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Computing multiple roots of inexact polynomials �

Zhonggang Zengy

Abstract

We present a combination of two novel algorithms that accurately calculate multiple
roots of general polynomials. For a given multiplicity structure and initial root estimates,
Algorithm I transforms the singular root-�nding into a regular nonlinear least squares
problem on a pejorative manifold, and calculates multiple roots simultaneously. To ful�ll
the input requirement of Algorithm I, we employ a numerical GCD-�nder, containing a
partial singular value decomposition and an iterative GCD re�nement, as the main engine
of Algorithm II that calculates the multiplicity structure and the initial root approximation.
The combined method calculates multiple roots with high forward accuracy without using
multiprecision arithmetic even if the coeÆcients are inexact. This is perhaps the �rst
blackbox-type root-�nder with such capabilities. To measure the true sensitivity of the
multiple roots, a pejorative condition number is proposed and error bounds are given.
Extensive computational experiments and the error analysis con�rm that a polynomial
being ill-conditioned in the conventional sense can be well conditioned pejoratively, and its
multiple roots can be computed with remarkable accuracy.

1 Introduction

In this paper, we present a combination of two novel numerical algorithms that accurately
calculate multiple roots of polynomials with coeÆcients possibly being inexact without using
multiprecision arithmetic.

Polynomial root-�nding is one of the classical problems with longest and richest history. One
of the most diÆcult issues in root-�nding is computing multiple roots. In addition to requiring
exact coeÆcients, it is widely believed that it is necessary to use multiprecision arithmetic
when multiple roots are present [20].

It is also believed that there is a barrier of \attainable accuracy" in computing multiple roots
[14, 20, 28]: To calculate an m-fold root to the precision of k correct digits, the accuracy of the
polynomial coeÆcients and the machine precision must be at least mk digits. Multiprecision
softwares [1, 21] are available. However, when polynomial coeÆcients are truncated, multiple
roots would turn into clusters. In such cases, extending machine precision on the inexact poly-
nomial would not reverse clusters back to multiple roots. In the absence of accurate methods
that are independent of multiprecision technology, multiple roots of perturbed polynomials
would indeed be intractable.

�Mathematics Subject Classi�cation 65F35, 65H05
yDept of Math, Northeastern Illinois University, Chicago, IL 60625, email: zzeng@neiu.edu.
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While many numerical analysts consider multiple roots being hypersensitive in numerical com-
putation, W. Kahan [16] proved that if the multiplicities are preserved, the multiple roots can
actually be well behaved. More precisely, polynomials with a multiplicity structure form a
pejorative manifold. A polynomial is ill-conditioned if it is near such a manifold. On the other
hand, for the polynomial on the pejorative manifold, its multiple roots are insensitive to mul-
tiplicity preserving perturbations, unless the polynomial is also near a submanifold of higher
multiplicities. Therefore, to calculate multiple roots accurately, it is important to maintain
the computation on a proper pejorative manifold.

In light of Kahan's theory, we propose Algorithm I in x3 that transforms the singular root-
�nding into a regular nonlinear least squares problem on a pejorative manifold. By projecting
the polynomial onto the manifold, the computation remains structure-preserving. As a result,
all the roots, regardless of the multiplicities, are calculated simultaneously and accurately.

In applying our Algorithm I, one needs to have a priori knowledge of the multiplicity structure
of the polynomial and its initial root estimates. To ful�ll this input requirement, we propose
Algorithm II in x4 that employs a numerical GCD-�nder, containing a partial singular value
decomposition of the Sylvester discriminant matrices and an iterative re�nement strategy for
the recursive GCD computation. The resulting algorithm calculates the multiplicity structure
and its initial root approximation for a given polynomial.

In x3.4, we propose a pejorative condition number that measures the sensitivity of multiple
roots. A polynomial that is ill-conditioned in conventional sense can be well conditioned
pejoratively, and its roots can be calculated beyond the barrier of \attainable accuracy". This
pejorative condition number can easily be calculated. Error bounds on the computed roots are
given for inexact polynomials.

In x3.6 and x4.3, we present separate numerical results for Algorithm I and Algorithm II.
The numerical results for the combined algorithm are shown in x5. Both algorithms and their
combination are implemented as a Matlab packageMultRoot that is electronically available1.

The combined algorithm is accurate, stable and reasonably eÆcient. Taking the coeÆcient
vector as the only input, it not only outputs the roots and multiplicities, but also veri�es the
solution automatically via the backward error, the estimated forward error, and the pejorative
condition number as by-products. The total complexity is clearly no more than O(n3). The
most signi�cant features are its remarkable accuracy and robustness in handling inexact data.
As shown in numerical examples, the hybrid code accurately identi�es the multiplicity structure
and multiple roots for polynomials with a coeÆcient accuracy being as low as 7 digits. With
given multiplicities, Algorithm I converges even with lower data accuracy such as 3 decimal
digits. This appears to be the �rst blackbox-type root-�nder with such capability.

While numerical experiments reported in the literature rarely reach multiplicity 10, we suc-
cessfully tested our algorithms on polynomials with root multiplicities as high as 400, without
using multiprecision arithmetic. We are aware of no other reliable methods that calculate
multiple roots accurately by using standard machine precision. Accurate results for multiple
root computation we have seen in the literature can be repeated only if multiprecision is used

1http://www.neiu.edu/�zzeng/multroot.htm
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on exact polynomials, such as the works of Farmer-Loizou [12] and Iliev[15]. A zero-�nder
for general analytic functions with multiple zeros has been developed by Kravanja and Van
Barel [18]. The method uses an accuracy re�nement with modi�ed Newton's iteration that
also requires multiprecision for multiple roots unless the polynomial is already factored [29].

The idea of exploiting the pejorative manifold and the problem structure has been used exten-
sively for ill-conditioned problems. Besides Kahan's pioneer work 30 years ago, theories and
computational strategies for the matrix canonical forms have been studied, such as [7, 9, 10, 19],
to take advantage of the pejorative manifolds or varieties. At present, it is not clear if those
methods can be applied to polynomials with multiple roots.

2 Preliminaries

2.1 Notations

In this paper,Rn andCn denote the n dimensional real and complex vector spaces respectively.
All vectors are columns and denoted by boldface lower case letters. Matrices are denoted by
upper case letters. The notation (�)> represents the transpose of (�), and (�)H the Hermitian
adjoint (i.e. conjugate transpose) of (�). When we use a (lower case) letter, say p, to denote a
degree n polynomial, then p0; p1; � � � ; pn are its coeÆcients as in

p(x) = p0x
n + p1x

n�1 + � � �+ pn:

The same letter in boldface (e.g. p) denotes the coeÆcient (column) vector

p = ( p0; p1; � � � ; pn )>

unless de�ned otherwise.

2.2 Basic de�nitions and lemmas

De�nition 2.1 Let p(x) = p0x
n + p1x

n�1 + � � � + pn; p0 6= 0 be a polynomial of degree n.
For any integer k > 0, the matrix

Ck(p) =

kz }| {2
66666666664

p0

p1
. . .

...
. . . p0

pn p1
. . .

...

pn

3
77777777775

is called the k-th order Cauchy matrix associated with p.

Lemma 2.1 Let

f(x) = f0 x
n + f1 x

n�1 + � � �+ fn; g(x) = g0 x
m + g1 x

m�1 + � � �+ gm
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and h(x) = f(x)g(x). Then h is the convolution of f and g de�ned by

h = conv(f ;g) = Cm+1(f)g = Cn+1(g)f :

Proof. A straightforward veri�cation. Q.E.D.

De�nition 2.2 Let p(x) be a polynomial of degree n and p0(x) be its derivative. For k =
1; 2; � � � n, the matrix of size (n+ k)� (2k + 1)

Sk(p) =
h
Ck+1 (p

0)
��� Ck(p)

i
is called the k-th Sylvester discriminant matrix.

Lemma 2.2 Let u(x) � GCD(p; p0) be the greatest common divisor of p(x) and p0(x). Let

&j be the smallest singular value of Sj(p), j = 1; 2; � � � ; n. Then the following are equivalent.

(a) The degree of u(x), deg(u), is m.

(b) The polynomial p(x) has k = n�m distinct roots.

(c) &1 � &2 � � � � � &k�1 > 0; &k = &k+1 = � � � = &n = 0.

Proof. If p(x) has distinct roots z1; � � � ; zk, then there are positive integers `1; � � � ; `k such
that

p(x) = p0(x� z1)
`1 � � � (x� zk)

`k ;

p0(x) = p0

2
4 kY
j=1

(x� zj)
`j�1

3
5
2
4 kX
i=1

0
@`iY

l 6=i

(x� zl)

1
A
3
5 :

Therefore u(x) = GCD(p; p0) =
Qk

j=1(x� zj)
`j�1, making (a) and (b) equivalent. By Propo-

sition 3.1 in [22], (a) holds if and only if &k�1 > 0 and &k = � � � = &n = 0. Because the smallest
singular value &min of a matrix A equals

&min = min
kxk2=1




Ax 



2
;

it is easy to see that augmenting columns to A does not increase this minimum, and hence the
inequalities &1 � � � � � &k�1 follow. Q.E.D.

