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Abstract

Wavelet-based statistical signal processing techniques such as denoising and detection typically
model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for
many real-world signals. In this paper, we develop a new framework for statistical signal processing
based on wavelet-domain hidden Markov models (HMMs). The framework enables us to concisely
model the statistical dependencies and nonGaussian statistics encountered with real-world signals.
Wavelet-domain HMMs are designed with the intrinsic properties of the wavelet transform in mind
and provide powerful yet tractable probabilistic signal models. Efficient Expectation Maximization
algorithms are developed for fitting the HMMs to observational signal data. The new framework
is suitable for a wide range of applications, including signal estimation, detection, classification,
prediction, and even synthesis. To demonstrate the utility of wavelet-domain HMMs, we develop
novel algorithms for signal denoising, classification, and detection.
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1 Introduction

The wavelet transform has emerged as an exciting new tool for statistical signal and image processing.
The wavelet domain provides a natural setting for many applications involving real-world signals, in-
cluding estimation [1-3], detection [4], classification [4], compression [5], prediction and filtering [6], and
synthesis [7]. The remarkable properties of the wavelet transform have led to powerful signal process-
ing methods based on simple scalar transformations of individual wavelet coefficients. These methods
implicitly treat each wavelet coefficient as though it were independent of all others. Other work has
been aimed at modeling correlations between wavelet coefficients, but these approaches usually assume
Gaussian signal models (see [6], for example). The goal of this paper is to develop new wavelet-domain
data models that match the statistical dependencies and nonGaussian statistics often encountered in
practice. These new data models lead to sophisticated processing techniques that coordinate the non-
linear processing amongst coeflicients to outperform current techniques. The new models are designed

with the intrinsic properties of the wavelet transform in mind.

The wavelet transform is an atomic decomposition that represents a one-dimensional signal z(#) in
terms of shifted and dilated versions of a prototype bandpass wavelet function (¢) [8,9]. For special

choices of the wavelet, the atoms
va(t) = 277y -K),  JKeZ (1)
form an orthonormal basis, and we have the signal representation [8,9]
() = Dwascbarl),  wir = [0 V30 d @
IK
For a wavelet centered at time zero and frequency fo, the wavelet coefficient wjx measures the content
of the signal around the time 27 K and frequency 277 f; (see Figure 1). To analyze images, we employ
two-dimensional wavelet systems [8,9]. (To keep the notation manageable in the sequel, we will adopt

an abstract single index system for wavelet atoms and coefficients: ¥ jx — ¥, wix — w;.) In wavelet-

based signal processing, we process the signal z(¢) by operating on its wavelet coefficients {w;}.

In this paper, we adopt a statistical approach to wavelet-based signal processing. We assume that
the observational data are measurements of a signal waveform in additive, random noise. We regard the
signal as random realization from a family or distribution of signals; hence, the signal component of the
data is random as well. We will not explicitly specify prior signal distributions, rather we will deduce
plausible models based on the properties of the wavelet transform itself. Our objective is to develop
probability models for the wavelet transform of signals and images that are rich and flexible enough
to capture the structure of a wide variety of data, yet concise, tractable, and efficient for practical

application in real-world problems.
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Figure 1: Tiling of the time-frequency plane by the atoms of the wavelet transform. Each box depicts the idealized
support of an atom ; in time-frequency; the solid dot at the center corresponds to the wavelet coefficient w;.
Fach different row of wavelet atoms corresponds to a different scale or frequency band. (We run the frequency
axis down rather than up for later convenience.)

The wavelet transform has several attractive properties that make it natural for signal and image

processing. We call these the primary properties of the wavelet transform:

Locality: Each wavelet atom ; is localized simultaneously in time and frequency. Therefore, wavelets

can match a wide range of different signal components, from transients to harmonics.

Multiresolution: Wavelet atoms compress and dilate to analyze at a nested set of scales. This allows

the transform to match both short-duration and long-duration signal structures.

Compression: The wavelet transforms of real-world signals and images tend to be sparse. As a result,
the wavelet coefficient distributions of real-world signals and images have nonGaussian statistics,

with heavy tails.

To date, wavelet coefficients have been modeled either as jointly Gaussian [4,6,10,11], or as nonGaus-
sian, but independent [2,3,12-14]. Jointly Gaussian models can efficiently capture linear correlations
between wavelet coefficients; however, any jointly Gaussian model is in conflict with the nonGaus-
sian statistics implied by the Compression property. NonGaussian models have been formulated, with
independence between the coefficients assumed for tractability reasons. Justification for independent
nonGaussian models is based on the primary properties plus the interpretation of the wavelet trans-
form as a “decorrelator” that attempts to make each wavelet coefficient statistically independent of all
others. However, the wavelet transform cannot completely decorrelate real-world signals and images —
a residual dependency structure always remains between the wavelet coefficients. In words, we have the

following secondary properties of the wavelet transform:

Clustering: If a particular wavelet coefficient is large/small, then adjacent coefficients are very likely

to also be large/small [15].

Persistence across Scale: Large/small values of wavelet coefficients tend to propagate across scales [16,

17].



Both of these empirical observations have been exploited with tremendous success by the compression

community [5,15]. Our goal is to do the same for signal processing.

Completely modeling the joint probability density function of all the coefficients, f(w) with
w = {w;}, would characterize the dependencies between wavelet coefficients. Oftentimes, however,
the complete joint probability density is both intractable to use and impossible to estimate. At the
other extreme, modeling the wavelet coefficients as statistically independent, with f(w) = [[; f(w;), is
simple but disregards the inter-coefficient dependencies. To strike a balance between these two extremes,
we must represent the key dependencies, and only the key dependencies. The primary and secondary
properties of the wavelet transform suggest natural candidates: Persistence suggests that wavelet coef-
ficients can have strong dependencies across scale (vertically in Figure 1), while Clustering and Locality

suggest that coefficients can have strong dependencies within scale (horizontally in Figure 1).

In this paper, we introduce a new modeling framework that neatly summarizes the probabilistic
structure of the coefficients of the wavelet transform [18]. Our models owe their richness and flexibilty

to the following features:

Mixture Densities: To match the nonGaussian nature of the wavelet coefficients, we model the
marginal probability f(w;) of each coefficient as a mixture density with a hidden state variable

(see Figure 2(a)).

Probabilistic Graphs: To characterize the key dependencies between the wavelet coefficients, we
introduce Markovian dependencies between the hidden state variables. These dependencies are

described by a probabilistic graph or tree (see Figure 2(b)).

Models of this type, commonly referred to as Hidden Markov Models (HMMs), have proved tremendously

useful in a variety of applications, including speech recognition [19,20] and artificial intelligence [21].

The different state-to-state connectivities illustrated in Figure 2(b) yield fundamentally different
models, each appropriate for certain applications. In this paper, we will emphasize three models. The
Independent Mizture (IM) model leaves the state variables unconnected and hence ignores any inter-
coeflicient dependencies. The Hidden Markov Chain model connects the state variables horizontally
within each scale. The Hidden Markov Tree (HMT) model connects the state variables vertically across

scale. We refer to these models collectively as wavelet-domain HMMs.

