency responses {H;(¢’*)} and down-sampled by the factors {k;} that
correspond to the bandwidths of { H;(e’*)}. The frequency responses and the down-

sampling factors are usually chosen such that the number of samples before and after

M 1

the subband decomposition is the same, i.e., > = 1, which ensures that there is
no additional redundancy introduced by the subband decomposition. The subband
signals are quantized and transmitted using the variable length coders (VLC). At the
decoder, the subband signals are decoded by the variable length decoders (VLD), up-
sampled by factors {k;} and passed through a bank of synthesis filters with frequency
responses {(7;(e’“)}. The output signals of the synthesis filters are finally summed
up to yield the reconstructed signal. In fact, the DCT can be interpreted as a special

subband coding technique.

1.3.5 Wavelet Transform Coding

Theoretical and applied research in the field of wavelets has made tremendous progress
in the last few years [12]. The wavelet transform has become a cutting-edge tech-
nology in the image data compression research [1, 2, 3, 13, 27, 37]. The wavelet
transform, due to the good localization in both the space domain and frequency do-
main of the basis functions, can handle the non-stationary signals, hence greater com-
pression ratios can be obtained. Image data compression schemes based on wavelets
are rapidly gaining maturity, and have already begun to appear in commercial soft-

ware/hardware systems. The reconstruction quality of the wavelet compressed images



Analysis | Synthesis
Filter Bank | Filter Bank
X Jw Jw
Hi(e?) b | By Q1 —{VLC ——{VLD T hy [ Ga(€™) 1 —
. | : X
| Ho(e) L | &y Q2 —VLC ——{VLD T ky = G2(e”) Lo@h
|
|
L Hw (€) ! | keag 1@ arb— VLC L VID 1 ke o{Gan (7).
|
Encoder | Decoder

Figure 1.3 A 1-D M-channel SBC scheme

has already moved well beyond the capabilities of the JPEG method. At compres-
sion ratios above 30 : 1, the performance of the JPEG coder rapidly deteriorates,
while the wavelet coders degrade gracefully well beyond the ratio of 100 : 1. Also,
the perceptual quality of the wavelet compressed images is better than that of the
JPEG compressed images at low bit rates. In addition, the “zooming” property of
the wavelet-based multi-resolution representation is very suitable for the progressive
transmission of the image data, which is a good framework for the data manage-
ment in the scientific visualization when large volume of data is involved. A general
wavelet transform encoder is depicted in Figure 1.4. Compression is accomplished by
applying a wavelet transform to decorrelate the image data, quantizing the resulting
transform coefficients, and coding the quantized values. Image reconstruction is ac-
complished by inverting the compression operations. We will describe more detailed
wavelet-based compression techniques in Chapter 2.

It is interesting to note that the research on the wavelet decomposition coding

has had a strong impact on several areas of the numerical analysis, especially in the
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Figure 1.4 A typical wavelet transform encoder

solution of the partial differential equations. The compression of an image, which is
just a matrix of intensity values, is not really different from compressing the kernel
matrix of a functional operator. The compressed operator is a sparse matrix, and
sparse matrix operations can often be performed orders of magnitude faster than their
non-sparse counterparts. Undoubtedly, this will lead to new results in the numerical
analysis that will impact image data compression, leading to better algorithms in

areas such as computer vision, etc.

1.3.6 Other Coding Techniques

There are many other image data compression techniques, such as fractal coding [4, 16,
22|, recursive block coding [15], region-based coding, image coding by exploiting the
human visual perception, etc. We do not discuss them in this thesis. In general, each
technique has its own merits and drawbacks, and its performance depends on various
applications. Therefore, we conjecture that the hybrid coding techniques combining

the advantages of the above techniques could be very promising [1, 3, 36, 47].



11

1.4 Thesis Organization

Having introduced the background of the image data compression, we now describe
the layout of this thesis. Chapter 2 contains an explanation of the basic wavelet
decomposition theory. In Chapter 3 , we turn our attention to the fundamental
transform coding schemes. We then discuss a novel technique for the reduction of
quantization noise in Chapter 4. Chapter 5 describes our algorithms for simultaneous

noise reduction and data compression. Finally, Chapter 6 gives the summary.
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Chapter 2

Wavelet Decomposition

2.1 A Short Review of Wavelet Theory

For the purposes of signal analysis, we would like to have a representation of the signal
which contains the information about both time and frequency behavior of the signal.
More specially, we want to know the frequency content of the signal at a particular
instant in time. However, the resolution in time (Ax) and the resolution in frequency
(Aw) cannot both be made arbitrarily small at the same time because their product

is lower bounded by the uncertainty principle or the Heisenberg inequality

AzAw >

DN | —

This means one must trade off the time resolution for the frequency resolution, or vice
versa. Thus, it is desirable to obtain a very good resolution in time if one is willing to
settle for a low resolution in frequency, or vice versa. The time-frequency resolution
of the short-time Fourier transform is fixed over the entire time-frequency plane. The
wavelet transform follows the above ideas and allows the resolutions Az and Aw to
vary in the time-frequency plane in order to obtain a multi-resolution analysis.

Wavelets are functions generated from one single function ¥ by dilations and
translations

Ll

’L/)a,b(t):\/a’é/)( 4

where a is the scaling parameter and b is the shift parameter. The mother wavelet ¥

) a€RTbER

must satisfy the admissibility condition

/+OO |\Il(w)|2dw < +o0

|

[oe]
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where U is the Fourier transform of .
The basic idea of a wavelet transform is to represent any arbitrary function f as

a weighted superposition of wavelets
F=) din(hie i keZ
ik

where
400

dik(f) = (Y, f) = ik(z) f(z)de.

For a = 2/, b = k27, there exist special choices of ¥ such that the {¢;,} constitute an

orthonormal basis. The wavelet is therefore
Bialt) = 292751 )

where j is the scaling parameter and £ is the shift parameter. To introduce the

multi-resolution notion, we must define a scaling function
Gii(t) = 27726(27t — k).

The projection on this family of functions {¢;} gives an approximation of a signal
f with resolution 27/. The wavelet coefficients {d;;} describe the information lost
when going from an approximation of f with a resolution 27/*! to a coarser approxi-

mation with a resolution 277. All this is translated into the Mallat algorithm for the

computation of the d; ;(f) = (¥, f) [30]:
Gi(F) = hakncin(f),  din(F) =D gar-nio1n(f)

where by = 2Y/2 [ ¢(z — 1)¢(22)dx and g; = (—1)'h_;y;. If the function f is given in
the sampled form, then one can take these samples as the highest order resolution
approximation coefficients, cg x, and the Mallat algorithm describes a subband decom-
position on these sampled values, with a lowpass filter A and a highpass filter g, called

quadrature mirror filters (QMFs). Because of their association with the orthonormal
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wavelet bases, these filters give perfect reconstruction (PR) property, i.e.:
cia k() = Y [han-rCin(F) + g2o-rcin(F)]-

The orthonormal compact wavelets corresponding to FIR QMFs have been designed
[12].