Lemma 2.3 Let m be the degree of u(x) = GCD(p; p0), and

u(x)v(x) = p(x); u(x)w(x) = p0(x)

with deg(v) = k = n�m. Then
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(a) The normalized vector

"
v

�w

#
is the right singular vector of Sk(p) associated with the

smallest singular value &k. Equivalently

&k =






Sk(p)
"

v

�w

# 





2

�






"

v

�w

#





�1

2

= min
kyk2=1




Sk(p)y 



2
= 0:

(b) When v is known, the coeÆcient vector of u(x) is the solution u of the linear system

Cm+1(v)u = p

Proof. The vector

Sk(p)

"
v

�w

#
= Ck+1

�
p0
�
v �Ck(p)w

is the coeÆcient vector of

p0(x)v(x) � p(x)w(x) = u(x)w(x)v(x) � u(x)v(x)w(x) � 0;

yielding (a). The assertion (b) is a direct consequence of Lemma 2.1. Q.E.D.

Lemma 2.4 Let A be a matrix, whose smallest two distinct singular values are �̂ > ~�.
Write A = QR, where Q is unitary and R is upper triangular (i.e., its QR decomposition).
From any vector x0 that is not orthogonal to the right singular subspace of A associated with

~�, we generate the sequences �i, xi, i = 1; 2; � � � by the inverse iteration8>>>><
>>>>:

Solve RHyi = xi�1 for yi
Solve R zi = yi for zi

Calculate xi =
zi

kzik2 ; �i =
yi

kzik2 =



Rxi 




2

(1)

i = 1; 2; � � � :

Then there is a constant c such that

����i � ~�
��� � � ic;




Axi 



2
= ~� +O

�
� i
�
; where � =

�
~�

�̂

�2

: (2)

If ~� is simple, then xi converges to the right singular vector ~x of A associated with ~�.

Proof. It is easy to verify that the process (1) is equivalent to the inverse iteration that
calculates an eigenvector associated with the smallest eigenvalue of AHA. Therefore, the
theories of standard inverse iteration apply. For more general discussion on the inverse iteration
in calculating singular subspaces, see [25]. Q.E.D.
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2.3 The Gauss-Newton iteration

The Gauss-Newton iteration is an e�ective method for solving nonlinear least squares problems.
Let G : Cm �! Cn with n > m, and a 2 Cn. The nonlinear system

G(z) = a; for z 2 Cm

is overdetermined, and there is no conventional solution. We thereby seek a weighted least

squares solution. Let W = diag(!1; � � � ; !n) be a diagonal weight matrix with !j > 0, j =

1; � � � n. Let



 � 




W
denote the weighted 2-norm:




v 



W
�



W v





2
�
vuut nX

j=1

!2
j v

2
j ; for all v = (v1; � � � ; vn)> 2 Cn: (3)

Our objective here is to solve the minimization problem

min
z2Cm




G(z) � a



2
W
� min

z2Cm





W�
G(z) � a

�



2
2
:

Lemma 2.5 Let F : Cm �! Cn whose components are analytic in every variable entry

of z. Let J (z) be the Jacobian of F (z). If there is a neighborhood 
 of ~z in Cm such that


F (~z) 



2
�



F (z) 




2
; 8z 2 
:

Then
J (~z)HF (~z) = 0:

Proof. Let

F (z) =
h
f1(z); � � � ; fn(z)

i>
; z = ( z1; � � � zm )> = x+ iy 2 Cm; i =

p�1;

x = (x1; � � � ; xm)> 2 Rm; y = (y1; � � � ; ym)> 2 Rm;

fj(z) = uj(x;y) + i vj(x;y); j = 1; � � � ; n; g(x;y) =
1

2
F (z)HF (z) =

1

2

nX
j=1

(u2j + v2j ):

Since ~z = ~x+ i~y is a local minimum of



F (z) 


2

2
= F (z)HF (z), we have

@g

@xk
(~x; ~y) =

@g

@yk
(~x; ~y) = 0; k = 1; � � � ;m:

Namely, at ~z = ~x+ i ~y, using the Cauchy-Riemann equation, we have

0 =
nX

j=1

��
uj

@uj
@xk

+ vj
@vj
@xk

�
+ i

�
uj
@uj
@yk

+ vj
@vj
@yk

��
=

nX
j=1

��
@uj
@xk

� i
@vj
@xk

�
(uj + ivj)

�

=
nX

j=1

@fj
@zk

fj; k = 1; � � � ;m;
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which leads to J (~z)HF (~z) = 0. Q.E.D.

By Lemma 2.5, let J(z) be the Jacobian of G(z). To �nd a local minimum of



F (z) 




2
�


W h

G(z) � a
i 




2
with J (z) = WJ(z), we look for ~z 2 Cm such that

J (~z)HF (~z) =
h
WJ(~z)

iH
W
h
G(~z)� a

i
= J(~z)H W 2

h
G(~z)� a

i
= 0:

In other words, G(~z)� a is orthogonal, with respect to the inner product hv;wi � vHW 2w,

to ~P =
n
u = G(~z) + J(~z) (z � ~z) 2 Cn

��� z 2 Cm
o
, the tangent plane of the manifold � =n

u = G(z)
��� z 2 Cm

o
at ~u = G(~z).

new
 iterate

initial iterate

The manifold Π u
  = G

(z  )
0

0

P0

The tangent plane u=G(z )+J(z )(z−z )0 0 0

u=G(z )+
J(z )(z

 −z )

0

0

0
1

^
project to

 the tangent plane

u
  = G

(z  )

1

1

u
 = G

( z )
~

~
the solution

u = G(z)

The  right−hand sidea

Figure 1: Illustration of the Gauss-Newton iteration

The Gauss-Newton iteration can be derived as follows. For the overdetermined nonlinear
system G(z) = a, we look for ~z where ~u = G(~z) is the orthogonal projection of the point a to
�. At u0 = G (z0) in � near ~u = G(~z), we can approximate the manifold � with the tangent

plane P0 =
n
G (z0) + J(z0) (z � z0)

��� z 2 Cm
o
. We then orthogonally project the point a

to the tangent plane P0 at û = G(z0) + J(z0)(z1 � z0), by solving the overdetermined linear
system

G (z0) + J(z0) (z � z0) = a or J(z0) (z � z0) = �[G (z0)� a] (4)

for its weighted least squares solution

z1 = z0 �
h
J(z0)

+
W

i
[G(z0)� a]: (5)

Here, J(z0)
+
W is the weighted pseudo-inverse

J(z0)
+
W =

h
J(z0)

HW 2J(z0)
i�1

J(z0)
HW 2

of J(z0), as long as J(z0)
HW 2J(z0) is invertible. Then u1 = G(z1) is expected to be a better

approximation of ~u = G(~z) than u0 = G(z0) (see Figure 1).
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It is neither necessary nor desirable to calculate the pseudo-inverse J(z0)
+
W explicitly. The

weighted least squares solution to (4) is the least squares solution to the scaled linear system

WJ(z0) (z � z0) = �W
h
G(z0)� a

i
that can be solved by the standard linear least squares solvers. The Gauss-Newton iteration

zk+1 = zk �
h
J(zk)

+
W

i h
G(zk)� a

i
; k = 0; 1; � � �

is then a recursive application of (5) (also see [5, 8]).

The convergence theory of the Gauss-Newton iteration has been well established for overde-
termined systems in real spaces [8]. The following lemma is a straightforward generalization of
Theorem 10.2.1 in [8] to complex spaces. Since the lemma itself as well as its proof are nearly
identical to those in the real case as in [8], we shall present the lemma without proof.

Lemma 2.6 Let 
 � Cm be a bounded open convex set and F : D � Cm �! Cn, analytic

in an open set D � 
. Let J (z) be the Jacobian of F (z). Suppose that there exists ~z 2 
 such

that J (~z)HF (~z) = 0 with J (~z) full rank. Let � be the smallest singular value of J (~z). Let

Æ � 0 be a constant such that



 hJ (z)� J (~z)
iH

F (~z)






2
� Æ




 z� ~z




2
; 8z 2 
: (6)

If Æ < �2, then for any c 2
�
1
�
; �
Æ

�
, there exists " > 0 such that for all z0 2 
 with

kz0 � ~zk2 < ", the sequence generated by the Gauss-Newton iteration

zk+1 = zk � J (zk)
+F (zk); k = 0; 1; � � � ; where J (zk)

+ = [J (zk)
HJ (zk)]

�1J (zk)
H ;

is well de�ned inside 
, converges to ~z, and satis�es




zk+1 � ~z




2
� cÆ

�




zk � ~z




2
+

c�


2�




zk � ~z



2
2
; (7)




zk+1 � ~z




2
� cÆ + �

2�




zk � ~z




2
<



zk � ~z





2
; (8)

where � > 0 is the upper bound of kJ (z)k2 on 
, and 
 > 0 the Lipschitz constant of J (z)
in 
, namely 


J (z+ h)� J (z)





2
� 





h 



2
; 8z; z+ h 2 
:

3 Algorithm I: root-�nding with given multiplicities

In this section, we assume the multiplicity structure of a given polynomial is known. We
shall deal with the problem of determining this multiplicity structure in the next section.
The pejorative condition number will be introduced here to measure the sensitivity of multiple
roots. When the pejorative condition number is moderate, the multiple roots can be calculated
accurately by our Algorithm I.
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3.1 The pejorative manifold

Introduced by Kahan [16], polynomials with roots in a given multiplicity structure form a
pejorative manifold. More explicitely, a monic polynomial of degree n corresponds to a vector
(or point) in Cn

p(x) = xn + a1 x
n�1 + � � �+ an�1 x+ an � a = (a1; � � � ; an)> 2 Cn;

where \�" denotes this one-to-one correspondence. For a �xed array of positive integers
`1; � � � ; `m with `1+� � �+`m = n, a polynomial p(x) that has roots z1; � � � ; zm with multiplicities
`1; � � � ; `m respectively can be written as

p(x) =
mY
j=1

(x� zj)
`j = xn +

nX
j=1

gj(z1; � � � ; zm) xn�j: (9)

where each gj(z1; � � � ; zm) is a polynomial in z1; � � � ; zm. This leads to the correspondence

p(x) � G`(z) �

0
B@

g1(z1; � � � ; zm)
...

gn(z1; � � � ; zm)

1
CA 2 Cn; where z =

0
B@

z1
...
zm

1
CA 2 Cm: (10)

De�nition 3.1 An ordered array of positive integers ` = [`1; � � � ; `m] is called a multiplicity

structure of degree n if `1 + � � � + `m = n. For any such given multiplicity structure `, the
collection of n-vectors

�` �
n
G`(z)

��� z 2 Cm
o
� Cn

is called the pejorative manifold of multiplicity structure `, where G` : Cm �! Cn de�ned

in (9) { (10) is called the coeÆcient operator associated with the multiplicity structure `.