After specifying a modeling framework, we can train a model by adjusting its parameters (the
mixture density parameters and the probabilistic graph state transition probabilities) to best match
our data in the maximum likelihood (ML) sense. In this way, we do not impose an artificial model

on the data; rather we let the data itself dictate the exact form of the model. We will see that
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Figure 2: Statistical models for the wavelet transform. (a) Independent Mixture (IM) model. To match the
nonGaussian nature of the wavelet coefficients, we model each coefficient as a mixture with a hidden state variable.
Fach black node represents a continuous wavelet coefficient W;. FEach white node represents the mixture state
variable S; for W;. (b) To match the inter-coefficient dependencies, we link the hidden states. Connecting discrete
nodes horizontally across time (dashed links) yields the Hidden Markov Chain model. Connecting discrete nodes
vertically across scale (solid links) yields the Hidden Markov Tree (HMT) model.

probabilistic graphs allow us to develop a natural Markovian structure that enables rapid and robust

iterative parameter estimators like the Expectation Maximization (EM) algorithm.

Once trained, HMMs provide an excellent approximation to the full joint probability of the wavelet
coefficients f(w). Furthermore, the statistical framework provides a natural setting for exploiting the
structure inherent in real-world signals and images for estimation, detection, classification, prediction
and filtering, and even synthesis. For example, in Section 5.1 we will apply this machinery to signal
estimation and derive a new wavelet denoising scheme that performs substantially better than current
approaches (see Figure 7 and Table 1). In Section 5.2, we will apply our models to two difficult problems

in detection and classification.

Our approach in this paper differs considerably from previous approaches to modeling wavelet trans-
forms. In the signal estimation arena, research has concentrated primarily on modeling the nonGaus-
sianity of the wavelet coefficients rather than their inter-dependencies [2,3,12-14]. In the compression
arena, techniques incorporating both coefficient nonGaussianity and inter-coefficient dependence lie at
the heart of the state-of-the-art compression systems. In particular, the zero-tree coder of Shapiro [5]
has revolutionized wavelet image compression, significantly improving compression performance by ex-
ploiting dependencies between wavelet coefficients. This work has spurred a number of new, improved
image coders, too numerous to mention here. Our work differs from most current compression research
in that we focus on an underlying probability model rather than just efficient data structures (such as
the zero-tree). Thus, our framework is well-suited not only for compression, but for a host of problems

in statistical signal processing.

Wavelet-domain HMMs also differ distinctly from the multiscale stochastic models developed in
[6,10]. In these multiscale stochastic models, the wavelet coefficients themselves (rather than the hidden

state variables) are modeled using a Markov structure. In addition, in [6], Basseville et al. emphasize



linear Gaussian models. Wavelet-domain HMMs are nonlinear, nonGaussian, and do not constrain the
wavelet coefficients to be strictly Markov. Furthermore, processing with wavelet-domain HMMs remains

simple due to the Markov structure of the hidden states.

Though similar in spirit to wavelet-domain HMMs, the multiscale models formulated in [22] tackle
an entirely different problem. Developed for image segmentation, these models provide an efficient
multiscale model that is applied directly to the signal. They do not apply to a multiresolution or

tree-structured representation of the signal and, hence, do not provide feasible wavelet-domain models.

The wavelet-domain HMM framework developed in this paper also offers several advantages over
traditional hidden Markov chain models from time series analysis. While these latter models have been
successfully applied in situations such as speech processing, where the model does not provide a realistic
model of the data generation mechanisms [23], in the wavelet context, HMMs are completely natural and
in fact are evoked by the primary and secondary properties of the wavelet transform. For instance, the
joint time-scale localization of the wavelet transform enables our models to concisely represent both short
duration and long duration signal structure. In addition, marginal mixture models for individual wavelet
coefficients have proven very effective in practice (primarily because of the Compression property)
[2,3]. Mixture models are intimately related to the underlying signal spaces that are mathematically
appropriate for the representation of real-world signals [1,12]. By contrast, in most traditional HMM
applications, mixture models are chosen as a convenience and are not necessarily a realistic model of

the underlying physical phenomena [23].

After dispensing with definitions and notation in Section 2, we turn to wavelet transform modeling
using HMMs in Section 3. We derive a new EM algorithm for training the models on real data in
Section 4. In Section 5, we apply this powerful machinery to several problems in signal estimation and

detection and classification. We close in Section 6 with a discussion and conclusions.

2 Preliminaries

Before we launch headlong into hidden Markov wavelet modeling, we introduce further terminology of

wavelet transforms, graphs and trees.
By introducing a set of lowpass scaling functions ¢, x(t) = 277 ¢(27%t — K) into (2) we obtain
the alternate wavelet representation [8]

Jo
2(t) = DY ug dpr(t) + D D wik ir(t), (3)
K

J=—xx K

with ux = [z2(t) ¢3, k(t) dt and wjx as defined in (2). Note the semi-infinite range of the scale

parameter J. The wavelet and scaling coefficients of sampled signals can be computed extremely
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Figure 3: Organization of a wavelet transform as a forest of binary trees. Tilings of the time-frequency plane and
tree structures for (a) full decomposition (one tree), (b) decomposition with two fewer scale bands (four trees).
A scaling coefficient sits above the root of each tree. Associated with each index i is a pair of nodes representing
the wavelet coefficient W; (black node) and its state variable S; (white node).

(b

efficiently using filter banks [9]. Wavelet transforms of images can be computed using combinations
of one-dimensional wavelets and scaling functions. For more information on wavelet systems and their

construction, see [8,9].

Graphs and trees will play a central role in this paper. An undirected graph consists of a set of
nodes {vy,vq,...,vn} and a set of connectionslinking the nodes. A path is a set of connections between
two nodes. A rooted tree is an undirected acyclic graph. In a tree there is a unique path linking any
two nodes. All nodes that lie on the path from v; to the root are called ancestors of v;; all nodes that
lie on paths from v; away from the root are called descendants of v;. The parent of v; is its immediate
ancestor and is denoted by v,;). A node is a child of v; if v; is its parent. We denote the children of
node v; by {vj}jEc(i)' A node may have several children, but only one parent; nodes with no children

are called leaves of the tree. Each node in a binary tree that is not itself a leaf has two children.

When viewed in the time-frequency plane as in Figure 1, a wavelet transforms has a natural organi-
zation as a forest of binary trees [24].! The tree(s) are rooted at the wavelet coefficients in the coarsest
scale (lowest frequency) band; a single scaling coefficient sits above each root. Depending on the length
of the signal and the number of scale bands computed in the transform, the forest of trees will contain
from one to several distinct trees (see Figure 3). In our abstract indexing scheme, we will denote the
i-th wavelet coefficient from the k-th tree as w*. Wavelet transforms of two-dimensional images have a

similar organization, but in terms of quad trees [5].

Finally, some simple notation: When dealing with random quantities, we will use capital letters to
denote the random variable and lower case to refer to a realization of this variable. We will use pg(s)
to denote the probability mass function (pmf) of the discrete random variable S and fw (w) to denote
the probability density function (pdf) of the continuous random variable W. We will use the shorthand
iid for independent and identically distributed. We will denote vectors with boldface letters.

Do not confuse our use of trees with so-called tree-structured filter banks [9].



3 Wavelet Domain Probability Models for Observational Data

Recall that our objective is to develop probability models for the wavelet transform of signals and images
that capture complex dependencies and nonGaussian statistics, yet remain tractable so that they can
be applied to real-world problems. To this end, we develop our model in two steps. We begin with
a simple model in which the wavelet coefficients are assumed to be independent of each other. This
model is based on the primary properties of the wavelet transform and motivated by the fact that the
wavelet transform “nearly” decorrelates a wide variety of signal and images. We show that a two-state

Gaussian mixture model is appropriate for the marginal distribution of individual wavelet coefficients.