It is well known that the structures of computations in a wavelet transform and
in an octave-band filter bank are identical. Therefore, aside from the different views
and interpretations that have given to them, the main difference lies in the filter
design. Wavelet filters are chosen so as to be regular (that is, they have many zeros
at z = —1). The classical subband filters are not regular, and they have been designed
to have good stop-bands and thus are close to being “regular”, at least for the first
few octaves of subband decomposition. In my opinion, the contribution of the wavelet
theory to image coding comprises two parts. Firstly, there is the link of the discrete
filtering with the continuous function spaces. This link is formed by the iterated
filters and their limit functions, the scaling function and the wavelet. Secondly, there
is the regularity of a filter. For image coding this regularity is the only new criterion
the wavelet theory has added to the design process of filters. However, it is still not
clear whether the regularity is a nice property in image coding and regular filters are
more suitable to the transform coding schemes.

Since images are mostly smooth (except for occasional edges), it seems appropriate
that a wavelet transform coding scheme for image analysis should correspond to an
orthonormal basis with a reasonably smooth mother wavelet. In order to have fast
computation, the QMFs should be short (short filters lead to less smoothness, so,
they cannot be too short). On the other hand, it is desirable that the FIR QMFs be
linear phase (corresponding to symmetry for wavelets), since such filters can be easily
cascaded in pyramidal filter structures without the need for phase compensation.
In image processing, the phase information is often much more important than the

amplitude information [29]. Unfortunately, orthogonality and symmetry are conflict
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properties for design of wavelets. Therefore, there are no nontrivial orthonormal linear
phase FIR QMF's with the PR property, regardless of any regularity considerations.
The only symmetric wavelets are Haar basis,i.e., hg = h1 = V2 and gy = —g1 = V2,
with all other A, g, = 0.

2.2 Dyadic Orthogonal Discrete Wavelet Transform

Figure 2.1 illustrates a single step of the two-dimensional (2-D) dyadic discrete wavelet
transform (DWT) for an image, which is accomplished by cascading two separate
one-dimensional (1-D) DWTs. In fact, this is the most widely used 2-D DWT. The
corresponding 2-D bases are separable and obtained from the products of 1-D bases.
The image X is first filtered along the horizontal direction using the reverse versions
of a pair of QMFs, resulting in a lowpass image and a highpass image. Here, h and
g are the reverse versions of A and g, respectively, i.e., h, = h_,, G, = g_n. These
two subband images are then downsampled by two (dropping every other filter value)
along the horizontal direction. Both two suband images are filtered and downsampled
along the vertical direction, resulting in four subband images: Xy, X, Xp and Xjp,
which are directionally sensitive. Xj; is a coarse version of X, X, emphasizes the
horizontal image features, X}, the vertical features and X}, the diagonal features. It
is customary in the wavelet transform coding to recursively decompose the low resolu-
tion subband image. The corresponding inverse transform is illustrated in Figure 2.2.
The subband images are upsampled, filtered and summed along both two directions
to yield a reconstructed image X.

If the above transform is orthogonal (the corresponding wavelet bases are or-
thonormal), The filters (k,g) and (iL,f]) are identical.

The probability density function (PDF) of the wavelet coefficients for a given sub-

band image can be modeled reasonably well by the generalized Gaussian distribution

rg(r,o)

20(7)

px(z) = exp(—|g(r,o)z|")
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Figure 2.1 Single step of a 2-D dyadic DWT
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Figure 2.2 Single step of a 2-D dyadic inverse DWT
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with

1
(ro) = 1 NGIE
r,o)=—
where o is the standard deviation of the subband image data, r is the shape pa-
rameter describing the exponential rate of decay of the distribution (for the wavelet
coefficients, usually » < 1), and I'(+) is the Gamma function. Note that px (z)|,=1 and
px(2)|,=2 are the Laplacian PDF and the Gaussian PDF, respectively. The exception
is the subband with the lowest resolution, which is the coarse approximation of the
original image. Figure 2.3 depicts an example and indicates that the DWT compacts

large amount of energy on very few wavelet coefficients so that it is much easier to

compress the wavelet coefficients than the original image.

2.3 Biorthogonal Discrete Wavelet Transform

One can preserve the linear phase by relaxing the orthonormality requirement, and
using the biorthogonal bases [8]. It is then still possible to construct examples where
the mother wavelets have arbitrarily high regularity [12]. For the biorthogonal DW'T,
the filters (h, g) and (iL,f]) are different, satisfying

Z hniln—I—Qk = 6k,07 f]n = (_1)nh—n—|—17 In = (_1)nil—n+l-

Besides the advantage of the linear phase in the QMF's, the biorthogonal DW'T

also has the following merits:

1. It is possible for the analysis lowpass filter and the synthesis lowpass filter to
have different lengths, which could result in better coding performance than the

filters with equal lengths.

2. It is possible for the filters to have odd length, which is impossible for the
orthogonal DWT.

3. There exists a family of biorthogonal wavelet bases, whose corresponding QMF

coefficients are dyadic rationals (i.e., the denominators have the form 2", n € Z)
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Figure 2.3 (a) Normalized histogram of the original Lenna image (256
gray-scale); (b) Normalized histogram of a subband image from the DWT of
Lenna image; (c¢) PDFs of the generalized Gaussian distribution.
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[8]. Thus, the multiplication and the division operations can be simplified to
the addition and the subtraction for the floating-point numbers or to shifting
for the integer numbers. This makes the transform much faster. This property
also makes lossless coding possible, which is usually impossible for the transtorm

coding.

One disadvantage for the biorthogonal DWT is that such a nonorthogonal trans-
form does not preserve the [? norm of the quantization error. Therefore, some opti-
mization schemes, such as the best bases selection, which are based on the orthogonal
transforms, do not apply to the biorthogonal DW'T.