For example, we consider polynomials of degree 3 with multiplicity structure ` = [1; 2]. Since

(x� z1)(x� z2)
2 = x3 + (�z1 � 2z2)x

2 + (2z1z2 + z22)x+ (�z1z22);

a polynomial with one simple root z1 and one double root z2 corresponds to the vector

G[1;2](z) �

0
B@ �z1 � 2z2

2z1z2 + z22
�z1z22

1
CA 2 C3; with z =

 
z1
z2

!
2 C2: (11)

The vectors G[1;2](z) in (11) for all z 2 C2 form the pejorative manifold �[1;2]. When ` = [3],

�[3] =
n
(�3 z; 3 z2; �z3)>

��� z 2 C
o

is the submanifold of �[1;2] that contains all polynomials with a single triple root. Figure 2
shows the pejorative manifold �[1;2] (the wings) and �[3] (the sharp edge) in R3.

As a special case, the pejorative manifold �[1;1;���;1] is C
n, representing the vector space of all

polynomials with degree n.

9



Figure 2: Pejorative manifolds of polynomials with degree 3 (view from two angles)

3.2 The nonlinear least squares problem

Let ` = [`1; � � � ; `m] be a multiplicity structure of degree n and �` the corresponding pejorative
manifold. If the polynomial p(x) � a 2 �`, then there is a vector z 2 Cm such that G`(z) = a.
In general, the polynomial system8>>>><

>>>>:

g1(z1; � � � ; zm) = a1
g2(z1; � � � ; zm) = a2

...
...

...
gn(z1; � � � ; zm) = an

or G`(z) = a (12)

is overdetermined except for the plain structure ` = [1; 1; � � � ; 1]. Usually, there are no con-
ventional solutions. We thereby seek a weighted least squares solution to (12). Let W =

diag(!1; � � � ; !n) be a weight matrix with weights !j > 0, j = 1; � � � n. Let



 � 




W
denote the

weighted 2-norm de�ned in (3). The objective is to solve the minimization problem

min
z2Cm




G`(z)� a



2
W

� min
z2Cm





W�
G`(z)� a

�



2
2
� min

z2Cm

8<
:

nX
j=1

!2
j

���gj(z)� aj
���2
9=
; : (13)

The residual G`(z)� a is a by-product of the computation. Its magnitude is also a measure
of the backward error and is handily veri�able.

Two common types of weights can be used. To minimize the overall backward error of the
solution, we can set W = diag(1; 1; � � � ; 1). On the other hand, the weights

!j = min

(
1;

1

jaj j

)
; j = 1; � � � ; n (14)

lead to minimization of the relative backward error at every coeÆcient larger than one. All
the numerical experiments for Algorithm I are conducted using the weights (14).

10



By Lemma 2.5, let J(z) be the Jacobian of G`(z). In order to �nd a local minimum point of

F (z) �W
h
G`(z)� a

i
, with J (z) = WJ(z), we look for ~z 2 Cm such that

J (~z)HF (~z) =
h
WJ(~z)

iH
W
h
G`(~z)� a

i
= J(~z)H W 2

h
G`(~z)� a

i
= 0: (15)

Namely, G`(~z) � a is orthogonal with respect to the inner product hv;wi � vHW 2w to the
tangent plane n

u = G`(~z) + J(~z) (z� ~z) 2 Cn
��� z 2 Cm

o
of the pejorative manifold �` =

n
u = G`(z)

��� z 2 Cm
o

at ~u = G`(~z) 2 �`.

De�nition 3.2 Let p(x) � a be a monic polynomial of degree n. For any given multiplicity

structure ` of the same degree, the vector ~z satisfying (15) is called a pejorative root vector

or simply pejorative root of p(x) corresponding to the multiplicity structure ` and weight W .

The following theorem is the foundation of our algorithms. This theorem indicates that one
may convert the singular problem of computing multiple roots with standard methods to a
regular problem by seeking the least squares solution of (12).

Theorem 3.1 Let G` : Cm �! Cn be the coeÆcient operator associated with a multiplicity

structure ` = [`1; � � � ; `m]. Then the Jacobian J(z) of G`(z) is of full (column) rank if and only

if the entries of z = (z1; � � � ; zm)> are distinct.

Proof. Let z1; � � � ; zm be distinct. To prove J(z) is of full (column) rank, or the columns

of J(z) are linearly independent, we write J(z) =

 
@gi(z)

@zj

!
and its j-th column Jj = 

@g1(z)

@zj
; � � � ; @gn(z)

@zj

!>
. For j = 1; � � � ;m, let qj(x), a polynomial in x, be de�ned as fol-

lows.

qj(x) =

 
@g1(z)

@zj

!
xn�1 + � � �+

 
@gn�1(z)

@zj

!
x+

 
@gn(z)

@zj

!

=
@

@zj

h
xn + g1(z)x

n�1 + � � �+ gn(z)
i
=

@

@zj

h
(x� z1)

`1 � � � (x� zm)
`m
i

= �`j (x� zj)
`j�1

2
4Y
k 6=j

(x� zk)
`k

3
5 :

If c1J1 + � � � + cmJm = 0 for constants c1; � � � ; cm, we let

q(x) = c1 q1(x) + � � �+ cm qm(x):
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Then,

q(x) = �
mX
j=1

8<
:cj`j (x� zj)

`j�1

2
4Y
k 6=j

(x� zk)
`k

3
5
9=
;

= �
"

mY
�=1

(x� z�)
`��1

#8<
:

mX
j=1

2
4 cj`j Y

k 6=j

(x� zk)

3
5
9=
;

is a zero polynomial implies r(x) =
mX
j=1

cj`j

2
4Y
k 6=j

(x� zk)

3
5 � 0: Therefore,

0 = r(zj) = cj

2
4`j Y

k 6=j

(zj � zk)

3
5 ; j = 1; � � � ;m:

So, cj = 0 for j = 1; � � � ;m since `j 's are positive and zk's are distinct.

On the other hand, suppose z1; � � � ; zm are not distinct, say, for instance, z1 = z2. Then the
�rst two columns of J(z) are coeÆcients of polynomials

q1(x) = �`1 (x� z1)
`1�1(x� z2)

`2

"
mY
k=3

(x� zk)
`k

#
and

q2(x) = �`2 (x� z1)
`1(x� z2)

`2�1

"
mY
k=3

(x� zk)
`k

#

as above. Since z1 = z2, these two polynomials di�er by constant multiples `1 and `2. Therefore
J(z) is of (column) rank de�cient. Q.E.D.

As a special case for the structure ` = [1; 1; � � � ; 1], equations in (12) form Vi�ete's system of
n-variate polynomial system. Solving such a system via Newton's iteration is equivalent to the
Weierstrass (Durand-Kerner) algorithm [20]. When a polynomial has multiple roots, Vi�ete's
system becomes singular at the non-distinct root vector. Apparently, this singularity is the
very reason that causes the ill-conditioning of the conventional root-�nding: it is on a wrong
pejorative manifold.

3.3 The Gauss-Newton iteration on the pejorative manifold

We apply the Gauss-Newton iteration

zk+1 = zk �
h
J(zk)

+
W

i
[G`(zk)� a]; k = 0; 1; � � � (16)

on �`. When the pejorative root ~z = (~z1; � � � ; ~zm)> 2 Cm has distinct components, the system
(12) is nonsingular by Theorem 3.1, making the Gauss-Newton iteration well de�ned. Based
on Lemma 2.6, we have the convergence theorem.

Theorem 3.2 Let ~z = (~z1; � � � ; ~zm)> 2 Cm be a pejorative root of p(x) � a associated

with multiplicity structure ` and weight W . Assume that ~z1; ~z2; � � � ; ~zm are distinct. Then
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there are "; � > 0 such that, if



a�G`(~z)





W

< " and



 z0 � ~z





2
< �, the iteration

zk+1 = zk �
h
J(zk)

+
w

i h
G`(zk)� a

i
; k = 0; 1; � � � (17)

is well de�ned and converges to the pejorative root ~z with at least a linear rate. If, we have

a = G`(~z) in addition, then the convergence is quadratic.

Proof. Let F (z) = W
h
G`(z) � a

i
and J (z) be its Jacobian. F (z) is obviously analytic.