Next, we extend the independent coefficient model in order to account for residual dependencies
that remain between the wavelet coefficients. This extension is accomplished with simple Markovian
structures on the wavelet tree. We consider Markov models across both time and scale to account for the
secondary properties of the wavelet transform: Clustering and Persistence across Scale. Our structures
reflect Markov dependencies between the states of the wavelet coefficients, rather than the values of the
wavelet coefficients themselves (as in [6]). The tandem of marginal Gaussian mixtures and first-order

Markovian dependencies leads to hidden Markov models for the wavelet coefficients.

3.1 Probabilistic Models for an Individual Wavelet Coefficient

The Compression property of the wavelet transform states that the transform of a typical signal or image
consists of a small number of large coefficients and a large number of small coefficients. This property,
combined with our view of the signal as a random realization from a family or distribution of signals,
leads to the following simple model for an individual wavelet coefficient. Most wavelet coefficients
contain very little signal information and hence these coefficients have small, random values. A few
wavelet coefficients have large values that represent significant signal information. Thus we can model
each coefficient as being in one of two states: “high,” corresponding to a wavelet component containing
significant dominant contributions of signal energy, or “low,” representing coefficients with little signal
energy. If we associate with each state a probability density — say a high-variance, zero-mean density
for the “high” state and a low-variance, zero-mean density for the “low” state — the result is a two-state

mixture model for each wavelet coefficient.

As we see from Figure 4, this simple model is completely parameterized by the pmf of the state

variable S;, ps;(1),1 — ps, (1), and the variances of the Gaussian pdfs corresponding to each state, Uij,
j = 1,2. Substantial evidence, both empirical and theoretical, shows that this simple two-state, zero-
mean Gaussian mixture model can approximate the marginal densities of wavelet coefficients quite well.

Empirically, this two-state zero-mean mixture model has proven both effective and convenient [2,3]. Our
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Figure 4: A two-state, zero-mean Gaussian mixture model for a random variable W. We denote the state variable
S with a white dot, the random variable W with a closed dot. Illustrated are the Gaussian conditional pdf’s for
WS as well as the overall mixture pdf for W. In our application, we model each wavelet coefficient W; (each
black dot in Figure 1) in this way.

Figure 5: A two-state, zero-mean Gaussian mixture model can closely fit real wavelet coeflicient data. Here we
compare the model pdf to the histogram of one scale of the wavelet transform of an image of fruit.

experience corroborates these results; in Figure 5 we demonstrate the fit that a two-state, zero-mean
Gaussian mixture provides for an actual signal. Theoretically, zero-mean Gaussian mixtures have been
shown to naturally characterize the wavelet-domain statistics of signals from Besov spaces [12], and

Besov spaces have proven to be extremely useful signal classes for real-world data [1].

Although we have illustrated and motivated a two-state, zero-mean Gaussian mixture model, we
will develop machinery to handle a wider class of Gaussian mixture models with M > 2 states and
non-zero means.? This increased flexibility allows us to better fit the marginal densities encountered in
certain applications. In fact, by increasing the number of states and allowing non-zero means, we can

make the fit arbitrarily close for densities with a finite number of discontinuities [26].

In general, an M-state Gaussian mixture model for a random variable W consists of

1. a discrete random state variable S taking the values s € 1,2,..., M according to the pmf pg(s).

2. the Gaussian conditional pdfs fy|s(w|S =s),s€1,2,..., M.

To generate a realization of W using the mixture model, we first draw a state value s according to

2In fact, similar machinery can be developed for mixtures of conditional densities from an exponential family of distri-
butions [25]. However, the two-state Gaussian mixture model is simple, robust, and easy-to-use — attractive features for
practical applications.



ps(s) and then draw an observation w according to fy|s(w|S = s). The pdf of W is given by

M
Jw(w) = z_: ps(m) fws(w|S = m). (4)

In most applications of mixture models, the value w is observed, but the value of the state variable S
is not; we say that the value of S is hidden. Notice that mixture models can be used for the scaling
coefficients (which are definitely not zero-mean), but in this paper we do not model nor process the

scaling coefficients.

3.2 Probabilistic Models for a Wavelet Tree

Since a Gaussian mixture model can accurately characterize the pdf of a single wavelet coefficient,
it seems logical to use Gaussian mixture models to characterize the joint pdf of the entire wavelet
transform. The simplest approach would be to model the wavelet coefficients as independent Gaussian
mixtures. We call this approach the Independent Mizture (IM) model. Because the wavelet transform
“nearly” decorrelates a wide variety of signals, this model for the wavelet tree is intuitively plausible.
Moreover, as demonstrated by the denoising results in [2,3], the IM is a substantial improvement over
deterministic signal models that do not explicitly take the distribution of signal’s wavelet coefficient

values into account.

Nevertheless, the Clustering and Persistence properties lead to local dependencies between wavelet
coefficients. Characterization of these dependencies has resulted in significant performance gains in
compression [5,15]. Ideally, we would like a model that both matches each individual coefficient’s pdf

and captures dependencies between coefficients.

We motivate our approach by extending the Gaussian mixture model for one wavelet coefficient
to jointly model two wavelet coefficients that represent components of the signal close in time and/or
scale. We say that two such coefficients are neighbors. By Clustering and Persistence, if one coefficient
is in a high-variance (low-variance) state, then the neighbor is very likely also in a high-variance (low-
variance) state. Thus, the two neighboring wavelet coefficients can be modeled as Gaussian mixtures
with inter-dependent state variables. This two-coefficient example suggests a natural generalization to
the multiple coefficients in a wavelet transform: model each coefficient as a Gaussian mixture, but allow

probabilistic dependencies between the state variables of each mixture.

What remains is to specify an appropriate model for these dependencies between the state vari-
ables. A complete joint pdf taking into account all possible dependencies is clearly intractable, since
the number of different state variable combinations grows exponentially in the number of wavelet co-

efficients. Fortunately, the Locality and Multiresolution properties of the wavelet transform suggest

10



that dependencies die off quickly as we move away from the local neighborhood about a coefficient of
interest. Hence, very accurate and practical models can be obtained with probabilistic links between
the states of only neighboring wavelet coefficients. In the next sections, we apply probabilistic graph

theory [21,23,27] to develop these models.

3.2.1 Graph models for wavelet transforms

Probabilistic graphs are useful tools for modeling the local dependencies between a set of random
variables [21,23,27]. Roughly speaking, a probabilistic graph associates each random variable with a
node in a graph; dependencies between pairs of variables are represented by connecting the corresponding
nodes. The Locality and Multiresolution properties of the wavelet transform suggest three simple ways
to “connect the dots” representing the wavelet coefficients and states in Figure 1: (1) a graph with no
dependencies between wavelet state variables, (2) a graph linking wavelet state variables across time
using chains, and (3) a graph linking wavelet state variables across scale using trees. In Figure 2, we

illustrate these three simple graphs.

We are by no means limited to just these three graphs. More complex dependencies can be modeled
by placing additional connections between the states. Furthermore, if these more complex graphs satisfy
a “chordality” property, we can formulate efficient algorithms for training and applying them [21,23].
However, to keep our presentation and analysis simple, we will concentrate on the three special cases

described in Figure 2, which we elaborate on here.

Independent Mixture (IM) Model: A mixture model with no connections, as in Figure 2(a), cor-
responds to the IM presented in [2,3] and discussed above. It treats wavelet state variables (and

hence wavelet coefficients) as independent random variables.

Hidden Markov Chain Model: Connecting the state variables S; horizontally in Figure 2(b) spec-
ifies a Markov-1 chain dependency between the state variables within each scale [19]. This new
model treats wavelet state variables as dependent within each scale, but independent from scale

to scale.

Hidden Markov Tree (HMT) Model: By connecting state variables vertically across scales in Fig-
ure 2(b), we obtain a graph with tree-structured dependencies between state variables. We call
this new model a tree model to emphasize the underlying dependencies between parent and child

state variables.