Figure 2.4 illustrates the energy compaction properties of some wavelet filters with
comparable lengths. We choose the Daubechies orthogonal wavelet filter of length
8 (Daub8) [12], and two implementations of the biorthogonal wavelet filter pair of
lengths 9 and 7 (CDF97 and CDFT79) designed by Cohen, Daubechies and Feauveau
[8]. The implementation of using the 9-tap filter as the analysis lowpass filter and
using the 7-tap filter as the synthesis lowpass filter leads to the best performance.
The opposite implementation using the same filters results in even worse performance
than the Daub8 filter. The reason is that the long filter will compact more energy

and the short filter will accumulate less quantization error.

2.4 Shift-Invariant Discrete Wavelet Transform

The lack of shift invariance has been acknowledged to be one of the serious drawbacks
of the orthogonal DWT [12], i.e., there is no “simple” relationship between the wavelet
coefficients of the original signal and the shifted signal. It has been noticed that
the shift sensitivity is caused by the aliasing due to the down-sampling operators
in each subband. By relaxing the requirement for critical sampling in the subbands,
which results in a redundant DW'T and loses the orthogonality of the transform, shift-
invariance can be established. One way of computing a shift-invariant DWT (SIDWT)
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Figure 2.4 Energy compaction property of DWT

is to compute the DW'T of all shifts. It has been shown that there are only N log NV
different coefficient values among those corresponding to all shifts of the input signal.
In [28], a quad-tree search algorithm is proposed for searching the best representation

among the DW'Ts of all the shifted images with a given cost criterion.

2.5 Quincunx Discrete Wavelet Transform

The quincunz DWT (QDWT) uses non-separable and non-oriented 2-D filters [25].
A non-separable downsampling by a factor of two of an image X(n1,n3) is obtained

by retaining only samples satisfying
(n1,n2) = (my + mg, my — my) mi,my € Z.

The resulting samples are located on a quincunx sub-lattice of Z2. Similar to its 1-D
counterpart, the QDW'T provides only two subband images at each resolution level.

The original image is decomposed with a resolution scale of v/2 (and not 2 as in the
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separable case), which means that the QDWT will be twice as fine as the dyadic
DWT for the same decomposition level. Also, the QDWT is more isotropic. The
McClellan transform can be used to design 2-D filters from 1-D filters. In addition,
other downsampling schemes can be applied.

The dyadic DWT is a degenerate 2-D DW'T as it does not make full use of the
2-D characteristics in an image. However, it has a simple implementation with low
computational complexity due to the separability of the filters. The QDWT is more
computationally expensive, and the design of 2-D filters with good performance is

more complicated.

2.6 Wavelet Packets Transform

Wavelet packet (WP) bases [9] were introduced recently as a collection of orthonormal
bases for the discrete functions of RN. This library contains the well-known wavelet
basis, Short-Time-Fourier-Transform(STFT)-like basis, Walsh functions, and smooth
versions of Walsh functions called wavelet packets. The wavelet packets represent a
generalization of the multi-resolution decomposition methods, and comprise the entire
family of subband coded (tree) decompositions. The library of wavelet packet bases
organizes itself into a homogeneous tree (e.g., for two-dimensional signals such as
images, this library has a structure of a complete quad-tree.), which can be efficiently
searched for a “best basis” under some optimality criterion. The entire WP tree can
be obtained by the recursive decomposition of both the low-pass subband and the
high-pass subband using the quadrature mirror filters. Each admissible basis appears
as a subtree formed by pruning the whole tree (Figure 2.5).

Due to the non-stationary behavior of images, any particular choice of subband
decompositions, including the widely used wavelet decomposition, doesn’t provide the
optimal wavelet packet bases that best adapt to the images. On the other hand, it
can be shown that there are more than 2V wavelet packet bases for a given signal ,

where N is the size of the signal. Therefore, fast search algorithms are essential. A
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Figure 2.5 Some 1-D WP decompositions of level 3

key point for this class of “best-bases” algorithms is that the cost functional M(-)
should be additive, i.e., M(0) = 0 and M (> . X;) = > . M(X;), so that it can split
nicely across the Cartesian products. Thus the search is a fast divide-and-conquer.

An entropy-based algorithm for best-basis selection was proposed [10]. It chooses
the basis with the minimum Shannon-Weaver entropy, which is a measure of the
energy distribution of an unquantized vector and is not directly related to quantization
and coding. Therefore, this criterion does not guarantee the optimality in the rate-
distortion sense, which is the measure of the “true” performance of data compression.
Ramchandran and Vetterli [34] generalized the above algorithm using a rate-distortion
framework. Their algorithm is indeed a combination of the concept of orthonormal
tiling of the spatial-frequency plane using wavelet packets and the discipline of rate-
distortion optimal bit allocation.

However, neither of the two algorithms indicates how to efficiently construct the
rate-distortion curves, whose computational complexity counts for a significant per-

centage of the total cost of the searching algorithm.
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Chapter 3

Transform Coding Schemes

3.1 Quantization

The purpose of quantization is to achieve further compression by representing the
transform coefficients with no greater precision than is necessary to achieve the desired
image quality. Stated another way, the goal of this processing step is to discard the
information which is not visually significant. Quantization is a many-to-one mapping,
and therefore is fundamentally lossy. It is the principal source of lossiness in the

transform coders.

3.1.1 Scalar Quantizer

We define an N-level scalar (one-dimensional) quantizer (SQ), @), as a mapping @ :
R — C where R is the real line and C = {y1,y2,...,yn} C R, where y; < y2 <

. < yn, 1s the output set of reconstruction levels or the “codebook” with size
|C| = N. This mapping is generally a staircase function and the quantization rule
is as follows: Define t;, k=1,2,...,N 4+ 1, as a set of increasing decision levels. If
the input variable lies in the interval [t,%x41), then it is mapped to yi, the kth

reconstruction level.

Uniform Scalar Quantizer

The most common and simplest of all scalar quantizers is the uniform scalar quantizer

(USQ), in which

1. the decision levels t1,15,...,tn41 are equally spaced on the real line;
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2. the reconstruction levels yq,ys,...,yn are the midpoints of the decision inter-

vals.

Llyod-Max Quantizer

Given the fixed number of scalar quantizer levels, the minimum mean-squared error
(MMSE) scalar quantizer, or the Llyod-Max quantizer (LMQ) [23, 24], satisfies the

following two conditions:

1. the optimum decision levels are haltway between neighboring reconstruction

levels;

2. a reconstruction level should be the centroid of the PDF in the appropriate

interval.

The LMQ can be designed by using Llyod iteration algorithm [17].

It can be shown that, if the quantized variables are entropy coded by a variable-
length coding scheme such as the Huffman coding, the USQ gives a better performance
than the LMQ. It has been found that the uniform quantizer is quite a good approx-
imation of the “optimum quantizer” based on entropy versus mean square distortion

criterion, if the quantization step size is optimized with respect to this criterion.