From Theorem 3.1, the smallest singular value � of J (~z) is strictly positive. If a is suÆciently

close to G`(~z), then



F (~z) 




2
=



G`(~z) � a





W

will be small enough, making (6) holds with

Æ < �2. Therefore all conditions of Lemma 2.6 are satis�ed and there is a neighborhood of
~z such that, if z0 is in the neighborhood, the iteration (17) converges and satis�es (7). If in
addition a = G`(~z), then F (~z) = 0 and thereby Æ = 0 in (6) and (7), and the convergence
becomes quadratic. Q.E.D.

3.4 The pejorative condition number and inexact polynomials

There are many discussions on numerical condition of polynomial roots in the literature such
as [6, 13, 16, 23, 26, 27]. In general, a condition number can be characterized as the smallest
number satisfyingh

forward error
i
�
h
condition number

i
�
h
backward error

i
(18)

For a polynomial with multiple roots, under unrestricted perturbation, the only condition num-
ber satisfying (18) is in�nity. This fact can easily be seen from a simple perturbed polynomial

~p(x) = p(x)� " = (x� 1)2 � "

where the double root x = 1 breaks into two simple roots 1�p". The forward error is
p
" and

the backward error is ". There is no �nite number c that makes
p
" � c "; 8" > 0:

By changing the computational objective from solving a polynomial equation p(x) = 0 to the
nonlinear least squares problem in the form of (13), the structure-altering noise is �ltered out,
and the perturbation is restricted to be multiplicity preserving. In such cases, the sensitivity
of the roots can be analyzed di�erently.

Let's consider the pejorative root vector z of the polynomial p(x) � a = G`(z). The polynomial
p(x) is perturbed to be q̂(x) � â = G`(ẑ) with multiplicity structure ` preserved. Then

â� a = G`(ẑ)�G`(z) = J(z)(ẑ � z) +O

�


 ẑ� z



2�

where J(z) is the Jacobian of G`(z). Assuming the entries of z are distinct, by Theorem 3.1,
J(z) is of full rank. We have, using h:o:t: to stand for higher order terms,


W (â� a)





2

=



 [WJ(z)](ẑ � z) + h:o:t:





2
;

namely,



 â� a





W

� �min




 ẑ� z




2
+ h:o:t:;

or



 ẑ� z





2

�
�

1

�min

� 


 â� a




W

+ h:o:t: (19)
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where �min > 0 is the smallest singular value of WJ(z). The distance



 ẑ�z 




2
is the forward

error and the weighted distance



 â � a





W

measures the backward error. The sensitivity of

the root vector is thereby asymptotically bounded by 1
�min

times the size of the multiplicity
preserving perturbation. In this sense, the multiple roots are not in�nitely sensitive.

De�nition 3.3 Let p(x) be a polynomial and z be its pejorative root corresponding to multi-

plicity structure ` and weight W . Let G` be the coeÆcient operator associated with `, J be its

Jacobian, and �min be the smallest singular value of WJ(z). Then the pejorative condition

number of z is de�ned as

�`(z) =
1

�min
:

We now estimate the error on pejorative roots of polynomials with inexact coeÆcients.

Theorem 3.3 Let b̂ � p̂(x) be an approximation to the polynomial b � p(x). Correspond-
ing to the multiplicity structure ` and weight W , let z and ẑ be pejorative roots of p(x) and

p̂(x) respectively, with components of z being distinct. If



b� b̂





W

is suÆciently small, then




 z� ẑ




2
� 2 � �`(z) �

�


G`(z)� b




W

+



b� b̂





W

�
+ h:o:t: (20)

where �min > 0 is the smallest singular value of WJ(z).

Proof. From (19),




 z� ẑ




2

� 1

�min




G`(z) �G`(ẑ)




W

+ h:o:t:

� 1

�min

�


G`(z) � b




W

+



b� b̂





W

+



G`(ẑ)� b̂





W

�
+ h:o:t:

Since



G`(ẑ)� b̂





W

is a local minimum, we have




G`(ẑ)� b̂




W
�



G`(z)� b̂





W
�



G`(z)� b





W

+



b� b̂





W
:

That proves the theorem. Q.E.D.

Corollary 3.1 Under the condition of Theorem 3.3, if z is the exact root vector of p(x) with
multiplicity structure `, then


 z� ẑ





2
� 2 � �`(z) �




b� b̂




W

+ h:o:t: (21)

Proof. Since z is exact,



G`(z) � b





W

= 0 in (20). Q.E.D.
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As a consequence, when an inexact polynomial approximates a polynomial that has exact
multiple roots, then the pejorative root approximates the exact (multiple) roots. The (forward)
root error is no more than being proportional to the (backward) coeÆcient error, while the
proportionality constant is the doubled pejorative condition number.

The pejorative condition number has no obvious correlation with the magnitude of multiplici-
ties. For example, consider polynomials

p(x) = (x+ 1)`1(x� 1)`2(x� 2)`3

multiplicities pejorative condition
`1 `2 `3 number

1 1 1 3.1499
1 2 3 2.0323
10 20 30 0.0733
100 200 300 0.0146

Figure 3: The pejorative condition number and
root multiplicities

with di�erent multiplicities [`1; `2; `3]. For the
weight W de�ned in (14), Figure 3 lists the pejora-
tive condition numbers for di�erent multiplicities.
As seen in this example, the magnitude of root er-
ror can actually be less than that of the data error
when the pejorative condition number is less than
one. The pejorative condition theory here indicates
that multiprecision arithmetic should not be a ne-
cessity. The \attainable accuracy" barrier appears to be highly questionable.

The pejorative condition number �`(z) can be calculated with negligible cost. The Jacobian
J(z) and its QR decomposition are required by the Gauss-Newton iteration, and can be recycled
to calculate �`(z). The inverse iteration described in Lemma 2.4 is suitable for �nding the
smallest singular value. Since only the size, rather than the accurate digits, of the smallest
singular value is required, a few inverse iteration steps are suÆcient.

In x3.6 and x5, more examples will show that our iterative algorithm indeed reaches the accu-
racy permissible by the pejorative condition.

3.5 The numerical procedures

The iteration (16) requires evaluation of G`(zk) and J(zk) at every iterative step, where the
components of G`(z) are de�ned in (9) as coeÆcients of the polynomial

p(x) = (x� z1)
`1 � � � (x� zm)

`m : (22)

While the explicit formulas for each gj(z1; � � � ; zm) and @gj
@zi

can be symbolically, ineÆciently in
general, computed using softwares like Maple, we list more eÆcient numerical procedures for
computing G`(z) and J(z) in Figure 4.

The polynomial multiplication is equivalent to the vector convolution (Lemma 2.1). The
polynomial p(x) in (22) can thereby be constructed from recursive convolution with vectors
(1;�zj)>. As a result, G`(z) is computed through the nested loops shown in Figure 4 as
Algorithm EvalG. It takes n2+O(n) 
oating point operations (additions and multiplications)
to calculate G`(z).

The j-th column of the Jacobian J(z), as shown in the proof of Theorem 3.1, can be considered
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Algorithm EvalG:

input: m, n, z = (z1; � � � ; zm)
>,

` = [`1; � � � ; `m]
output: vector G`(z) 2 Cn

s = (1)
for i = 1; 2; � � �m do

for l = 1; 2; � � � ; `i do

s = conv
�
s; (1;�zi)

>
�

end do

end do

gj(z) =(j + 1)-th component of s

j = 1; � � � ; n

Algorithm EvalJ:

input: m, n, z = (z1; � � � ; zm)
>,

` = [`1; � � � ; `m]
output: Jacobian matrix J(z) 2 Cn�m

u �
Q
(x� zj)

`j�1 by EvalG

for j = 1; 2; � � � ;m do

s = �`j u
for l = 1; � � � ;m, l 6= j do

s = conv
�
s; (1;�zl)

>
�

end do

j-th column of J(z) = s

end do

Figure 4: Pseudo-codes for evaluating G`(z) and J(z)

as the coeÆcients of the following polynomial in x

�`j (x� zj)
`j�1

2
4Y
i6=j

(x� zi)
`i

3
5 =

"
mY
k=1

(x� zk)
`k�1

# 24�`jY
i6=j

(x� zi)

3
5 :

The cost of computing J(z) is no more than mn2 +O(n) 
ops. The complete pseudo-code of
the Algorithm I is shown in Figure 5.

Each step of the Gauss-newton iteration takes O(nm2) 
ops. Therefore, for a polynomial of
degree n with m distinct roots, the complexity of Algorithm I is O(m2n +mn2). The worst
case occurs when m = n and the complexity becomes O(n3).

The recursive polynomial multiplication appears to be robust and stable from our experience
on all the polynomials we have tested.

3.6 Numerical results for Algorithm I

A Matlab code PejRoot is implemented for Algorithm I. All the testing are conducted with
IEEE double precision (16 decimal digits). The testing polynomials are in general form.