We will emphasize the IM and HMT models in the sequel.

11



The HMT model matches both the Clustering and Persistence across Scale properties of the wavelet
transform. Its structure is reminiscent of the zerotree wavelet compression system [5], which exploits
tree-structured dependencies for substantial compression gains. FFurthermore, this graph has a natural
parent-child dependency interpretation. State variable dependencies are modeled via state transition
probabilities from each parent state variable S; to its childrens’ states, the two state variables connected
to it from below (if they exist). For example, in Figure 3(a), state variables S4 and S5 are both children of
S9, and hence causally dependent on S;. Dependency is not simply limited to parent-child interactions,
however. State variables S; and S5 may be highly dependent due to their joint interaction with Ss.
Also, this simple tree-structure is capable of approximating the joint parent-child wavelet coefficient
pdf to arbitrary precision. To see this, consider what happens as we increase the number of mixture

components, M, used to model the marginal parent and child distributions.

Recall the components of the parent-child model. The parent is modeled using M Gaussian uni-
variate mixing densities and an M-vector of probabilities for the densities. Conditioned on the parent
state variable, the child wavelet coefficient is modeled using its own AM Gaussian univariate densities

and an M? matrix of probabilities for transitions from the parent’s state to the child’s state.

The joint model for parent and child is therefore an M? component bivariate Gaussian mixture. The
mixing densities are the Cartesian products of the univariate mixing densities. The mixing probabilities
are products of the parent state probabilities and the A2 matrix of transition probabilities. Appealing
to the approximation capabilities of Gaussian sums for [26], it is easily shown that this bivariate mixture
model can approximate with arbitrary accuracy any bivariate parent-child pdf that has a finite number
of disconinuities. The proof is analogous to the one for the universal approximation capabilities of radial

basis function networks [28].

Using an M-state Gaussian mixture model for each wavelet coefficient W;, the parameters for the

HMT model are:

1. ps,(m), the pmf for the root node Sj.
2. 6?,;"(2') = Dsi|s, (m[S,) = r), the conditional probability that S; is in state m given S, is in
state r.

2

;.m» the mean and variance, respectively, of the wavelet coefficient W; given S; is in

3. Wim and o

state m.

These parameters can be grouped into a model parameter vector 8.

In the HMT mode, we have the following conditional independence relationships among the wavelet

12



coefficients {W;}. First, we observe that

Sw (wiliW;} i, {Sj = si}izis Si=s:) = fw, (wilSi = s1) - (5)
In words, W; is conditionally independent of all other random variables given its state .S;. Hence,
the independence properties for the states also lead to independence properties for the wavelet coeffi-

cients. We next investigate the independence properties for the wavelet coefficients and wavelet states

in tandem.

The tree-structured connections lead to several conditional independence relationships for the states
and wavelet coefficients. Given the parent state S,(;), the pair of nodes (Si, W;) are independent of the
entire tree except for 5;’s descendants. Conversely, given the child state S; ;c.(;), the pair (Si, W) are
independent of S;’s descendants. Combining these properties shows us that (S;, W;) are conditionally

independent of the entire tree given only the parent state S,(;) and the children states {Sj}jEc(i)'

Using Figure 3(a), we can see concrete examples of these independence properties. Given the parent
S1, the pair of nodes (S3, W) are conditionally independent of the subtree rooted at Ss. Effectively,
conditioning on the parent state separates (S, W3) from the right side of the tree. Conversely, given
the child Sy4, the pair (S3,W;) are conditionally independent of the subtrees rooted at Sg and So;
given the other child S5, (Sg, W2) are conditionally independent of the subtrees rooted at Sig and Sij.
Applying these together, we see that that given the parent S; and children {S4, S5}, the pair (Sg, W3)

are conditionally independent of the rest of the tree.

It is important to note that the Markov structure is on the states of the wavelet coefficients, not
the coefficients themselves. This is an important distinction between our model and other multiscale
Markov signal representations such as those considered in [6,10]. In general, our HMM framework does
not imply a Markov structure on the wavelet coefficients directly. Let [(7) denote that the scale of W;

(and S;), and assume that scales are ordered [ = 1, finest, to { = L, coarsest. In our model

fw, (wil{Wj}l(j)>l(i)) £ fw, (wi|Wp(i)) _ (©)
However, observe that even though the wavelet coefficients are generally not Markov, signal processing

using wavelet-domain HMMs remains efficient due to the Markov nature of the wavelet state variables.
3.2.2 Three standard problems of HMMs

There are three canonical problems associated with the wavelet-domain HMMs we have described [19]:

Training: Given one or more sets of observed wavelet coefficients, determine the wavelet-domain HMM
parameters that best characterize the wavelet coefficients. Before we process signals using wavelet-

domain HMMs, we first must train the HMMs to capture the wavelet-domain properties of our

13



signals of interest. This standard HMM training problem can be efficiently accomplished using

the Expectation Maximization (EM) algorithm described in the next Section.

Likelihood Determination: Given a fixed wavelet-domain HMM, determine the likelihood of an ob-
served set of wavelet coefficients. In other words, determine how well the wavelet-domain HMM
describes the signal’s transform. Besides its use in training, likelihood determination is vital for

applications such as classification and detection, as we will see in Section 5.

State estimation: Given a fixed wavelet-domain HMM, determine the most likely sequence of hidden
states for an observed set of wavelet coefficients. This is useful for problems such as segmenta-
tion (see [22]), where the hidden states represent a physically meaningful quantity. The Viterbi
algorithm [19, 23] efficiently performs this optimization.

We next focus on training and likelihood determination, since they are crucial for the applications we

that we develop in Section 5.

4 Model Training and Likelihood Determination

In training, we seek the parameters of a wavelet-based HMM that best fit a given set of data. The
training data W = {W;} consists of the wavelet coefficients of a set of observed signals or images;
the model parameters 8 consist of the mixture state probabilities and mixture Gaussian means and
variances. For parameter estimation, we apply the maximum likelihood (ML) principle: We choose
the model parameters that maximize the probability of the observed wavelet data. ML estimates are

asymptotically efficient, unbiased, and consistent as the number of training observations increases.

Direct ML estimation of model parameters @ from the observed data W is intractable, since in esti-
mating @ we are characterizing the states S = {S;} of the wavelet coefficients W, which are unobserved
(hidden). Yet, given the values of the states, ML estimation of @ is simple (merely ML estimation of
Gaussian means and variances). Therefore, we employ an iterative Fzpectation Mazimization (EM)
approach [29], which jointly estimates both the model parameters 8 and the hidden states S given the
observed wavelet coefficients W. In the context of HMMs, the EM algorithm is often known as the

Baum-Welch algorithm.

4.1 EM algorithms for Model Training

Our discussion of EM algorithms focuses on the specific problem of parameter estimation in wavelet-

based HMMSs; for a more general treatment, see [29]. By (W, S) we denote the complete-data vector
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consisting of the observed wavelet coefficients W and their unobserved states S. Our goal is to maximize

the incomplete log-likelihood function In f(W|8), with @ the parameters of our HMM.

The premise behind the EM algorithm is that iteratively maximizing the expected value of the
complete log-likelihood function In f(W, S|6) leads to a local maximum of the incomplete log-likelihood
function f(W]@). At the p-th iteration, let 0®) be the parameter estimates and Q(0|0(p)) the expected
value of the complete log-likelihood function, with the expectation performed over the unknown states,

conditioned on the observed data and current parameter estimates. Then, we have

Expectation: Q(0|0(p)) = F {ln f(W,S|9)|W, 0(?)} (7)

Maximization: P+ = arg mOaXQ(0|0(p)). (8)

Under mild conditions, this iteration converges to a local maximum of the likelihood function.