Entropy-Constrained Scalar Quantizer

The entropy-constrained scalar quantizer (ECSQ) [7] minimizes the mean-square er-
ror, subject to a constraint on the entropy of the quantized variables. The ECSQ is
optimal in the rate-distortion sense. Again, the Llyod iteration algorithm combined
with the Lagrange multiplier method can be used to design the ECSQ. The LMQ is
thus a special case of ECSQ, when the corresponding Lagrangian multiplier is set to
be zero. It is clear that the both the LMQ and the ECSQ are more computationally
expensive than the USQ.
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3.1.2 Vector Quantizer

We have introduced the VQ in Section 1.3.3. Direct use of the unconstrained VQ
suffers from a serious complexity barrier that greatly limits its practical use as a
complete and self-contained coding technique. Thus, several techniques have been
developed which apply various constraints to the structure of the VQ codebook and
yield a correspondingly altered encoding algorithm and design technique. This means
that the code vectors cannot have arbitrary locations as points in k-dimensional space
but are distributed in a restricted manner that allows easier (lower complexity) search.
These methods generally compromise the performance achievable with unconstrained
VQ, but often provide very useful and favorable trade-offs between the performance
and the complexity. The clever design of such structure-constrained VQ schemes is
part of what makes engineering an art that goes beyond the realm of straightforward
use of mathematics to analyze engineering problems. The often used VQs include the
LBG VQ, the entropy-constrained VQ (ECVQ), the lattice VQ (LVQ), etc. We do
not discuss an encyclopedic listing of the VQ techniques in this thesis and leave them

to the literature.

3.2 Bit Allocation

In general, the subband images resulting from multi-resolution decomposition are not
of equal significance. In most cases, the total number of available bits is inevitably
limited. Therefore, it is desirable to allocate more bits to those subband images
containing more information so as to code those subband images more accurately
than others. The bit allocation problem is the task of distributing a given quota of

bits to the various subband images to optimize the overall coder performance.
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3.2.1 Problem Formulation

Assume that the original image is decomposed into K subband images. Define the
overall rate, R, and the overall distortion, D, as functions of the bit allocation vector,
r = (ri,r9,...,7x) € ZF according to D(r) = ZZAZI d;(r;) and R(r) = ZZA:I T,
where d;(r;) is the distortion incurred in optimally quantizing the ith subband image
with r; bits. In fact, d;(r;) is the distortion-rate function of the ith subband image.
The bit allocation problem is

min D(r) s.t. R(r) < R,

r

where R. is the given number of available bits.

3.2.2 Approximate Optimal Solution

The classical closed-form solution [17, 23, 24] to the bit allocation problem using the
high resolution quantization approximations is

2

L. R 1 log. %
rf = — — log, -~
TR T2
where o7 is the variance of the ith subband image and p? = (Hf;l 02)% is the geomet-

ric mean of these variances. For simplicity, here we do not consider the nonnegativity
and integer constraints for r;. In practice, re-optimization procedures are required to
make r; a nonnegative integer.

The drawback of this solution is that the assumption of fine quantization is invalid

for low bit-rate coding, where the coarse quantization is used.

3.2.3 Rate-Distortion Optimal Solution

The “hard” constrained problem can be converted to a relatively “easy” equivalent
unconstrained problem by using the generalized Lagrange multiplier method [38]. The

following theorem gives the basic idea underlying this solution.
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Theorem: For any A > 0, the solution r*(\) to the unconstrained problem
min{D(r) + AR(r)}
r

is also the solution to the constrained problem with the constraint R, = R(r*())).

We need to find that A for which the constraint R(r*())) is equal or nearly equal to
the given rate constraint R.. Thus, a repeated solution of the unconstrained problem
for different but carefully chosen values of X is needed to locate the best attainable
solution for R(r*(\)) that is less than B but as close to B as possible. In fact, the
unconstrained problem can be efficiently solved for a given value of A by noting that
the objective function can be written as the sum:

K

D(r) + AR(r) = Y [di(r:) + Ari]

=1
and for each 7, the ¢th term can be separately minimized to find the best r;. The key
point of implementing this scheme is the computation of the distortion rate functions

for subband images, d;(r;).

3.3 Entropy Coding

The entropy coding is a technique for encoding discrete symbols into variable length
codewords in an invertible fashion so as to reduce the average number of bits per
symbol while suffering no loss of fidelity. the entropy codes are often used in conjunc-
tion with quantizers to achieve extra compression beyond quantization. The entropy
coding has been extensively studied in the literature and the detailed accounts may
be found in many books and papers. Thus, we leave this topic to the references.
The most popular techniques for entropy coding include the Huffman codes [21], the
arithmetic codes [46], the Ziv-Lempel codes [48, 49] and the Rice codes [35].
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Chapter 4

Reduction of Quantization Noise

In the entire wavelet decomposition coder, if the perfect-reconstruction filter banks
and the lossless entropy coders are used, then the quantizer is the only source that
results in error (or noise). Coarse quantization of wavelet coefficients often results in
some undesirable artifacts in the reconstructed image, such as the ringing effect, the
contouring effect and the block effect, especially at very low bit rate. Thus, the design
of a decoder in the image coding can be viewed as a statistical estimation problem
of reconstructing the original image signal from the decompressed image, a noisy
observation, using the classical model of signal plus additive noise. Then, various
noise-removal methods can be used to suppress the reconstruction noise (including

reduction of those annoying artifacts), and therefore improve the coding performance.

4.1 Statistical Model of Quantization Noise

The quantizer error sequence e, resulting from applying a quantizer () to an input

x, has been defined by

€n = UYp — Tp, where Yn = Q).

We can write
Yn = Tp + €ns

that is, the output of the quantizer can be written as the input signal plus the
quantization error or quantization noise, e€,. This representation is often called the
additive noise model of a quantizer and allows us to view the quantization process

as the addition of a noise term to the original signal. Note that we have not (yet)
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made any assumptions or approximations; the additive noise model is always valid
in the sense that the above expression always holds. The model is often carried
further, however, by making specific assumptions as to the statistical nature of the
quantization noise so that the model can be handled analytically as a classical signal

plus noise system in communications or signal processing.

4.1.1 Uniform Scalar Quantizer

For a USQ with a quantization step size ¢, the quantization noise is thus an additive
noise lying in the interval [, Z]. It has been shown [17] that, if the quantization
resolution is high, then the quantization noise e is independent of the input, and

can be modeled as an uncorrelated sequence of random variables with a uniform

distribution:
Lift<e<t
fele) = *
0 otherwise
with a zero-mean and a variance % Note that here only the granular noise (the

noise in the finite range [Z, 1]) is considered and the overload noise (the noise with
a magnitude above £ that occurs at the boundaries of the quantizer when a USQ is
applied to a random variable with an infinite support probability density function) is

ignored.