3.6.1 The e�ect of \attainable accuracy"

Conventional methods, such as Farmer-Loizou methods [12], are subject to the \attainable
accuracy" barrier. We made straightforward Matlab and Maple implementations of the Farmer-
Loizou third order iteration

z
(k+1)
i = z

(k)
i �

2
4 1�

0
@X

j 6=i

`j

z
(k)
i � z

(k)
j

1
A p(z

(k)
i )

p0(z
(k)
i )

!35�1 "
`i
p(z

(k)
i )

p0(z
(k)
i )

#
;

i = 1; � � � ;m;
k = 1; 2; � � � ;

and use the same example in that paper

p(x) = (x� 1)4(x� 2)3(x� 3)2(x� 4):
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Pseudo-code PejRoot (Algorithm I):

input: m, n, a 2 Cn, weight matrix W, initial iterate z0,

multiplicity structure `, error tolerance �

output: Roots z = (z1; � � � ; zm), or message of failure

for k = 0; 1; � � � do
Calculate G`(zk) and J(zk) with EvalG and EvalJ

Compute the least squares solution �zk to the linear system

[WJ(zk)](�zk) =W [G`(zk)� a]
Set zk+1 = zk ��zk and Æk = k�zkk2
if k � 1 then

if Æk � Æk�1 then, stop, output failure message

else if
Æ2k

Æk�1�Æk
< � then, stop, output z = zk+1

end if

end if

end do

Figure 5: Pseudo-code of Algorithm I

The test uses standard IEEE double precision (16 digits). Both iterations start from z0 =
(1:1; 1:9; 3:1; 3:9). The \attainable accuracy" of the roots are 4, 5, 8, 16 digits respectively.
For 100 iteration steps, the Farmer-Loizou method produces iterates that bounce around the
roots. On the other hand, our iteration smoothly converges to the roots and reaches accuracy
of 14 digits. The \attainable accuracy" barrier has no e�ect on our algorithm. The iterations
are shown below for three roots x = 1; 2; 3 with highest multiplicities

(three roots are shown, unimportant digits are truncated)

Farmer-Loizou third order iteration | PejRoot result

steps iterateas | steps iterates

1 1.0009 1.998 3.001 | 1 1.03 1.8 3.4

2 0.99997 1.9999992 3.000000008 | 2 0.997 1.98 2.6

3 0.01 3.4 2.9988 | 3 1.00009 2.05 2.8

4 0.8 2.3 3.000007 | 4 0.99994 1.994 2.98

5 0.998 2.007 3.0000001 | 5 1.000003 2.0001 2.9990

6 1.0000007 2.00000007 2.99996 | 6 0.999999997 2.000000005 2.9999990

7 -11.0 1.6 3.0000001 | 7 1.00000000000000 2.0000000000002 2.999999999998

... ... | 8 1.00000000000000 2.00000000000000 2.99999999999999

100 1.00000008 3.3 2.99999997 |

The multiplicities of the Farmer-Loizou test problem are quite low. In the same problem, we
increase the multiplicities 10 times as large:

p(x) = (x� 1)40(x� 2)30(x� 3)20(x� 4)10:

The polynomial is constructed with 16-digit accuracy in coeÆcients. To make the comparison
more clear, our method still uses the standard IEEE 16 digits arithmetic, while Farmer-Loizou
method uses 1000-digit operations in Maple. Since the polynomial coeÆcients are inexact,
conventional method fails even with multiprecision arithmetic, while PejRoot still attains 14
correct digits of the four roots (Three roots iterations are shown below).
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Farmer-Loizou third order iteration | PejRoot result

steps iterateas | steps iterates

1 0.47 -.33 3.02 | 1 1.004 1.98 3.05

2 32.92 -4.65 2.69 | 2 1.0001 1.998 3.003

3 4.75 -1.80 1.75 | 3 0.9999998 2.000006 2.99997

4 205.96 .40 1.54 | 4 0.999999999994 2.00000000001 2.9999999990

5 3.41 -.07 .88 | 5 1.00000000000000 2.00000000000001 2.99999999999997

6 11.55 1.16 .14 | 6. 1.00000000000000 2.00000000000001 2.99999999999998

7 3.51 -.96 .72 | 7. 1.00000000000000 2.00000000000000 2.99999999999999

... ... |

100 5.99 1.10 0.30 |

The true barrier of accuracy for Algorithm I is the pejorative condition. Matlab constructed
the test polynomial with a relative coeÆcient error of 4:56 � 10�16, the pejorative condition
number is 29.3. The root error is approximately 1 � 10�14, which is within the error bound
2� (29:3) � (4:56 � 10�16) = 2:67� 10�14 established in (21).

3.6.2 Clustered multiple roots

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6: The root cluster from
three multiple roots calculated by
Matlab function roots

Consider f(x) = (x � 0:9)18(x � 1)10(x � 1:1)16 in expanded
form. The roots are highly multiple and clustered. The Mat-
lab function roots produces 44 ill-conditioned roots scattered
in a box of 2:0� 2:0. (see Figure 6). In contrast, Algorithm I
code PejRoot obtains all three roots for at least 14 correct
digits each by taking two additional steps on the information
of multiplicity structure and initial root approximation pro-
vided by our Algorithm II in x4.
step z1 z2 z3
0 0:89999999993 0:9999999993 1:0999999998
1 0:999999999999991 1:00000000000001 1:10000000000001
2 0:999999999999991 1:000000000000001 1:10000000000001

The backward accuracy can easily be veri�ed to be less than 1:36 � 10�15. The pejorative
condition number is 60:4. Therefore, with perturbation at the sixteenth digit of the coeÆcients,
14 digits accuracy is the best possible accuracy that can be expected from any method.

An important feature of Algorithm I is that it does not require the correct multiplicity structure.
Computation with di�erent structures is often needed and is permissible with Algorithm I. If
the computation is on a \wrong" pejorative manifold, then either the pejorative condition
number or the backward error becomes large. Table 1 is a partial list of pejorative roots
under di�erent multiplicity structures. As shown in Table 1, if the computing objective is
unconstraint minimization of the backward error, like standard methods, then we would get
simple, clustered, and incorrect roots as shown in Figure 6. On the other hand, if the objective
is to minimize backward error, subject to the condition requirement � < 100, we would obtain
accurate approximation of the desired roots.

3.6.3 Roots with huge multiplicities

The accuracy as well as stability of Algorithm I seem independent of the multiplicities of the
roots. For instance, let's consider the polynomial of degree 1000

g(x) = [x� (0:3 + 0:6i)]100 [x� (0:1 + 0:7i)]200 [x� (0:7 + 0:5i)]300 [x� (0:3 + 0:4i)]400:
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multiplicity pejorative backward error pejorative condition

structure roots (relative) number

[1,1,...,1] (see Figure 9) .0000000000000006 1390704851032436

[18,10,16] (.9000, 1.0000, 1.1000) .000000000000002 60.4

[17,11,16] (.8980, .9934, 1.1006) .0000004 53.8

[14,16,14] (.8890, .9892, 1.1090) .000003 29.0

[10,24,10] (.8711, .9906, 1.1315) .000008 26.7

[2, 40, 2] (.7390, .9917, 1.3277) .00009 23.6

[1, 43] (.5447, 1.0054) .004 1.3

[44] ( .9925) .04 .0058

Table 1: Partial list of multiple roots on di�erent pejorative manifolds

The multiplicities of the roots are 100, 200, 300 and 400. These multiplicities are \huge"in
the sense that numerical examples with multiplicities of 10 or more are rarely used in the
literature.
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Figure 7: Result for the degree 1000 polynomial by Matlab
function roots

In addition to such high multiplicities,
we perturb the sixth digits of all coeÆ-
cients of g(x) by multiplying (1�10�6)
on each one of them. Using any conven-
tional approach, this perturbation will
result in the total loss of forward accu-
racy even if multiprecision is used. The
code PejRoot of Algorithm I takes a
few seconds under Matlab to calculate
all roots up to 7 digits accuracy. Taking
the pejorative condition number 0.58
into account, this accuracy is optimal.
(On the same machine, Matlab func-
tion roots takes about 15 minutes to produce 1000 incorrect roots, see Figure 7).

z1 z2 z3 z4
.289 +.601i .100 +.702i .702 +.498i .301 +.399i
.309 +.602i .097 +.698i .698 +.499i .299 +.400i
.293 +.596i .101 +.7003i .7002 +.5005i .3007 +.4003i
.3003 +.5994i .09994 +.70008i .69996 +.50003i .29996 +.40007i
.300005 +.600006 .099998 +.6999992i .69999992 +.4999993i .2999992 +.3999992i
.3000002 +.60000005i .09999995 +.69999998i .69999997 +.49999998i .29999997 +.400000002i

4 Algorithm II: the multiplicity structure and initial root es-

timates

While Algorithm I can be used on any particular pejorative manifold, of course, the \correct"
multiplicity structure is much more preferred if obtainable. In this section, we present Algo-
rithm II that calculates the multiplicity structure of a given polynomial as well as the initial
root approximation for Algorithm I. As in Lemma 2.2, for p(x) = p0(x � z1)

`1 � � � (x � zm)
`m

with zj 's being distinct, the key to calculating zj's is to factor p(x) and p0(x) with a GCD
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(Greatest Common Divisor) triple (u; v; w):(
u(x) v(x) = p(x)
u(x)w(x) = p0(x)

; v(x) and w(x) are co-prime: (23)

If this can be accomplished, then we have

u(x) = u0

mY
j=1

(x� zj)
`j�1; v(x) =

p0
u0

(x� z1) � � � (x� zm):

The polynomial factor v(x) has all the distinct roots of p(x) as its simple roots that can
be solved with standard root-�nders. By applying the same strategy on u(x) = GCD(p; p0)
recursively, the roots and the multiplicity structure can be calculated.

Numerical computation of GCD's has been studied extensively, such as in [3, 4, 11, 17, 22].
Our algorithm employs a partial singular value decomposition by an implicit inverse iteration
(Lemma 2.4) and an iterative re�nement by the Gauss-Newton iteration. As a remarkable
consequence, the GCD's can be calculated accurately and eÆciently without using symbolic
computation or multiprecision.

