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Computing multiple roots of inexact polynomials *

Zhonggang Zeng!

Abstract

We present a combination of two novel algorithms that accurately calculate multiple
roots of general polynomials. For a given multiplicity structure and initial root estimates,
Algorithm I transforms the singular root-finding into a regular nonlinear least squares
problem on a pejorative manifold, and calculates multiple roots simultaneously. To fulfill
the input requirement of Algorithm I, we employ a numerical GCD-finder, containing a
partial singular value decomposition and an iterative GCD refinement, as the main engine
of Algorithm IT that calculates the multiplicity structure and the initial root approximation.
The combined method calculates multiple roots with high forward accuracy without using
multiprecision arithmetic even if the coefficients are inexact. This is perhaps the first
blackbox-type root-finder with such capabilities. To measure the true sensitivity of the
multiple roots, a pejorative condition number is proposed and error bounds are given.
Extensive computational experiments and the error analysis confirm that a polynomial
being ill-conditioned in the conventional sense can be well conditioned pejoratively, and its
multiple roots can be computed with remarkable accuracy.

1 Introduction

In this paper, we present a combination of two novel numerical algorithms that accurately
calculate multiple roots of polynomials with coefficients possibly being inexact without using
multiprecision arithmetic.

Polynomial root-finding is one of the classical problems with longest and richest history. One
of the most difficult issues in root-finding is computing multiple roots. In addition to requiring
exact coefficients, it is widely believed that it is necessary to use multiprecision arithmetic
when multiple roots are present [20].

It is also believed that there is a barrier of “attainable accuracy” in computing multiple roots
[14, 20, 28]: To calculate an m-fold root to the precision of k& correct digits, the accuracy of the
polynomial coefficients and the machine precision must be at least mk digits. Multiprecision
softwares [1, 21] are available. However, when polynomial coefficients are truncated, multiple
roots would turn into clusters. In such cases, extending machine precision on the inexact poly-
nomial would not reverse clusters back to multiple roots. In the absence of accurate methods
that are independent of multiprecision technology, multiple roots of perturbed polynomials
would indeed be intractable.
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While many numerical analysts consider multiple roots being hypersensitive in numerical com-
putation, W. Kahan [16] proved that if the multiplicities are preserved, the multiple roots can
actually be well behaved. More precisely, polynomials with a multiplicity structure form a
pejorative manifold. A polynomial is ill-conditioned if it is near such a manifold. On the other
hand, for the polynomial on the pejorative manifold, its multiple roots are insensitive to mul-
tiplicity preserving perturbations, unless the polynomial is also near a submanifold of higher
multiplicities. Therefore, to calculate multiple roots accurately, it is important to maintain
the computation on a proper pejorative manifold.

In light of Kahan’s theory, we propose Algorithm I in §3 that transforms the singular root-
finding into a regular nonlinear least squares problem on a pejorative manifold. By projecting
the polynomial onto the manifold, the computation remains structure-preserving. As a result,
all the roots, regardless of the multiplicities, are calculated simultaneously and accurately.

In applying our Algorithm I, one needs to have a priori knowledge of the multiplicity structure
of the polynomial and its initial root estimates. To fulfill this input requirement, we propose
Algorithm II in §4 that employs a numerical GCD-finder, containing a partial singular value
decomposition of the Sylvester discriminant matrices and an iterative refinement strategy for
the recursive GCD computation. The resulting algorithm calculates the multiplicity structure
and its initial root approximation for a given polynomial.

In §3.4, we propose a pejorative condition number that measures the sensitivity of multiple
roots. A polynomial that is ill-conditioned in conventional sense can be well conditioned
pejoratively, and its roots can be calculated beyond the barrier of “attainable accuracy”. This
pejorative condition number can easily be calculated. Error bounds on the computed roots are
given for inexact polynomials.

In §3.6 and §4.3, we present separate numerical results for Algorithm I and Algorithm II.
The numerical results for the combined algorithm are shown in §5. Both algorithms and their
combination are implemented as a Matlab package MULTROOT that is electronically available!.