4.1.2 Lloyd-Max Quantizer

For LMQ), it can be shown [24] that the quantization noise is orthogonal to the output,
i.e., Eley] = 0. Therefore,

Elex] = Ele(y — e)] = Eley] - E[e?] = —o?

i.e., the quantization noise and the input are correlated. Thus, a purely input-
independent additive noise model is invalid. A better model for LMQ is therefore

one with a less-than-unity gain component and an additive uncorrelated component,
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according to y = ax + r, where « is the multiplication (gain) factor such that ax
represents the signal part of the quantized signal y and r is the uncorrelated additive
noise term. By making a proper choice for the gain « the assumption of uncorrelation

between r and x can be justified.
E[xe] = E[x(y — x)] = E[x(ax+ 1 —x)] = (a — 1)os + E[xr].

If we choose a = 1 — 02 /02, then E[xr] = 0. Note that the value 07 = E[(y —x)?] is
the mean-squared error of the LM Q. Therefore, « is equal to one minus the normalized

quantizer distortion.

4.1.3 Entropy-Constrained Scalar Quantizer

Since the design of the ECSQ using the Lloyd iteration algorithm is purely a numerical
recipe, there is no explicit model for the ECSQ noise. However, since the USQ is a
good approximation of minimum entropy quantizer if the quantization resolution is

high, we conjecture that the ECSQ noise can be modeled as the USQ noise.

4.1.4 Vector Quantizer

The statistical model of the vector quantization noise is much more complicated, for
almost all practical design algorithms for VQ are based on some special structure
constraints to alleviate the computational cost. Also, most VQ algorithms are purely
numerical. Therefore, in general, the VQ noise sequence is strongly correlated to the

input, the output and itself.

4.2 De-Noising via Wavelet Shrinkage

There are many methods that have been used to remove the noise:

1. the lowpass filtering, which usually introduces a distortion in the form of blur-

ring;
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2. the median filtering, which works very well only for the impulsive noise;

3. the Wiener filtering, which is the minimum mean-square-error method if the
statistical models of the signal and the noise are known (However, in image

coding, the statistical model of the original image is unknown for the decoder).

Therefore, all of the above methods have their limitations.

Donoho and Johnstone [14] proposed a nonlinear, universal method for recon-
structing an unknown signal from noisy data. The method attempts to reject noise
by damping or thresholding in the wavelet domain.

Suppose we wish to recover an unknown signal x from noisy data y,

yi = x; + o€y, t=0,1,...,n—1

?

where ¢; o N(0,1) is a white Gaussian noise, and o is the noise level. Let x be the

estimate of x. Our goal is to optimize the mean-squared error

[]L
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subject to the side condition that with high probability, x is at least as smooth as x.
The simple wavelet-domain-soft-thresholding method has three steps:

1. Compute the discrete wavelet transform of the noisy data y, obtaining the

wavelet coefficients;
2. Apply the soft-thresholding nonlinearity

v—1 forv>t
ne(v) = sgn(v)(jo] —t)+ =4 0 for —t<wv <t

v+t forv< —t

to the wavelet coefficients with a specially-chosen threshold ¢;

3. Perform the inverse wavelet transform, recovering the estimate x*.
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It has been shown that x* achieves almost the minimax mean square error over every
one of a wide range of smoothness classes, including many classes where traditional
linear estimators do not achieve the minimax rate. Unlike most minimum-mean-
square methods (e.g. the Wiener filtering), this method does not exhibit any noise-
induced structures, such as the spurious oscillations. Obviously, the computational
complexity of this non-linear operator is O(n). In addition, the experimental results
showed that this approach provides better visual quality than the procedures based
on mean-squared error alone. Thus, it can also be used to remove the artifacts (e.g.
blocking) of the transform coding at low bit-rate [18].

We intend to apply the soft-thresholding scheme to suppress the reconstruction
noise due to the wavelet-domain quantization, while maintaining the relatively sharp
features (e.g. edges) of the original image. From the analysis of the statistical models
of the quantization noise, we know that in each subband of the wavelet decomposition,
the quantization error is recursively upsampled and filtered through the synthesis
filters. Therefore, the reconstruction error is not a white Gaussian noise. However,
we can still successfully apply this nonlinear scheme for the following reasons. The
wavelet transform tends to whiten the data so that the wavelet coefficients of the
reconstructed noise might be much more uncorrelated than the noise itself if the
wavelets (or the corresponding filter banks) used for compression and de-noising are
different, i.e., different frames or tight frames are used for the wavelet expansion.
Secondly, it is shown that if the noise is bounded (which is obviously the case for
most image processing problems), then the soft-thresholding is optimal. Finally, we
propose to apply the adaptive wavelet soft-thresholding to compensate for the data
correlation.

Besides the low computational complexity, our universal scheme is completely
independent on the coding scheme, therefore independent of the various statistical

models of the quantization noise.



33

The only parameter in this nonlinear operator, the threshold, has a significant
effect on the de-noising performance. In practice, the unknown parameter o, the
variance of noise, must be estimated from the data according to Donoho’s original
method. In general, both under-thresholding and over-thresholding cause more dis-
tortion between the de-noised signal and the original signal. Thus, in each subband,
there exists an optimal threshold to minimize the distortion.

It is interesting to note that if we choose the RDW'T instead of the classical DWT,

then we obtain better results for de-noising [26].

4.3 Dithering Method

Due to the coarse quantization, the quantization error and the input image are corre-
lated. This correlation is reflected by some perceptually undesirable image-dependent
patterns in the reconstructed image, such as the contouring effects, teh ringing ef-
fects, teh block effects, etc. By adding some appropriate high-frequency perturbation
signals, such as pseudo-random noise, to an image prior to quantization, it is possible
to break up these undesirable patterns. This classical technique is called dithering
[24]. The basic idea of dithering is, by adding a pseudo-random signal to the image
before it is quantized and subtracting the same signal from the quantized value, to ef-
fectively replace the image-dependent quantization noise with the image-independent
noise which is less annoying to human eyes. Figure 4.1 is the block diagram of a

dithered quantizer system.