4.1 Calculating the greatest common divisor

Algorithm II is based on the following GCD-�nder:

STEP 1. Find the degree m of GCD(p; p0).
STEP 2. According to the degree m, set up the system (23) for the GCD triple (u; v; w).
STEP 3. Find an initial approximation to u, v and w for the GCD system (23).
STEP 4. Use the Gauss-Newton iteration to re�ne the GCD triple (u; v; w).

We shall describe each step in detail.

4.1.1 Finding the degrees of the GCD triple

Let p(x) be a polynomial of degree n. By Lemma 2.2, the degree of u(x) = GCD(p; p0) is
m = n � k if and only if the k-th Sylvester discriminant matrix is the �rst rank-de�cient
matrix. Therefore, m = deg(u) can be identi�ed by calculating the sequence of the smallest
singular values &j of Sj(p), j = 1; 2; � � �, until reaching &k that is zero numerically. Since only
one singular pair is needed, the inverse iteration described in Lemma 2.4 is suitable for this
purpose. Moreover, we can reduce the computing cost even further by recycling and updating
the QR decomposition of Sj(p)'s along the way. More speci�cally, let

p(x) = a0x
n + a1x

n�1 + � � � + an; p0(x) = b0x
n�1 + b1x

n�2 + � � �+ bn�1:
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We rotate the columns of Sj(p) to form Ŝj(p) in such a way

j+1z }| { jz }| {0
BBBBBBBBBBBBB@

b0 a0

b1
. . . a1

. . .

...
. . . b0

...
. . . a0

... b1
... a1

bn�1
... an

...

. . .
...

. . .
...

bn�1 an

1
CCCCCCCCCCCCCA

!

2j+1z }| {0
BBBBBBBBBBBBB@

b0 a0
b1 a1 b0 a0
...

... b1 a1
. . .

bn�1 an�1
...

... b0 a0
an bn�1 an�1 b1 a1 b0

an
. . .

...
... b1

bn�1 an�1
...

an bn�1

1
CCCCCCCCCCCCCA

that the odd columns of Ŝj(p) consist of the coeÆcients of p0, and even columns are the
coeÆcients of p. Consequently, the matrix Ŝj+1(p) is formed simply by adding a zero row at
bottom and augmenting two columns at right on Ŝj(p). It is easy to see that updating the
QR decomposition of each Ŝj(p) requires only O(n) additional 
ops. The inverse iteration (1)
consists of a forward and a backward substitutions of triangular systems that requires O(j2)

ops at each Sj(p).

Let � be a given zero singular value threshold. We shall discuss more about this number in x4.2.
The process of �nding the degree of the GCD triple (u; v; w) can be summarized as follows.

Calculate the QR decomposition of the (n+ 1)� 3 matrix Ŝ1(p) = Q1R1.
For j = 1; 2; � � � do

Use the implicit inverse iteration (Lemma 2.4) to �nd the smallest

singular value &j of Ŝj(p) and the corresponding right singular vector yj .

if &j � �



p 




2
, then

k = j, m = n� k, extract v and w from yj , exit.
else

update Ŝj(p) to Ŝj+1(p) = Qj+1Rj+1

end if
end do

4.1.2 The quadratic GCD system

Let m = n� k be the degree of GCD(p; p0) calculated in STEP 1. We can now formulate the
GCD system of STEP 2. This system can be written in vector form, with unknown vector
(u;v;w)>:

F (u;v;w) =

"
p

p0

#
; u 2 Cm+1; v 2 Cn�m+1; w 2 Cn�m; (24)

where F (u;v;w) �
"

conv(u;v)
conv(u;w)

#
:

Here, the convolution conv(�; �) is de�ned in Lemma 2.1. The following lemma ensures that
solving this quadratic system is a nonsingular problem in �nding the GCD triple (u; v; w).
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Lemma 4.1 The Jacobian of F (u;v;w) in (24) is

J(u;v;w) =

"
Cm+1(v) Ck+1(u) 0
Cm+1(w) 0 Ck(u)

#
: (25)

If u(x) = GCD(p; p0) with (u;v;w) satisfying (24), then J(u;v;w) is of full (column) rank.

Proof. It is straightforward to verify (25) using Lemma 2.1. This Jacobian is the generalized
Sylvester resultant matrix for u, v, w (see [22]), that are co-prime since u = GCD(p; p0). By
Proposition 3.1 in [22], it is of full rank. Q.E.D.

This nonsingularity also ensures that the Gauss-Newton iteration is locally convergent with
quadratic rate.

Theorem 4.1 Let ~u(x) = GCD(p; p0) with ~v(x) and ~w(x) satisfying (24), and W be a

diagonal weight matrix. Then there exists " > 0 such that for all u0, v0, w0 satisfying


u0 � ~u




2
< ";




v0 � ~v




2
< ";




w0 � ~w




2
< ";

the Gauss-Newton iteration2
64 uj+1

vj+1

wj+1

3
75 =

2
64 uj
vj
wj

3
75� J(uj ;vj ;wj)

+
w

"
F (uj ;vj ;wj)�

 
p

p0

!#
; j = 0; 1; � � � (26)

converges to [~u; ~v; ~w]> quadratically.

Proof. WF (u;v;w) is obviously analytic. Since (~u; ~v; ~w) is a solution to (24), we have
WF (~u; ~v; ~w) = W (p;p0)> and therefore Æ = 0 in (6) of Lemma 2.6. By Lemma 4.1,WJ(~u; ~v; ~w)
is of full rank and its smallest singular value � > 0. Let 
 be a neighborhood of (~u; ~v; ~w) in
which 


WJ(u;v;w)





2
� �; 8(u;v;w) 2 
:

Let 
 be the Lipschitz constant of WJ(u;v;w) over 
. Then, by Lemma 2.6, we have
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64 uj
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3
75�

2
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3
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2

2

:

Q.E.D.

After �nding the degree of GCD(p; p0) , to employ the Gauss-Newton iteration to obtain the
solution [~u; ~v; ~w]>, we need an initial approximation [u0;v0;w0]

> .
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4.1.3 Setting up the initial iterate

In STEP 1, when the degree of GCD(p; p0) is calculated, the singular vector yk of Ŝk(p) asso-
ciated with the singular value &k consists of v and w that satisfy (24) (see Lemma 2.3). For
re�nement, we will use them as initial approximations v0 and w0. Because of the column
rotation in x4.1.1, the odd and even entries of yk form v0 and w0 respectively.

While polynomial long division yields p(x)� v(x) = u(x) in theory. The process may not be
numerically stable especially with inexact data. By Lemma 2.3, long division is equivalent to
solving the linear system

Cm+1(v)u0 = p (27)

for u0. When v and p are inexact, �nding least squares solution to (27) is to minimize


 conv(u;v) � p




2
. This \least squares division" is consistently more accurate in our nu-

merical experiment. The example shown in Table 2 is quite common, in which p = conv(u;v)
is rounded up at the eighth digit after decimal point. Substantial di�erence exists between
long division (Matlab deconv) and least squares division.

approx. coef. coeÆcients coef.'s of least squares long
of p(x) of v(x) p(x)� v(x) division division

1.00000000 1.00000000 1.00000000 0.9999999999 1.00000000
23.35360257 23.01829201 0.33531056 0.3353105599 0.33531056
29.89831582 22.05776405 0.12227539 0.1222753902 0.122275385
10.75803809 0.54726624 0.5472662398 0.5472663
15.57240922 0.27815340 0.2781534002 0.278151
18.76038493 0.28629915 0.2862991496 0.28634
13.73079603 1.00523653 1.0052365305 1.004
30.45600101 1.00205392 1.0020539195 1.02
46.21275197 0.97391204 0.9739120403 0.5
44.89871211 0.37785145 0.3778514500 11.
30.17981700
8.33455813

Table 2: A numerical comparison between long division and least squares division

Extracting v0 and w0 from the singular vector, and solving (27) for u0, they will be used as
the initial iterates for the Gauss-Newton iteration (26) that re�nes the GCD triple. Moreover,
the linear system (27) is banded with the bandwidth being the number of distinct roots plus
one. Therefore, the cost of solving (27) is insigni�cant (no more than O(n3)) in the overall
complexity.

4.1.4 Re�ning the GCD with the Gauss-Newton iteration

Each step of the Gauss-Newton iteration reduces the weighted residual




F (uj ;vj ;wj)�
"
p

p0

#





W

=






WF (uj;vj ;wj)�W

"
p

p0

#





2

(28)

until it is numerically unreducible. We stop the iteration when the residual no longer decreases.

The diagonal weight matrix W is used to scale the GCD system (24) so that the entries of

W

"
p

p0

#
are of similar magnitude. Each step of the Gauss-Newton iteration requires solving
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Figure 8: Sparsity of J(u;v;w) and its triangularization

an overdetermined linear system
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for its least squares solution, which requires a QR decomposition of the Jacobian J(uj ;vj ;wj)
and backward substitution for an upper triangular linear system. This Jacobian is a sparse
matrix with a special structure. This sparsity can be largely preserved during the process.
Figure 8 shows the typical sparsity of J(u;v;w) and its triangularization. When p(x) is a
polynomial of degree n. A straightforward QR decomposition of J(u;v;w) costs O(n3) 
ops.
Taking the sparsity structure of J(u;v;w) into account, it can be veri�ed that the sparse QR
decomposition costs O(mk2+m2k+k3) where k be the number of distinct roots andm = n�k.
This complexity is signi�cantly reduced to between O(n2) and O(n3).