In [23], Lucke demonstrates that EM training algorithms exist for any HMM based on a probabilistic
graph with a chordal structure. Since all acyclic graphs (trees) are trivially chordal, the three HMMs
introduced in this paper admit efficient EM training. More complicated models, such as those linking
states across both time and scale (using both solid and dashed connections in Figure 2(b)), are not
necessarily chordal. To perform efficient EM training, we can modify nonchordal graphs to make them

chordal by adding links between states (see [21,23]).

For an HMM, the complexity of each iteration of the EM algorithm is linear in the number of
observations [19,23]. However, as the dependencies between the states become more complicated, the
EM algorithm becomes less efficient (still linear complexity, but with a large constant factor). In
particular, the Expectation (E) step becomes more difficult, due to the increased interplay between
the states. (The Maximization step remains fairly simple.) Although approximate E steps, such as
those developed via Mean Field Theory [30], have been developed to reduce complexity, even these
approximations can be computationally intense. Thus, when designing an HMM, one must focus on

characterizing only the essential dependencies, so that the model remains simple and efficiently trainable.

The specific EM steps for the IM and hidden Markov chain models have been developed thoroughly
in [19,25], so we do not include them in this paper. For more general tree models, Ronen et al. provide
specific EM steps for discrete variables in [31]. Since the observed wavelet data in the HMT model is

continuous-valued, we provide the exact EM steps for this model in the Appendix.

4.2 Likelihood Determination

The E step of (7) is useful in its own right, since it provides us the by-product In f(W|8), the likelihood

of the observed data given the model. This function measure how well the model @ describes the data W.
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@ (b)
Figure 6: Tying in the HMT model. (a) Tying across wavelet trees. (b) Tying within a wavelet tree.

Likelihood determination is extremely useful for detection or classification applications, as we will see in
Section 5.2, and for prediction and estimation. The E step is often referred to as the forward-backward
algorithm in the HMM literature [19] and as the upward-downward or inward-outward algorithm in the

artificial intelligence literature [21,27,31].

4.3 Robust Training and Tying

HMMs are very rich models; thus we must ensure that we have enough training data to prevent “over-
fitting.” By averaging over only one or very few signal observations, we cannot expect to robustly
estimate the marginal densities of the wavelet coefficients, let alone a joint density for the entire wavelet
transform. Which brings us to a key problem: If limited training data are available, how can we make
our modeling more robust? For HMMs we can improve robustness by tying together random variables
— modeling random variables with similar statistical properties using a common Gaussian mixture
density. (Which random variables are similar enough to be modeled with a common density is up to the
model designer.) Practically speaking, we characterize tied random variables with a common parameter
or set of parameters, such as the mixture means and variances or transition probabilities. Tying makes
our estimates of these common parameters more robust, since we increase the amount of training data

associated with each parameter.

In Figure 6, we distinguish between two different types of tying, tying between wavelet trees and
tying within wavelet trees. Recall from Section 2 (Figure 3) that in general, the wavelet decomposition
of even a single signal observation will result in multiple wavelet trees. By tying across trees — which
assumes that the coefficients of these trees have the same density — we can train as if we had multiple
signal observations. We can also tie within trees — by tying all coefficients within the same scale of a

tree, for example. In the Appendix, we discuss both types of tying for training HMT models.
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5 Applications

The development of wavelet-domain HMMs is motivated by the intrinsic properties of the wavelet
transform, and we have discussed how several aspects of the model are supported by empirical and
theoretical evidence. However, the true test of our modeling framework lies in its application to real
signal processing “benchmark” problems. To this end, we consider applications in signal estimation and
detection /classification. We compare the estimation performance of our new models for signal estimation
in additive noise to state-of-the-art wavelet denoising methods. We show that our new framework
offers significant improvements in several well-studied benchmark problems. Wavelet-domain HMMs
are also well-suited to signal detection and classification. In this section, we approach these problems
by assuming that no prior signal models are available and that only “training” data are available for the
design of the detector/classifier. We compare the wavelet-domain HMM-based detectors to the classical
quadratic detector, which is based on a Gaussian signal model. Our results demonstrate the HMM’s

high performance and extremely efficient use of training data in two difficult signal detection problems.

5.1 Signal Estimation

Wavelets have proved remarkably successful for estimating signals in additive white Gaussian noise [1,3].
The Compression property indicates that the wavelet transform typically compresses signals into a few
coeflicients of large magnitude, and because the wavelet transform is orthogonal it leaves noise evenly
distributed across many coefficients of small magnitude. Therefore, by setting small wavelet coefficients

to zero, one effectively removes noise without degrading the signal.

Existing denoising methods usually ignore possible dependencies between signal wavelet coefficients,
and hence these methods do not exploit key Clustering and Persistence Across Scale properties. In this
section, we illustrate the power of the HMT model by developing a novel signal denoising method
based on this framework. The new denoising method co-ordinates the noise removal among the wavelet

coefficients and automatically adjusts to subtle structure within the signal [18].

Consider the problem of estimating a length- N signal in zero-mean white Gaussian noise with power

0. Taking the wavelet transform of the noisy signal, we obtain K > 1 trees of noisy wavelet coefficients

k

w?, where k indexes the tree number and i indexes the location in the tree (Figure 3(b). Since the

orthonormal wavelet transform of zero-mean white Gaussian noise is zero-mean white Gaussian noise

of the same power, the estimation problem can be expressed in the wavelet domain as
k k k
w; =y +ng, (9)
where w?, y¥, and n? denote the wavelet coefficients of the observed data, the signal, and the noise,
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respectively.

Our approach is succinctly described as follows. We first estimate a HMT model for the y%’s from
the noisy data and then use this estimate as a prior signal distribution to compute the conditional mean
estimates of the yf’s given wf In effect, this approach is an “empirical” Bayesian estimation procedure,

since we estimate our Bayesian prior from the data itself.

To estimate an HMM for the noisy wavelet coefficients, we use the EM algorithm from the Appendix.

mr.
,p(2)?

the noisy signal observation.® The additive zero-mean white Gaussian noise n

We begin by estimating the parameters {ps, (m), ¢ O'zm} for the signal wavelet coefficients using

k

; increases each mixture

model variance Uzm by o2. The other parameters are unchanged by the additive noise component. The

2

= can be estimated using the median estimate of [1] performed on the finest scale wavelet

noise power o
coefficients (where the signal energy is expected to be negligible). Hence, we can easily obtain the signal
wavelet model from the noisy signal by training a model for the noisy signal wavelet coefficients and
then subtracting the added variance due to noise. Of course, we typically have only a single noisy signal
observation at hand. Therefore, in order to insure reliable parameter estimation we must “share” similar
statistical information between related wavelet coefficients. This is accomplished by tying wavelet states

across trees (for example, S} and S? are tied) and within each scale, since the statistical characteristics

of these coefficients are likely to be similar.

Once a trained HMM is obtained, estimation of the true signal wavelet coefficients (denoising) is
very straightforward. Note that if the states S¥ of the signal wavelet coefficients y* are known, then
the estimation problem becomes a series of simple one-dimensional estimation problems of estimating
zero-mean (Gaussian random variables in zero-mean additive Gaussian noise. The optimal conditional
mean estimate of y¥, given wf and the state s¥, is

0.2

k k_ ..k ¢k _ _ 1,m k
Now recall that by-products of the KM algorithm are the hidden state probabilities p(SﬂWk, 0) given
the model and the observed wavelet coefficients. (See the Appendix for how these probabilities are

calculated.) Using these state probabilities, we obtain conditional mean estimates for ka via the chain

rule for conditional expectation

2 .
E [y W 6] = S p(st = m|W* 8) ;"0 b, (11)

m U'rzz + 0-31,2' '
The final signal estimate (denoised signal) is computed as the inverse wavelet transform of these es-
timates of the signal wavelet coefficients. Note that only the wavelet coefficients are processed. The

original scaling coefficients are used in the inverse transform.