Wy, Wy,
T, J\—I- J\— 2
T @ T o

Figure 4.1 A dithered uniform scalar quantizer
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Let ¢ denote the step-size of the uniform scalar quantizer (). It has been shown
that if w, is a white noise uniformly distributed in [—¢/2, q/2], then the quantizer

output Z, can be modeled approximately as
jjn =T, + ey

where e, is a white noise that is independent of x, and has a uniform distribution
in [—¢/2,¢/2]. Such a white noise is less visible and easier to remove using noise-
reduction techniques such as the Wiener filtering, the median filtering, the wavelet

shrinkage, etc.

4.4 Experimental Results
From our experiments, we obtain the following results:

1. The reconstruction noise in a wavelet compressed image is highly correlated
with the original image. Thus, it is harder to remove than the speckle noise
in synthetic aperture radar images, which can be modeled as a white Gaussian
process. Since the statistical characteristics of the original image and the recon-
struction noise is unknown in practice, it is hard to perform de-noising using
those classical techniques such as the Wiener filtering. The wavelet shrink-
age is a powerful method that can attenuate the reconstruction noise with low

computational complexity and independent on the noise statistics.

2. Because in general the reconstruction noise energy is not uniformly distributed
across all scales, the scale-adaptive thresholding scheme performs better than

the uniform thresholding scheme.

3. While the classical subband coding and the JPEG method suffer from teh con-
touring effect and the block effect, respectively, at low bit rates, the wavelet
transform coding indicates less artifacts and results in better visual quality,

though the numerical performance is the same. However, the transform domain
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dithering does not improve the performance of the wavelet transform coding.
The resulting error after using dithering technique is still correlated to the orig-
inal image. This is due to the aliasing effect of the QMFs when the quantization

error of the wavelet coeflicients exists.

Figure 4.2 illustrates a toy example of improving coding performance in terms
of both the numerical measure and the visual quality via the dithering and the
wavelet shrinkage. The results indicate that the wavelet shrinkage can improve
the PSNR by attenuating the signal-independent noise in the reconstructed image,
but cannot remove the contouring effect corresponding to the signal-dependent noise
(Figure 4.2(b)). If the original image is dithered before quantization, then the noise
in the quantized image is approximately signal-independent and hence less visually
annoying (Figure 4.2(c)). Furthermore, the wavelet shrinkage can be used as a post-
processing scheme to efficiently remove the signal-independent noise and improve both
the numerical measure and the perceptual quality (Figure 4.2(d)). In fact, a compres-
sion system can be viewed as a generalized quantizer so that the dithering method
and the wavelet shrinkage method can be applied as the pre-processing scheme and
the post-processing scheme, respectively, to suppress the reconstruction noise and

remove the artifacts.



(c) (d)

Figure 4.2 De-Noising via dithering and wavelet shrinkage: (a) spatially
uniform quantized image at 3 bpp (PSNR = 28.62dB); (b) wavelet shrinkage
de-noised image (PSNR = 30.15dB); (c) dithered and spatially uniform
quantized image (PSNR = 28.82dB); (d) de-noised image via dithering and
wavelet shrinkage (PSNR = 31.85dB)

36
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Chapter 5

Simultaneous Noise Reduction and Data
Compression

In this chapter, we propose a novel method for simultaneous noise reduction and data
compression based on shrinking, quantizing and coding the wavelet packet coefficients
[43]. A fast dynamic programming pruning algorithm is used to efficiently choose the
best basis from the entire library of the admissible wavelet packet bases, which jointly
optimizes the bit allocation and the quantization in the rate-distortion sense. Soft-
thresholding in wavelet domain can significantly suppress noise, e.g., the speckles
of the synthetic aperture radar (SAR) images, while maintaining bright reflections
for subsequent detection and recognition. Our method can be viewed as not only

a generalization but also a combination of the methods used by Guo et al [20] and

Werness et al [44].

5.1 Background

Synthetic aperture radar is an active coherent all-weather imaging system that oper-
ates in the microwave region of the spectrum. This imagery is well suited to the task
of remote ground mapping in many applications, such as surveillance, oceanography,
glaciology, and agriculture. There are two problems in the practical SAR applications.
One is the speckle phenomena. The speckle results from the necessity of creating the
image with the coherent radiation. A fully developed speckle pattern appears chaotic
and unordered. When the detail information in the image is important, the speckle
can be viewed as a noise that causes degradation of the image. Therefore, speckle

reduction is an essential procedure before the procedures of automatic target de-
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tection and recognition. Another problem is the large amount of SAR data. The
data collected and processed by a SAR system are inherently complex. Thus, data
compression is desirable for quick transmission of the collected information.

The wavelet transform is a relatively new technique for multi-resolution decom-
position of images and is widely used in both noise reduction and data compression
of SAR images [20, 44]. Thus, it is very efficient to combine the procedures of noise
reduction and data compression in a single process of decomposition and reconstruc-
tion. As a generalization of the wavelet basis, the wavelet packet (WP) bases, which
is a rich family of the orthonormal bases, can be expected to be more suited to match
the non-stationary statistics of the images. Therefore, it is desirable to fast select an
optimal wavelet packet basis under some criterion and to achieve better performance

of de-noising and compression.

5.2 Bit Allocation and Quantization

The optimal (in rate-distortion sense) bit-allocation scheme is embedded in the best
WP bases selection algorithm. In our algorithm, we use the uniform scalar quantizer

(USQ). There are several advantages of using the USQ:

1. Tt is very easy and fast to implement a USQ alleviating the computational
complexity for the rate-distortion functions. The trade-off between the compu-
tational complexity and the performance is very crucial in the applications of

compression of very large data sets.

2. It can be shown that, if the quantized variables are entropy coded by a variable-
length coding scheme such as the Huffman coding, then the USQ gives a better
performance than the Lloyd-Max quantizer [23]. It has been found that the
uniform quantizer is a quite good approximation of the “optimum quantizer”
based on entropy versus mean square distortion criterion, if the quantization

step size is optimized with respect to this criterion.
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3. It is easy to combine the procedure of the wavelet domain soft-thresholding,
which helps both de-noising and data compression, with the procedure of the

uniform scalar quantization.

In our application, each subband is assigned a finite set of quantizers with different
quantization steps. Hence, the rate-versus-distortion functions of the subbands can be
easily computed. We use the mean-squared error (MSE) and teh first-order entropy as
the measures of the distortion and the rate, respectively. The weighted MSE criterion
related to the model of the human vision system (HVS) can also be used to further

improve the visual quality of the reconstructed images.

5.3 Basic Idea

Ideally, we want to jointly optimize the performance of compression and detection.
However, this is an intractable optimization problem due to the non-existance of a
good measure for both data compression and noise reduction. So, our goal here is
to optimally compress the SAR image in rate-distortion sense while maintaining the
performance of de-noising.