4.2 Computing the multiplicity structure

From Lemma 2.3, if u, v and w satisfy the GCD system (24), then v(x) has all simple roots
that are identical to all the distinct roots of p(x). On the other hand, this GCD calculation
can be applied recursively to determine the multiplicity structure of p(x):

u0(x) = p(x)
for m = 1; 2; � � � s, until deg(us) = 0 do

Find the GCD triple (um; vm; wm) that satis�es(
um(x) vm(x) = um�1(x)
um(x)wm(x) = u0m�1(x)

; vm(x) and wm(x) are co-prime:

by using the the GCD �nder given in x4.1.
end do

Let dm = deg(vm), m = 1; 2; � � � ; s. To determine the multiplicity structure of p(x), �rst of
all, p(x) has a total of k = d1. It is straightforward to verify that the multiplicity structure is
` = [`1; � � � ; `k] with

`j = max
n
t
��� dt � k � j + 1

o
; j = 1; 2; � � � ; k: (29)
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Moreover, an l-fold root of p(x) appears l times as a simple root of vm(x), m = 1; 2; � � � ; l.
Therefore, multiple root-�nding on p(x) is reduced to a sequence of simple root-�nding on
vj(x), j = 1; 2; � � � ; s. Since the the computation is carried out with inexact 
oating point
operations, the computed roots of vj(x)'s do not reach the optimal accuracy permitted by the
pejorative condition of p(x) in general. Using the multiplicity structure determined by (29),

we may group the numerically \identical" roots of
n
vj(x)

os
1
as the initial root approximation

of p(x).

In practice, the m-loop above stops either at deg(um) = 0 or deg(vm) = 1. In latter case,
there is only one root remaining in um�1. The structure is thereby determined with no need
for further GCD calculation.

Each step in the m-loop above involves solving a GCD system

Fm(um;vm;wm) �
"

conv(um;vm)
conv(um;wm)

#
=

"
um�1

u0m�1

#
(30)

by the Gauss-Newton iteration2
664
u
(j+1)
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3
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2
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!#
; (31)

j = 0; 1; � � �

where Jm
�
u
(j)
m ;v

(j)
m ;w

(j)
m

�
is the Jacobian of Fm

�
u
(j)
m ;v

(j)
m ;w

(j)
m

�
and Jm

�
u
(j)
m ;v

(j)
m ;w

(j)
m

�+
is

its pseudo-inverse.

We use three control parameters this process. The �rst one is the zero singular value threshold

� that is used to identify the zero singular value. The default choice is � = 10�8. In calculating

um, the smallest singular value &l of Ŝl(um�1) that is less than �



um�1





2
, will be tentatively

considered as a zero, pending con�rmation from the residual information produced by the
Gauss-Newton iteration.

When the smallest singular value is below the threshold, the Gauss-Newton iteration is initiated
to further reduce the residual (28) to its numerical limit. We use the second control parameter,
the initial residual tolerance %, to decide if this re�ned residual is tiny enough. Our default
choice is % = 10�10. When the (weighted) residual

�m =






Fm(um;vm;wm)�
"
um�1

u0m�1

#





W

=






WFm(um;vm;wm)�W

"
um�1

u0m�1

#





2

(32)

satis�es
�m � %




um�1





2
;

we accept the GCD triple (um; vm; wm). Otherwise, the Sylvester's discriminant matrix is
expanded to the next order and the partial singular value computation is continued.

The third parameter is the residual tolerance growth factor �. Whenever a GCD triple
(um; vm; wm) is calculated, there is a residual �m de�ned in (32). The error in (um; vm; wm)
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Pseudo-code GcdRoot (Algorithm II)

input: The polynomial p of degree n, singular threshold �,

residual tolerance %, residual growth factor �.

(If only p is provided, set � = 10�8, % = 10�10, � = 100 )

output: the root estimates (z1; � � � ; zk)
> and multiplicity structure [`1; � � � ; `k]

Initialize u0 = p

for m = 1; 2; � � � ; s, where deg(us) = 0 do

for l = 1; 2; � � � until residual � < %



um�1





2
do

calculate the singular pair (&l;yl) of Ŝl(um�1) by iteration (1)

if &l < �



um�1





2
then

set up the GCD system (30) according to l (see Section 4.1.2 )

extract v
(0)
m ; w

(0)
m from yl and calculate u

(0)
m (see Section 4.1.3)

apply the Gauss-Newton iteration (31) from

u
(0)
m ; v

(0)
m ; w

(0)
m to obtain um; vm; wm

extract the residual � = �m as in (32)

end if

end do

adjust the residual tolerance % to be maxf%; ��jg
set dm = deg(vm)

end do

set k = d1, `j = max
n
t
��� dt � k � j + 1

o
; j = 1; 2; � � � ; k:

match the simple roots zj's of vm(x), m = 1; 2; � � � ; s
according to the multiplicities `j's.

Figure 9: Pseudo-code of Algorithm II

will cause the residual �m+1 of the next triple (um+1; vm+1; wm+1) to grow. Therefore, the
residual tolerance % may need to be adjusted after a GCD triple is found. Our default growth
factor is 100. After obtaining �m, the residual tolerance % is adjusted to be

max
n
%; � �m

o
:

Notice that the growth factor is applied to residual �m rather than the residual tolerance % to
provide some breathing room. The residual tolerance % itself may not grow at every step.

From our computing experience, the default control parameters works well for \normal" poly-
nomials, such as those with unclustered roots of moderate multiplicities. For diÆcult problems,
one may manual adjustment those parameters.

4.3 Numerical results for Algorithm II

The e�ectiveness of Algorithm II can be shown by the polynomial

p(x) = (x� 1)20(x� 2)15(x� 3)10(x� 4)5; (33)

that is generated by Matlab function poly. Using the default control parameters, Algorithm
II code GcdRoot correctly identi�es the multiplicity structure. The roots are approximated
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to an accuracy of 10 digits or more. Starting from this result as an input to Algorithm I code
PejRoot, in the end we obtained all multiple roots with at least 14 digits correct (Table 4.3).

Algorithm II (code GcdRoot) result: | Algorithm I (code PejRoot) result

| THE BACKWARD ERROR: 6.16e-016

The backward error is 6.057721e-010 | THE ESTIMATED FORWARD ROOT ERROR: 9.46e-014

|

computed roots multiplicities | computed roots multiplicities

|

4.000000000109542 5 | 3.999999999999985 5

3.000000000176196 10 | 3.000000000000011 10

2.000000000030904 15 | 1.999999999999997 15

1.000000000000353 20 | 1.000000000000000 20

Table 3: Roots of p(x) in (33) computed in two stages

This polynomial used to be extremely diÆcult by any standard for root-�nding. The magnitude
of its coeÆcients stretches from 1 to 1021. Our algorithms have no diÆculty �nding all its
multiple roots. To the best of our knowledge, there is no other method that can calculate
multiple roots for such polynomials unless the machine precision is extended substantially
according to the requirement of \attainable accuracy".

The Euclid method may also be used to �nd GCD in order to identify the multiplicities [2, 24].
F. Uhlig's pzero [24] is a Matlab implementation based on the Euclid method. The drawback
of the Euclid method is its reliance on recursive long division that is numerically unstable (see
Table 2). Moreover, it is not easy to identify a numerical zero remainder in the process. To
identify multiplicities, pzero must rely on a root cluster matching that is inherently unreliable.
Here we compare our code GcdRoot with pzero on the polynomial

p(x) = (x� 1)4k(x� 2)3k(x� 3)2k(x� 4)k:

for k = 1; 2; � � � ; 8. When the multiplicities increase, the root accuracy deteriorates with pzero.
It successfully identi�es the multiplicity structure for k = 1 and k = 2, but fails to do so after
that. When k > 5, pzero no longer recognizes multiplicities, it only outputs simple clustered
roots. In comparison, GcdRoot consistently attains a root accuracy of 11 or more digits with
increasing multiplicities. The multiplicity structures are identi�ed correctly for k up to 7. For
the current implementation, the limitation of GcdRoot on this sequence is k � 7, although
the root accuracy will stay the same for even larger k. When GcdRoot errs at k = 8, the
multiplicities are up to 32, and the magnitude of coeÆcients stretches from 1 to 1035.

4.4 Some remarks on the GCD calculation

In this paper, our main interest is in root-�nding. We therefore con�ne our discussion in GCD-
�nding only to calculating GCD(p; p0). Actually, with minor modi�cations, the algorithm can
be applied to numerical computation of general GCD's of two or more polynomials.