The combined algorithm is accurate, stable and reasonably efficient. Taking the coefficient
vector as the only input, it not only outputs the roots and multiplicities, but also verifies the
solution automatically via the backward error, the estimated forward error, and the pejorative
condition number as by-products. The total complexity is clearly no more than O(n?). The
most significant features are its remarkable accuracy and robustness in handling inexact data.
As shown in numerical examples, the hybrid code accurately identifies the multiplicity structure
and multiple roots for polynomials with a coefficient accuracy being as low as 7 digits. With
given multiplicities, Algorithm I converges even with lower data accuracy such as 3 decimal
digits. This appears to be the first blackbox-type root-finder with such capability.

While numerical experiments reported in the literature rarely reach multiplicity 10, we suc-
cessfully tested our algorithms on polynomials with root multiplicities as high as 400, without
using multiprecision arithmetic. We are aware of no other reliable methods that calculate
multiple roots accurately by using standard machine precision. Accurate results for multiple
root computation we have seen in the literature can be repeated only if multiprecision is used
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on exact polynomials, such as the works of Farmer-Loizou [12] and Iliev[15]. A zero-finder
for general analytic functions with multiple zeros has been developed by Kravanja and Van
Barel [18]. The method uses an accuracy refinement with modified Newton’s iteration that
also requires multiprecision for multiple roots unless the polynomial is already factored [29].

The idea of exploiting the pejorative manifold and the problem structure has been used exten-
sively for ill-conditioned problems. Besides Kahan’s pioneer work 30 years ago, theories and
computational strategies for the matrix canonical forms have been studied, such as [7, 9, 10, 19],
to take advantage of the pejorative manifolds or varieties. At present, it is not clear if those
methods can be applied to polynomials with multiple roots.

2 Preliminaries

2.1 Notations

In this paper, R™ and C” denote the n dimensional real and complex vector spaces respectively.
All vectors are columns and denoted by boldface lower case letters. Matrices are denoted by
upper case letters. The notation (-)" represents the transpose of (), and (-)¥ the Hermitian
adjoint (i.e. conjugate transpose) of (-). When we use a (lower case) letter, say p, to denote a
degree n polynomial, then pg,p1,---,p, are its coefficients as in
p(a) = poz” + pra" " + -+ pn.

The same letter in boldface (e.g. p) denotes the coefficient (column) vector

pP= (pOapla yPn )T

unless defined otherwise.

2.2 Basic definitions and lemmas

Definition 2.1 Let p(z) = pox™ + p1a” ' + - 4+ pn, po #0 be a polynomial of degree n.
For any integer k > 0, the matriz

k
——N—
" o -
b1
Celp) = | -
Dn D1
L Pn |

is called the k-th order Cauchy matrix associated with p.

Lemma 2.1 Let

f($):f0$n+flxn_1+"'+fna g(ﬂl)zggmm+glmm_1+---+gm



and h(xz) = f(z)g(x). Then h is the convolution of £ and g defined by

h = conv(f,g) = Crni1(f)g = Cnt1(9)f.
Proof. A straightforward verification. Q.E.D.
Definition 2.2 Let p(z) be a polynomial of degree n and p'(z) be its derivative. For k =

1,2,---n, the matriz of size (n + k) x (2k + 1)

Skp) = [ Crrr (@) | Culp) |

is called the k-th Sylvester discriminant matrix.

Lemma 2.2 Let u(z) = GCD(p,p') be the greatest common divisor of p(x) and p'(x). Let
gj be the smallest singular value of Sj(p), 7 =1,2,---,n. Then the following are equivalent.

(a) The degree of u(x), deg(u), is m.

(b) The polynomial p(x) has k=mn—m distinct roots.

(c) 2022 1>0, G=¢gGi1=:=¢=0.
Proof. If p(x) has distinct roots z1,-- -, zx, then there are positive integers ¢1,---, ¢ such
that
J— El ék‘
p(z) = polz —21)" (@ — 2)F,
k k
@) = po|[[—2)5"" 1D [a]lz-2)]]-
j=1 i=1 I£i

Therefore u(z) = GCD(p,p') = H?Zl(x — 2;)%~1, making (a) and (b) equivalent. By Propo-
sition 3.1 in [22], (a) holds if and only if ¢4_; > 0 and ¢, = --- = ¢, = 0. Because the smallest
singular value ¢,,;, of a matrix A equals

b

2

Smin = 1IN H Ax
[Ix[l2=1

it is easy to see that augmenting columns to A does not increase this minimum, and hence the

inequalities ¢; > - -+ > ¢,_1 follow. Q.E.D.