Assume that the optimal wavelet packet subtree from the node n “onwards” to the
full tree-depth is known. Then by Bellman’s optimality principle [5], we know that all
possible paths passing through the node n must invoke this same optimal “finishing”
path. At each non-leaf node of the tree, there are two contenders for the “surviving
path”, the parent and its children, with the winner having the lower Lagrangian cost.
According to this sub-optimality, we can apply a dynamic programming to construct
the optimal subtree starting from the leaf nodes upwards. When we reach the root
node, the best basis with the minimum Lagrangian cost is known.

Figure 5.1 describes the basic structure of our algorithm. We first perform the de-
noising. Then, we initialize a slope value A and compute the rate-distortion relations

and the minimum Lagrangian costs of all subbands with the admissible quantizer sets.
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We then start from the leave nodes of the entire WP tree and compare each node
with its four child nodes. For each node, if its Lagrangian cost is less than the sum of
those costs of its four child nodes, we mark this node as a “merge” node; otherwise,
we mark this node as a “split” node and update its information (Lagrangian cost and
the corresponding rate and distortion) with those of its child nodes. We recursively
do the comparisons until we reach the root node. Then, we can curve out the optimal
sub-tree for this A by pruning all the sub-trees rooted at those “merge” nodes and
the corresponding rates and distortions. We can repeat the above process using a
bisection search to find the proper A so that the resulting rate is identical to the
desired bit budget.

Since we include the de-noising procedure in our coding algorithm, which obviously
causes some error between the de-noised image and the original image, we use the
MSE between the coefficients of the de-noised image and those of the decompressed

image as the distortion.

5.4 A Pruning Method

The computational complexity of computing the subband distortion-rate curves counts

for a significant percentage of the total cost of our algorithm. We propose a pruning

Best
Basis
Selection
{Tem} | {ykm}|  Wavelet {Cim} Soft- 5§”r} Quantizer
—log || TPacI;et Thresholder & Entropy —
ransform Coder

Figure 5.1 Block diagram of the algorithm for
simultaneous de-speckling and compression
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method based on the fact that the distortion-rate function is monotonically decreas-
ing and convex, to fast search for the minimum Lagrangian cost in each subband
image.

Assume that {R;} is a set of admissible bit-rates for a certain subband image,
satisfying

Ry <Ry<- < Rp1 <R < Rpgr < -+

Define the Lagrangian cost J(R;) = D(R;) + AR;, where D(-) is the distortion-rate
function and A is the Lagrangian multiplier. The goal is to find

R* = arg rr}lzi‘n J(R;) = arg n}%i‘n[D(Ri) + AR;].

We claim the following two pruning conditions to accelerate the search:
Condition 1: J(Rj_1) < J(Ri) = J(Ry-1) < J(Rit1);

Condition 2: J(Ri) > J(Ri1) = J(Ri-1) > J(Rrgr).

We will give the proof in the Appendix.

5.5 Algorithm

The following procedure is used to de-speckle and compress the images.

Step 1: Take the logarithmic operation on the magnitude of the complex SAR image

{Zkm} to obtain {yxm}.

Step 2: Perform a full wavelet packet decomposition (up to a desired level L) on the
image y to obtain the coefficients {cim} for the entire WP library.

Step 3: Apply soft-thresholding to {cim} and obtain the de-noised WP coefficients

{Cm}-
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Step 4: For each subband nij, quantize the de-noised WP coefficients using all ad-
missible quantizers, record the resulting rates { R,eq (nﬁj)}, and the correspond-

ing distortions {Dyeq(ni;)}, and form the rate-versus-distortion curve.

Step 5: Initialize an operating slope value A, populate all the nodes {ni] of the WP

tree with their minimum Lagrangian costs J!;()), i.e,

{]i],()\) = minqu[Dq(nij) + )\Rq(nid)]

Step 6: Initialize [ «— L. Let q*(nij) = argmin(]ilﬂ-()\)). Initialize

7l {
Jij = Ji

2,77

f?i] — Ri’,j (where Rﬁ-ﬁj = Rq*(nﬁd)(né,j)%
Dij — Dﬁ,j (where D} . =D “(nt )(nij))

4 ¥

Step 7: [ — [ —1. If I <0, go to Step 10.

Step 8: Vi,j =1,2,---.2" at the [th tree level:

. ! Fi+1 Fi4+1 Fl41 Fi41
if (Ji,j()‘) < ‘]22'—1,2]'—1 + J2i—1,2j + ‘]22',2]'—1 + ‘]22',2]')
then {split(n!;) «— FALSE;
1 T T !
Ri; = R Dy = Dy Ji; < Jy 53
else {split(n;j) — TRUE;
5l S+l i1 Sl S+
Ri,j = RQi—l,Qj—l + RQi—l,Qj + R2z’,2j—1 + R2z’,2ja
] R ] AR IR
Di,j = DQ—ZI'——I,Qj—l + DQj_—l,Qj + D2-2I'—,2j—1 + D2—z|'—,2j7

Fl Fl+1 Fl+1 Fl+1 Fl+1
‘]i,j — JQi—l,?j—l + JQi—l,Qj + JQi,Qj—l + J2i,2j}'

Step 9: Go to Step 7.

Step 10: Perform a tree-walk, starting from the root of the WP tree, n870, and carve
out the optimal subtree corresponding to the best wavelet packet basis with its
associated optimal choice of quantizer set. ]%870 and D&O are the rate and the

distortion of the optimal subtree for the given A, respectively.
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Step 11: Iterate from Step 5 to Step 10 towards the optimal operating slope A\* until

the given target bit rate is achieved.

From the above implementation, we find that the computational complexity is
mainly determined by the size of the nested loops. In most applications, we only
decompose the image up to 4 ~ 6 levels. The number of quantizers of each subband
is also a small constant compared to the size of image. Also, the number of iterations
for the bisection search of a convex curve is relatively small. Therefore, the total

computational complexity of our algorithm is O(N), where N is the size of image.

5.6 Experimental Results

We apply the above algorithm to the application of synthetic aperture radar (SAR)
images. The data used here were collected near Stockbridge, NY, by the Lincoln
Laboratory MMW SAR. We apply our algorithm to a polarimetric whitening filtered
(PWF) image. We choose four types of clutter regions in the image: trees, scrub,
grass and shadows. The following four statistics are used to evaluate the performance

of our algorithm:

Standard-deviation-to-mean ratio (s/m) : The quantity s/m (both in power)
is a measure of the image speckle in a homogeneous region. We computed the
s/m ratio for each type of the clutter region to quantify the speckle reduction

capacity of our algorithm.