The idea of using singular values to calculate GCD is not new. Extensive studies have been
reported [4, 11, 22]. In [3, 17], GCD re�nement by using complicated nonlinear program-
ming methods has also been proposed. In contrast, the Gauss-Newton iteration is simple and
eÆcient, it seems well suitable for numerical GCD computation.
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k code x1 = 1 x2 = 2 x3 = 3

k = 1 pzero 1.00000000001 (4) 1.99999999998 (3) 3.000000000005 (2)
GcdRoot 0.999999999999990 (4) 1.99999999999998 (3) 3.0000000000005 (2)

k = 2 pzero 1.0000000001 (8) 2.000000002 (6) 3.000000004 (4)
GcdRoot 0.9999999999998 (8) 1.999999999983 (6) 2.99999999991 (4)

k = 3 pzero 0.9999999897 (13) 1.99999990 (8) 2.9999998 (5)
GcdRoot 0.9999999999997 (12) 1.99999999997 (9) 2.9999999998 (6)

k = 4 pzero 0.9999995 (21) 1.999994 (6) 2.999990 (7)
GcdRoot 1.0000000000003 (16) 2.00000000002 (12) 3.0000000001 (8)

k = 5 pzero 1.0000009 (28) 2.00001 (8) 3.00002 (6)
GcdRoot 1.0000000000004 (20) 2.00000000003 (15) 3.0000000002 (10)

k = 6 pzero ���� (1) ���� (1) ���� (1)
GcdRoot 1.0000000000002 (24) 2.00000000001 (18) 3.00000000004 (12)

k = 7 pzero ���� (1) ���� (1) ���� (1)
GcdRoot 1.0000000000001 (28) 2.00000000001 (21) 3.00000000006 (14)

k = 8 pzero ���� (1) ���� (1) ���� (1)
GcdRoot 1.0000000000002 (47) 2.00000000002 (15) 3.00000000001 (11)

Table 4: Partial results on p(x) = (x � 1)4k(x � 2)3k(x � 3)2k(x � 4)k and comparison between pzero and
GcdRoot. Numbers in parenthesis are computed multiplicities. Wrong multiplicities are in boldface.

5 Numerical results for the combined method

5.1 The e�ect of inexact coeÆcients

In applications, input data of problems are expected to be inexact. The following experiment
tests the e�ect of data error on the accuracy as well as stability of both Algorithm I and II.

For the polynomial

p(x) =
�
x� 10=11

�5�
x� 20=11

�3�
x� 30=11

�2
in general form, every coeÆcient is rounded up to k-digit accuracy, where k = 10; 9; 8; � � �. For
this sequence of problems, Algorithm II code GcdRoot correctly identi�es the multiplicity
structure if the coeÆcients has at least 7 digits. If the multiplicities are manually given,
Algorithm I code PejRoot continues to converge even when data accuracy is down to 3
digits. For lower data accuracy, the residual tolerance % in GcdRoot needs to be adjusted
accordingly. Table 5 shows the results of both programs.

5.2 The e�ect of nearby multiple roots

When two or more multiple roots are nearby, it can be diÆcult to identify the correct multi-
plicity structure. We test the example

p"(x) = (x� 1 + ")20(x� 1)20(x+ 0:5)5

for decreasing root gap " = 0:1; 0:01; � � �. Namely, the �rst root x1 = 0:9; 0:99; 0:999; � � �.

When root gap decreases, the default control parameters may not work properly. In this test,
we use the default parameters for all cases except " = 0:0001, in which case, the residual
growth factor � = 5. GcdRoot is used to �nd the initial input for PejRoot. Computing
results are shown for both programs in Table 6.
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number of control
correct parameters code x1 = 0: _9 _0 x2 = 1: _8 _1 x3 = 2: _7 _2 backward
digits %, � error

k = 10 % = 1e� 9 GcdRoot 0.90909090 1.8181818 2.7272727 1.7e-08
� = 1e� 7 PejRoot 0.909090909 1.81818181 2.7272727 2.4e-10

k = 9 % = 1e� 8 GcdRoot 0.909090 1.81818 2.72727 7.0e-06
� = 1e� 6 PejRoot 0.9090909 1.8181818 2.727272 2.3e-09

k = 8 % = 1e� 7 GcdRoot 0.90909 1.8182 2.727 1.3e-04
� = 1e� 5 PejRoot 0.9090909 1.818181 2.72727 2.3e-08

k = 7 % = 1e� 6 GcdRoot 0.9090 1.82 2.7 1.3e-02
� = 1e� 4 PejRoot 0.90909 1.81818 2.7272 2.3e-07

k = 6 ���� GcdRoot ���� ���� ���� ����
PejRoot 0.9090 1.8181 2.727 3.7e-06

k = 5 ���� GcdRoot ���� ���� ���� ����
PejRoot 0.909 1.818 2.72 2.4e-05

k = 4 ���� GcdRoot ���� ���� ���� ����
PejRoot 0.90 1.81 2.7 1.9e-04

k = 3 ���� GcdRoot ���� ���� ���� ����
PejRoot 0.9 1.8 2.8 1.8e-03

Table 5: E�ect of coeÆcient error on computed roots

root gap pejorative
code x1 = 1� " x2 = 1 x3 = �0:5 backward condition

" error number

" = 0:1 GcdRoot 0.89999999999 0.99999999999 -0.49999999999999 9.7e-10
PejRoot 0.9000000000000 0.9999999999999 -0.50000000000000 2.7e-13 .7

" = 0:01 GcdRoot 0.98999999 0.99999999 -0.50000000000000 3.2e-07
PejRoot 0.989999999999 1.000000000000 -0.49999999999999 1.0e-12 6.7

" = 0:001 GcdRoot 0.99900 1.00000 -0.49999999999999 1.9e-04
PejRoot 0.99899999999 1.00000000000 -0.500000000000000 4.1e-13 62.5

" = 0:0001 GcdRoot 0.9997 0.99996 -0.4999999999999 1.1e-02
PejRoot 0.999900000 0.999999999 -0.50000000000000 4.0e-12 621.7

" = 0:00001 PejRoot 0.999989990 1.0000000 -0.50000000000000 4.0e-10 5791.8

Table 6: E�ect of decreasing root gap on computed roots

root gap pejorative
code x1 = 1� " x2 = 1 x3 = �0:5 backward condition

" error number

" = 0:0001 GcdRoot 0.99994999 0.99994999 -0.5000000000 5.7e-08
PejRoot 0.999949999 0.999949999 -0.500000000 2.2e-08 0.0066

" = 0:00001 GcdRoot 0.9999949999 0.9999949999 -0.500000000000 1.1e-10
PejRoot 0.99999499999 0.99999499999 -0.50000000000 4.0e-12 0.0066

Table 7: If the control parameter is not adjusted, tiny root gap makes computed roots identical. However,
from the backward errors and pejorative condition, they are not necessarily wrong answers.
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When the default growth factor stays the same as the default � = 100 and the gap " � 0:0001,
GcdRoot outputs a multiplicity structure [40; 5]. Namely, GcdRoot treats the two nearby
20-fold roots as a single 40-fold one. From the computed backward error and the pejorative
condition, this may not necessarily be incorrect. See Table 7. When backward error becomes
10�12 and pejorative condition number is tiny (0.0066), they are numerically accurate! In
contrast, using the \correct" multiplicity structure [20; 20; 5], PejRoot outputs roots with
backward error 10�10 and a large condition number 5791:8 (last line in Table 6).

By adjusting the control parameters, GcdRoot can �nd di�erent pejorative manifolds that
are closer to the given polynomial. PejRoot then calculates corresponding pejorative roots.
The selection of the most suitable solution should be application dependent.

5.3 A large inexact problem

coefficients of f(x)

1

-0.7

-0.19

0.177

-0.7364

-0.43780

-0.952494

-0.2998258

-0.00322203

-0.328903811

-0.4959527435

-0.9616679762

0.4410459281

0.1090273141

0.6868094008

0.0391923826

0.0302248540

0.6603775863

-0.1425784968

-0.3437618593

0.4357949015

Implementing the combination of two methods, we have produced a
Matlab code MultRoot. We conclude this report by testing this code
on our �nal test problem. First of all, 20 complex numbers are randomly
generated as roots:

:5�i; �1�:2i; �:1�i; �:8�:6i; �:7�:7i; 1:4; �:4�:9i; :9; �:8�:3i; :3�:8i; :6�:4i

These roots are used to generate polynomial f(x) of degree 20. We then
round all coeÆcients to 10 decimal digits. The coeÆcients are shown
at the right side. We construct multiple roots by squaring f(x) again
and again. Namely,

gk(x) = [ f(x) ]2
k

; k = 1; 2; 3; 4; 5:

At k = 5, g5(x) has a degree 640 and 20 complex roots of multiplicity
32. Since the machine precision is 16 digits, the polynomials gk are
inexact. Using the default control parameters, our combined program
encounters no diÆculty in calculating all the roots as well as �nding
accurate multiplicities. The worst accuracy of the roots is 11-digit. Here is the �nal result.

THE PEJORATIVE CONDITION NUMBER: 0.0780464

THE BACKWARD ERROR: 6.38e-012

THE ESTIMATED FORWARD ROOT ERROR: 9.96e-013

computed roots multiplicities | computed roots multiplicities

|

0.499999999999399 + 1.000000000006247 i 32 | 1.400000000000303 + 0.000000000000000 i 32

0.499999999999399 - 1.000000000006247 i 32 | -0.399999999999482 + 0.899999999996264 i 32

-1.000000000003141 + 0.200000000004194 i 32 | -0.399999999999482 - 0.899999999996264 i 32

-1.000000000003140 - 0.200000000004193 i 32 | 0.899999999996995 - 0.000000000000000 i 32

-0.099999999996612 + 1.000000000001018 i 32 | -0.799999999987544 + 0.299999999995441 i 32

-0.099999999996612 - 1.000000000001018 i 32 | -0.799999999987544 - 0.299999999995441 i 32

0.800000000001492 + 0.600000000001814 i 32 | 0.299999999995789 + 0.799999999976189 i 32

0.800000000001492 - 0.600000000001815 i 32 | 0.299999999995789 - 0.799999999976189 i 32

-0.699999999997635 + 0.699999999997984 i 32 | 0.599999999989084 + 0.399999999997279 i 32

-0.699999999997635 - 0.699999999997984 i 32 | 0.599999999989084 - 0.399999999997279 i 32
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