#As in [2,3], we assume that the wavelet coefficients are zero-mean; the scaling coefficients, though not zero-mean, are
relatively noise-free and hence are not processed.
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Table 1: Denoising results for Donoho and Johnstone’s benchmark test signals [1]. Noise variance o2 = 1.

Method Mean-squared error

Bumps | Blocks | Doppler | Heavisine
SureShrink [1] | 0.683 | 0.222 0.228 0.095
Bayesian [3] 0.350 | 0.099 0.165 0.087
IM 0.335 | 0.105 0.170 0.080
HMT 0.268 | 0.079 0.132 0.081

We next compare our “empirical” Bayesian denoising procedure using the IM and HMT with current
state-of-the-art wavelet denoising algorithms.? Table 1 compares the estimation performance of the IM
and the HMT models with two state-of-the-art scalar algorithms. Donoho and Johnstone’s SureShrink
algorithm [1] performs scalar soft thresholding in the wavelet domain. The Bayesian mixture algorithm
of Chipman et al. [3] operates in a similar fashion to the denoising method using the IM model, except
that their mixture model is a true Bayesian prior and is not inferred from the data. MSE results are
tabulated for denoising Donoho and Johnstone’s standard test signals Bumps, Blocks, Doppler, and
Heavisine [1] in additive white Gaussian noise of power o2 = 1. Inspection of Table 1 shows that
significant MSE gains can be achieved by exploiting wavelet-domain dependencies via the HMT model.

The only exception in this case is the Heavisine signal.

Figure 7 illustrates the subjective improvement of the HMT model for denoising the Doppler signal
in white Gaussian noise of power o2 = 2.25. The HMT denoising method offers two significant advan-
tages over the other methods: (1) HMT denoising is smoother than both SureShrink and IM, and (2)
HMT denoising preserves the high-frequency components at the beginning of the signal much better
than the other two methods. This demonstrates how exploiting the statistical dependencies between
wavelet coefficients enables HMT denoising to better separate signal from noise — even in regions where

signal and noise are visually indistinguishable.

5.2 Signal Detection and Classification

Our marriage of wavelet transforms and HMMs yields a flexible framework for likelihood-based signal
detection and classification that both matches the properties of the wavelet transform and exploits the

structure inherent in real-world signals. Given iid signal observations from two or more classes of signals,

“For each estimation algorithm, Bumps was transformed using the Daubechies-4 wavelet, Blocks using the Haar wavelet,
and Doppler and Heavisine using the Daubechies-8 most-nearly-symmetric wavelet. The SureShrink algorithm and the
Bayesian algorithm of Chipman et al. use the maximum possible number of wavelet decomposition levels (within the
resolution limits of the wavelet filter). The IM and HMT algorithms used a seven-level wavelet decomposition. For Table
1, error results for SureShrink and the Bayesian algorithm of Chipman et al. were quoted from [3]. Error results for IM
and HMT were obtained by averaging over 1000 trials. For Figure 7, SureShrink was implemented using the “hybrid”
shrinkage estimator in the Wavel.ab software. The Bayesian mixture algorithm [3] was not implemented for Figure 7, but
is similar to IM both in its Bayesian formulation and MSE performance.
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Figure 7: Denoising the Doppler test signal in white Gaussian noise, o2 = 2.25. On each plot a dotted line
is used to depict the original signal, a solid line the noisy or denoised signal. The leftmost plots depict the
signals entirely; the rightmost plots depict the signals “zoomed” to the interval [0,0.04], where it is difficult to
distinguish high-frequency signal from noise. (a) Noisy length-1024 Doppler signal, MSE = 2.42. (b) Denoised
via SureShrink [1], MSE = 0.43. (c) Denoised via wavelet-based Bayesian IM model, MSE = 0.34 (d) Denoised
via wavelet-based Bayesian HMT model, MSE = 0.26.
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we can train HMMs for each class, resulting in a probability model for each signal class. We use the
trained HMMs to detect or classify a new signal observation by determining which probability model
describes the new observation best. This task boils down to computing the likelihood of the new signal
observation for each HMM and then selecting the class whose HMM provides the greatest likelihood.
This approach is analogous to the use of HMMs for speech recognition [20], where each signal class is
a specific word or utterance. A slightly different approach developed for time-domain HMMs has been

shown to be asymptotically optimal in the Neyman-Pearson sense for two-class problems [32].

Our approach is quite different from existing wavelet-based detection and classification schemes
[4,24]. A common theme in existing wavelet-based methods is to first extract or select key wavelet coeffi-
cients that represent discriminating signal features, then use this select subset for detection /classification
using classical techniques. In contrast, our approach is based on the principle of maximum likelihood.
Both training and testing firmly rest on this principle, and in this way our entire methodology is

co-ordinated to maximize performance.

The properties of the wavelet transform make our framework particularly appropriate for the classi-
fication and detection of real-world signals. To demonstrate the power and potential of wavelet-domain
HMMs for signal classification, we tackle two difficult problems — classification of nonlinear processes
and change detection. These problems arise in many applications, including sonar and radar, machin-
ery and process monitoring, and biomedical signal analysis. We do not suggest that this framework
is the optimal one for either specific problem, rather we chose these two examples to demonstrate the
flexibility and adaptability of the approach. In situations where the data is known to obey a simple
probability model, then optimal detection and classification methods should be used. However, in com-
plicated real-world applications where the only prior information is a set of training data, our approach
offers a useful framework for detection and classification. In combination, wavelet HMMs and training
data provide an efficient and powerful framework for generalized likelihood ratio testing. Both examples
considered here are binary hypothesis problems, but the framework is applicable to multiple hypothesis

testing as well.

5.2.1 Classification and Detection of Nonlinearity

For the purposes of demonstration, we have designed a numerical experiment that captures many of the
nuances that make nonlinearity classification/detection so difficult. We consider two classes of random

processes described mathematically by:

Class I: z1(t) = az1(t — 1) + nq(¢) (12)

Class II:  zq(t) = ya(t) + 0.2y5(t), with ya(t) = bya(t — 1) + na(t) (13)

21



S S S N S S
S S S N S S

(a) 0 20 40 60 80 100 120 (b) 0 20 40 60 80 100 120

Figure 8: Typical autoregressive (AR) signals used in nonlinear classification experiment. (a) Linear AR process
(Class I). (b) Linear AR process passed through a mild cubic nonlinearity (Class II).

Both ny and ny are white Gaussian noise processes, and the autoregressive (AR) parameters a and b
are iid and uniform over the interval (0.4,0.8). The signals are discrete-time and organized into signal
vectors of length 128 with (t = 1,2,...,128). Class | signals are linear AR(1) processes. Class I signals
are produced by passing linear AR(1) processes through a memoryless cubic nonlinearity. Examples of
signals from each class are shown in Figure 8 (generated with the same AR parameter and white noise

excitation for comparison).