Log standard deviation: The standard deviation of the clutter data (in dB). This
is an important quantity that directly affects the target detection performance

of a standard two-parameter constant-false-alarm-ratio (CFAR) algorithm.

Target-to-clutter ratio (t/c): The difference between the target and the clutter

means (in dB). It measures how the target stands out of the surrounding clutter.
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Deflection ratio: This is the two-parameter CFAR detection statistic.

where y is the scalar pixel value of the cell, f, is the estimated mean of y, and
o, 1s the estimated standard deviation of y. After speckle reduction, M should

be higher at the known reflector points and lower elsewhere.

Table 5.1, Table 5.2 and Table 5.3 illustrate the numerical results of those four
values for the original and the processed images at four typical regions. The large
reductions of standard-deviation-to-mean ratio (s/m) and log-standard-deviation in-
dicate that a significant amount of speckle has been removed. Figure 5.2 shows the
perceptual results. We can see from the images that speckle is greatly reduced while
sharp features are maintained. After speckle reduction, the deflection ratio should
be higher at known reflector points and lower elsewhere. As shown in Table 5.3, the
deflection ratio is much higher in the wavelet processed images than that in the PWF
processed image. Elsewhere in the image, the deflection ratio values are roughly the
same for both methods. This strongly indicates the advantage of our method, and
suggests a big improvement in detection performance. Also, cleaner images suggest
potential improvements for classification and recognition. Comparing the de-noised
and uncompressed image to the de-noised and decompressed image, we achieve a very
high peak-signal-to-noise-ratio (PSNR) and the good visual quality. Thus, we have
compressed the original image at very low bit rate, 0.2 bits per pixel (bpp), while

maintaining the high performance of de-noising.



Table 5.1 s/m for clutter data

‘ Trees ‘ Scrub ‘ Grass ‘Shadow ‘

Original Image 1.3025 | 0.8229 | 0.6545 | 0.7020
De-noised Image 0.9245 | 0.4478 | 0.3098 | 0.3611
De-noised & Decompressed Image | 0.9251 | 0.4470 | 0.3101 | 0.3618

Table 5.2 log — std for clutter data
‘ Trees ‘ Scrub ‘ Grass ‘Shadow ‘

Original Image 4.9398 | 3.4301 | 2.9543 | 2.9008
De-noised Image 3.8335 | 1.8822 | 1.3271 | 1.3081
De-noised & Decompressed Image | 3.8337 | 1.8825 | 1.3268 | 1.3077

Table 5.3 Target-to-clutter ratio(t/c) and Deflection ratio for clutter data
| Target-to-clutter ratio(t/c) | Deflection ratio |

Original Image 34.0269 11.1842
De-noised Image 30.1037 18.2339
De-noised & Decompressed Image 30.0989 18.2401




100 200 300 400

Figure 5.2 SAR images of a farm area (PWF processed): (a) Original
image; (b) De-noised image; (c) De-noised and decompressed image

(Rate:0.2bpp; PSNR:39.6dB).
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Chapter 6

Summary

Perhaps the biggest potential of wavelets has been claimed for the data compression.
Since the discrete wavelet transform is essentially a subband filtering system, and
since teh subband coders have been successtul in speech and image data compression,
it is obvious that the wavelets have found its immediate application in the compression
problems. It is also clear that the drastic improvements of compression will not be
achieved so easily simply because the wavelets are used. However, the wavelets bring
new ideas and new insights. In this respect, the use of the wavelet decomposition
in connection with other techniques [1, 3, 37, 34] are the promising compression
techniques which make good use of the elegant theory of wavelets.

Though the wavelet-based compression techniques have outperformed the only
international standard for image data compression, JPEG, it will probably take a
long time to standardize these new techniques, or it might be impossible for the
wavelet techniques to replace the JPEG. However, the wavelet decomposition coding
will still be a very important member in the entire family of the data compression

techniques.
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Appendix A

Rate Distortion Theory

The rate distortion theory [6] is based on two central concepts: mutual information
and distortion. The mutual information is a symmetric measure of the information
that symbols v and v convey about each other. The average mutual information
between the ensembles U and V, representing the amplitude-discrete vector-valued
random variables v and v with the joint probability density function pyv(u,v) and
the marginal probability density functions py(u) and py(v) is defined as

Iu;v)= Z ZPUV(U, v)log M

pu(uw)pyv(v)

The distortion measure d(u, v) is a nonnegative scalar quantity that reflects the fidelity
of the reproduction of an original image u by an image v. The average distortion then
is

Dyy = Z ZpUV(u, v)d(u,v).

The rate distortion function (RDF) is defined as

R(D) =inf{I(U;V): Dyv < D},

Puv

i.e., R(D) is the greatest lower bound of the average mutual information, subject to
the constraint that the average distortion Dyy may not exceed D. It can be shown
that R(D) is a monotonically decreasing convex function.

The RDF is a performance bound that no source coder can beat. Conversely, rate
distortion theory shows that a source coder with a performance arbitrarily close to

the RDF exists.



Appendix B

Test Image

Figure B.1 Original Lenna image (512x512, 256 grey-scale)
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Appendix C

Proofs

Here, we give the proof of the two pruning conditions in Chapter 5.

Proposition Assume that D : Rt — R is a monotonically decreasing and
convex function. Define J(R) = D(R) + AR, where ) is a positive constant. Assume
that 0 < R; < Ry < Rs. Then,

J(Rl) < J(RQ) = J(Rl) < J(Rg),

J(R3) > J(Rs) = J(Ry) > J(R3).
Proof:
Define o = (Rs — R2)/(Rs — Ry). Then,

RQ—Rl_l—O{
R3—R2_ (81 ’

Ry=aR+ (1 — a)Rs and
Since D is a monotonically decreasing and convex function, we have

D(Ry) > D(R2) > D(Rs3) and aD(Ry) + (1 —a)D(R3) > D(Rz).

Therefore,
D(Fy) = D(R,) 1-a . DE)-D(Ry) R - Ry
D(R;) — D(Rs) a ' ~ D(Ry) = D(R3) ~ Rs— Ry’
or

D(Ry) — D(Ry) S D(Rz) — D(R3)
Ry — Ry Rs— R,
Since J(Ry) < J(Rz), we have

D(R.) — D(R;)
Ry — Ry

<A



Thus,
D(Rz) — D(R3) <
Rs — R

which implies J(Ry) < J(R3).

or J(RQ) < J(Rg),

Similarly, we can prove the second condition. O

ol
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