The first task at hand is to train wavelet-domain HMMs for the two classes based on labeled
observations from each class. We generated N7 iid AR signals from each class for training purposes.
(Note: the AR parameter varies independently for each realization.) We trained an IM model and
an HMT model for each class using the discrete Haar wavelet transform, with each wavelet coefficient
modeled using a two-state mixture with nonzero means. The training was unconstrained (no tying). For
comparison, we constructed an optimal quadratic detector under the assumption that the two classes
have Gaussian distributions with different means and covariances [33]. In cases where the number of
training observations Nt was smaller than the dimension of the observations, we formed the optimal
quadratic detector in the subspace spanned by the training data. After training the classifiers, we tested
their performance with 1000 additional iid observations from each class. To obtain reliable estimates of
the error rates, we repeated the training and testing procedure 10 times in each case. The error rates
for the IM model, HMT model, and quadratic detector, as a function of the number of training vectors

Nt from each class, are shown in Figure 9.

Given a limited amount of training data, the quadratic detector has a difficult time distinguishing
the classes and thus offers very poor performance. In contrast, the HMM wavelet models make much
more efficient use of the training data. With only 128 training vectors from each class, the performances
of the HMMs have stabilized to their minimum error rates. Additional training data does not increase
their performance. The performance of the quadratic detector does improve as Nt increases, but requires

nearly 10 times the amount of training data that the HMMs require for the same error rate. We see
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Figure 9: Minimum probability of error rates for quadratic classifier (solid), wavelet-domain IM model classifier
(dash), and wavelet-domain HMT model classifier (dash-dot).

that with asymptotically (in number of training data N7) the quadratic detector has the best error rate,
followed closely by the HMT model. The IM model has the worst asymptotic error performance. This
demonstrates the performance gains associated with the HMT model. Also, this suggests that more
complex wavelet-domain HMMs (that is, more probabilistic connections between states) may provide
asymptotic performance that meet or even exceed that of the quadratic detector. Of course, more
complex HMMs will also require more training data to achieve such performance. These and related

issues are currently under investigation.

5.2.2 Detection of an Abrupt Change

In this example, we consider the following two-class problem. Class I consists of random discrete-time
processes with an arbitrary mean value and additive white Gaussian noise. Class Il consists of random
discrete-time processes with an abrupt change in the mean at some arbitrary point in the signal. Again,

our signal observations are organized into length-128 observation vectors. Formally, our signal classes

are defined by:

Class I: z1(t) = a1 + ny () (14)

Class I y2(t) = aglieqr,...ry + baligrin,.. 128 + m2(?) (15)

Both ny; and ny are white Gaussian noise processes. ay,as, and by are iid and uniform on [—1,1].
Licqr,...y = 1ift € {1,...,7} and is zero otherwise. l;c(;41, 125} is defined in an analogous fashion.
The change-point 7 is uniformly distributed over the integers {16,...,112}. An excellent treatment
of many existing methods for the detection of abrupt changes in given in [34]. The purpose of this
example is not to make an exhaustive comparison between our method and other existing techniques
in the literature, rather the intent is simply to demonstrate the versatility of the wavelet-based HMM

approach to signal detection. Examples of signals from each class are shown in Figure 10.
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Figure 10: Typical signals for the abrupt change detection experiment. (a) Gaussian white noise added to
constant signal (Class I). (b) Gaussian white noise added to signal with abrupt change (Class II).
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Figure 11: Detection of an abrupt change. Minimum probability of error rates for quadratic classifier (solid),
wavelet-domain IM model classifier (dash), and wavelet-domain HMT model classifier (dash-dot).

In this example, we again designed the classifiers (quadratic, Haar-based IM model, and Haar-based
HMT model) with training data from each class, and then tested their performance with 1000 additional
iid observations from each class. The error rates for the IM model, HMT model, and quadratic detector,
as a function of the number of training vectors M from each class, are shown in Figure 11. Again we
see the fast convergence of the wavelet-domain HMM detectors with just a small number of training
observations. The quadratic detector requires far more data to provide the similar performance, and
in this case the wavelet-based HMMSs even asymptotically outperform the quadratic detector. Keep in
mind that we are not claiming that the HMMs are the optimal detector in this problem. With precise
knowledge of the problem at hand, more efficient detectors could be designed. However, this experiment
again demonstrates the utility of the HMM wavelet models for modeling data with little or no prior

information.

6 Conclusions

The primary properties of the wavelet transform — Locality, Multiresolution, and Compression —

have led to powerful new approaches to statistical signal processing. However, existing methods gener-
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ally model the wavelet coefficients as statistically independent or jointly Gaussian. The Compression
property dictates the need for nonGaussian models for individual wavelet coefficients. Moreover, the
secondary properties of the wavelet transform — Clustering and Persistence across Scale, indicate that
statistical dependencies between coefficients must be characterized in order to derive optimal signal
processing algorithms. In this paper, we have developed a new framework for statistical image and
signal processing based on wavelet-domain Hidden Markov models (HMMs). The framework enables us
to concisely model the non-Gaussian statistics of individual wavelet coefficients and capture statistical
dependencies between coefficients. We have developed an efficient Expectation Maximization algorithm
for fitting the HMMs to observational signal data, and we have demonstrated the utility, flexibility, and

performance of our framework in several estimation and detection problems.

We believe that the HMM framework presented here could serve as a powerful new tool for wavelet-
based statistical signal and image processing, with applications in signal estimation, detection, classifi-
cation, compression, and synthesis. Although the examples we have provided here are one-dimensional,
two-dimensional wavelet domain HMMSs are easily derived from our results, since the models and train-
ing algorithms apply to quad trees as well as binary trees. Furthermore, these HMMs apply not only
for modeling wavelet-domain data, but also for modeling data from other multiresolution transforms or
signal representations. Finally, the knowledge base that has already accumulated in statistics, speech
recognition, artificial intelligence, and related fields may lead to wavelet-domain HMMs that are even

more accurate and sophisticated, yet still tractable, robust, and efficient for signal processing.

A Appendix - EM Algorithm for Hidden Markov Trees

Although the EM algorithm is classical with a well-known basic structure, the exact EM steps are
problem dependent. In fact, the EM steps for estimating the parameters of tree-structured probability
models have been derived only recently [27,31], with work primarily focusing on trees of discrete-
valued random variables. Following [31], we develop an EM algorithm for HMTs generalized to handle
continuous-valued wavelet coefficients and specialized to the tree structure provided by the wavelet

transform.

In applying the EM algorithm for HMTs, our task is to fit an M-state HM'T model, parameterized
via 8 = {ps,(m), ezzl(i),ui7m,azm i=1,...,P; n,m=1,...,M}, to K > 1 trees of observed wavelet
coefficients, with P the number of wavelet coefficients in each tree. We omit modeling the single scaling

5

coefficient associated with each tree.” We can obtain the K trees either by wavelet-transforming K

signal observations, each into a single tree, or by wavelet-transforming one signal observation into K

5We could model the scaling coefficient as an independent mixture, as shown in Figure 3(a), or connect its state variable
to the state variable of the coarsest wavelet coefficient. Either extension is straightforward.
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different wavelet trees as shown in Figure 3(b). In the later case, we actually tie across trees — model
different trees using the same set of parameters (see Section 4.3 for details). The EM steps are identical

for either case.

Recall from Section 4.1 that the EM algorithm is iterative, and for HMTs converges to a locally-

optimal ML fit. The iterative structure in this case is as follows:

Initialization: Select an initial model estimate 8.

1. E step (upward-downward algorithm): Estimate probabilities for the hidden state variables

of the wavelet coefficients.

a. Up step: Propagate hidden state information up the tree.

b. Down step: Propagate hidden state information down the tree.
2. M step: Update the model 8 to maximize the expected likelihood function.

3. Convergence test: Iterate between the E step and M step until converged.

For HMTs, the M step is simple — the key step is the E step, also known as the upward-downward
algorithm. To keep things clear and simple, we first develop the E step for a single tree. We then
develop the EM steps for multiple trees.® We finish by incorporating into the EM steps the notion of

tying within trees from Section 4.3.

A.1 E step for a single tree

We first focus on processing a single size- P wavelet tree, with wavelet coefficients W = [W; Wy ... Wp]
having hidden states S =[Sy Sy ... Sp| that take on values m = 1,..., M. The primary task of the E
step is to calculate hidden state probabilities p(S; = m|W, 6) and p(S; = m, S,;) = n|W, ) given the

model 8. To obtain these probabilities, we introduce a number of intermediate variables.

We first introduce notation for trees of observed wavelet coefficients. Similar in structure to the
trees of Figure 3, these trees are formed by linking the wavelet coefficients rather than the hidden states.
We define 7; to be the subtree of observed wavelet coefficients with root at node 7, so that the subtree
7; contains coefficient W; and all its descendants. We also define 7y ; j»; to be the set of observed
wavelet coefficients obtained by removing the subtree 7; from 7;, with 7;; the null tree. Without loss of

generality we order W so that Wy is at the root of the entire tree. Thus, 77 is the entire tree of observed

SNote that with no tying, the M step for a single tree is meaningless, since it entails fitting Gaussian mixtures to
single-coefficient histograms.
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wavelet coefficients (a tree-structured version of the vector W), so in our probability expressions we

interchange 71 and W when convenient.

For each subtree T;, we define the conditional likelihoods

Bi(m) = [f(Ti|S; =m,6)
ﬁi,p(i)(m) = f(,]ﬂsp(i) :mve)

Boini(m) = f(Toanil Sy = m, 0),
and the joint probability functions
ai(Tn) = p(S’t =m, 71\2|0)7

with S; taking discrete values and the elements of 7yy; taking continuous values.

(19)

Based on the HMT properties from Section 3.2, the trees 7; and 7;\; are independent given the

state variable S;. This fact, along with the chain rule of probabilitiy calculus, leads to the desired state

probabilities in terms of the a’s and 3’s. First we obtain

p(Si=m,T1l0) = a;(m) Bi(m)
p(Si=m, S0y =n,T1|0) = a,6)(n) Byapni(n) Bi(m) 5.

The likelihood of W is then

M
f(W18) = f(T:]6) = Y p(Si=m,Th|0) =
m=1

ivgE
®

Bayes rule applied to equations (20)-(22) leads to the desired conditional probabilities

p(Si = m[W,8) = ZM'(Q)( j(g)(n)
(

a,(iy(n ) p(iNi(n) Bi(m) €7
laz(n) i(n) .

p(S:i =m, S, =n|W,0) =

E step (Upward-Downward Algorithm)

(20)

(21)

(22)

(23)

(24)

All state variables within our HMT model are inter-dependent; in determining probabilities for these

state variables, we must propagate state information throughout the tree. The upward-downward

algorithm is an efficient method for propagating this information. The up step calculates the ’s by

propagating information from the leaves to the root; the down step calculates the a’s by propagating

information from the root to the leaves. Combining information from the a’s and 3’s via equations

(23)-(24), we obtain probabilities for each hidden state in the tree.
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For our derivation, we focus on models with mixing components that are Gaussian with probability

density function.

1 (w — p)?
. 2) _ _
g (w,u,a ) = e P ( 57 |- (25)
More general densities can also be treated. Recall that we assign to each node ¢ in the tree a level
[(7) € {1,..., L}, with L the depth of the wavelet decomposition, [ = 1 the finest scale and [ = L the

coarsest scale. Also recall that p(7) is the parent of node ¢ and ¢(¢) the set of children to node 1.

Up Step
Initialize: For all state variables .S; at the coarsest level [ = 1, calculate

Bi(m) = g(wi; piyn, 07 )y m=1,..., M.

1. For all state variables S; at level [, compute form =1,..., M,
M
Bipwy(m) = Yy Bi(n)
n=1

2

Boiy(m) = g( Wi piyms Toiym) 1L Boiyi(m)

Boiiy(m)
Boani(m) = 7@1((;(771)-

2. Set [ =1+ 1 (move up the tree one scale).

3. If I = L then quit. Else return to step 1.
Down Step

Initialize: For state variable Sy at level [ = I, calculate

ai(m) =ps,(m), m=1,..., M.

1. Set [ =1 —1 (move down the tree one scale).

2. For all state variables S; at level [, compute
M
ai(m) =) a6 oy Boeni(n),  m=1,.... M.
n=1

3. If I =1, then quit. Else return to step 1.
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A.2 EM steps for multiple trees

To handle K > 1 trees, we add superscript k for tree number. We denote the observed wavelet coefficients
W = [W! W2 ... WK] and the hidden states S = [S! S? ... SK]. WF = [Wf W Wk,
and S* = {Sf Sk S]]%_J are vectors containing the wavelet coefficient and states of the kth tree,

respectively.

To implement the E step, we apply the upward-downward algorithm independently to each of the
K wavelet trees. This allows us to calculate the probabilities p(S¥ = m|W*, ) and p(SF = m, Sf(i) =
n|W*, @) for each tree via equations (23) and (24).

Once probabilities for the hidden states are known, the ML parameter updates of M step are

relatively simple:

| K
ps.(m) = Kz p(SE = mW*,6) (26)
Ty = o = Zp =n, SN, = m/WF,0). (27)
Him = I( ps Ew p _m|Wk70) (28)

1 K
0l = K ps.(m) S (wf = pim)?® p(SF = m|WF, ) (29)

i k=1

The updates for the state probabilities pg,(m) and e?,zl(i) are performed by summing the individual
state probabilities and then normalizing so the probabilities sum to one. Just as for the IM model [25]
or the hidden Markov (chain) model [19], the updates for the Gaussian mixture means and variances
are performed by a weighted averaging of the empirical means and variances, with weights chosen in

proportion to the probabilities of each mixture.

As should be clear from the E and M steps, the complexity of the EM algorithm is only linear in
the number of observed wavelet coefficients. The linear complexity may involve a large multiplicative
constant depending on the number of hidden states used and the number of iterations required to
converge. However, as shown throughout this paper, even the simplest two-state HM'T model can

capture many densities quite well.

A.2.1 Tying within trees

The M step changes slightly when tying is performed within trees, such as tying wavelet coefficients and
their states within a certain subband or scale. (See Section 4.3 for the basic idea behind tying.) With

tying, we perform extra statistical averaging over coefficients that are tied together within each tree.
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For the kth observation W* with wavelet coefficients w*, we write i ~ j if w¥ and w;“ (and their states)
are tied, modeled with the same underlying density. The set [i] = {j|w;C ~ w¥} is the equivalence class

of i, with |[¢]| the number of elements in the class.

For simplicity, we assume that all trees are tied in the same fashion (that is, coefficients in WF are
tied in the same way as those in W7) according to a collection of equivalence classes given by the [4]’s.
In this scenario, the M step becomes:

K

1&1
psi(m) = K E m 20(5]]‘C = m|Wk79) (30)
k=1 j€ld]
1 1 k k k
€0 = — p(S7 =mn,5" ., =m|W" 0 31
= R m) 2 0 2P = ™ S = WO Y
pim = # IE STk (st = m[ W, ) (32)

CHE Z Z — pim)® p(Sf =m|W*,8). (33)

K ps.(m) ps; (m) ]E[z

Although (30)-(33) appear more computationally intensive than (26)-(29), the complexity remains the

same since the common parameters for each equivalence class [i] need only be calculated once.
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