Lemma 2.3 Let m be the degree of u(z) = GCD(p,p’), and

with deg(v) =k =n —m. Then



(a) The normalized vector V| is the right singular vector of Sk(p) associated with the

smallest singular value . Equivalently

sk(p)[_ﬂ ZH[—JH

(b) When v is known, the coefficient vector of u(x) is the solution u of the linear system

-1
= min H Sk(p)y H = 0.
9 llyll2=1 ®) 2

-

Cmy1(v)u=p

Proof. The vector

is the coefficient vector of
p'()v(z) — p(z)w(z) = u(@)w(@)v(z) —u(z)v(z)w(z) = 0,

yielding (a). The assertion (b) is a direct consequence of Lemma 2.1. Q.E.D.

Lemma 2.4 Let A be a matriz, whose smallest two distinct singular values are & > 7.
Write A = QR, where Q 1is unitary and R is upper triangular (i.e., its QR decomposition,).
From any vector xq¢ that is not orthogonal to the right singular subspace of A associated with

o, we generate the sequences o;, X;, 1 = 1,2,--- by the inverse iteration
Solve Ry, = x;_1  for y;
Solve Rz, = y; for z;
(1)
7 )
Calculate X, = ——, 0;= Yi  _ H Rx;
[EAIP [EAIPS 2
1=1,2,---.

Then there is a constant ¢ such that

< 2:6+O(7'i), where T=<§>2- (2)

g

‘Ui — 6‘ < T'c, H Ax;

If 6 is simple, then x; converges to the right singular vector x of A associated with &.

Proof. It is easy to verify that the process (1) is equivalent to the inverse iteration that
calculates an eigenvector associated with the smallest eigenvalue of A¥ A. Therefore, the
theories of standard inverse iteration apply. For more general discussion on the inverse iteration
in calculating singular subspaces, see [25]. Q.E.D.



2.3 The Gauss-Newton iteration

The Gauss-Newton iteration is an effective method for solving nonlinear least squares problems.
Let G : C™ — C" with n > m, and a € C™. The nonlinear system

G(z) =a, for zeC™

is overdetermined, and there is no conventional solution. We thereby seek a weighted least

squares solution. Let W = diag(wi,---,wy,) be a diagonal weight matrix with w; > 0, j =
1,---n. Let H . HW denote the weighted 2-norm:
n
Iv] =W, = .Zl‘”?v% forall v = (vg,---,v,) € C" (3)
]:

Our objective here is to solve the minimization problem

Zrélérrln HG(z) — aHzV = Zrenérrln W(G(z) — a) ’

2

Lemma 2.5 Let F : C™ — C" whose components are analytic in every variable entry
of z. Let J(z) be the Jacobian of F(z). If there is a neighborhood Q of z in C™ such that

@], <|#nl, veco

Then
J (@) 2 F(z) = 0.

Proof. Let
F(Z):[fl(z)""vfn(z)]Tv z:(zla"'zm)T:X-i-i}’ECm, i:\/—_13

X:(H?l,---,xm)TERm, y:(yla"'aym)TERm;
: - 1 H I~ 2, .2
f](Z):’U/](X,y)—FZU](X,y), _]:]_,,’fl, g(X7Y):§F(Z) F(Z):§Z(U’]+v])
j=1

2
Since z = X + iy is a local minimum of H F(z) \\2 = F(z)" F(z), we have

g .. . g .. .
axk (X7 y) ayk (x7 y) 07 ? 7m

Namely, at z = x + 1y, using the Cauchy-Riemann equation, we have

" ou; ov; . ou; ov; n ou; .0v; .
0 = (g o)+ (o i) = S [ (er i) s 0

J=1 J=1

= Z%f]a kzla"'ama

= Oz,



which leads to J(z)" F(z) = 0. Q.E.D.

By Lemma 2.5, let J(z) be the Jacobian of G(z). To find a local minimum of H F(z) H2 =
H W[G(z) - a |2 with J(z) = W J(z), we look for z € C™ such that

T ()" F(z) = [WJ(i)]H w(G(z) - a| = J(2)" W?[G(2) —a] = 0.

In other words, G(z) —a is orthogonal, with respect to the inner product (v, w) = v W 2w,
to P = {u =G(z)+J(z)(z—2) e C" |z € Cm} , the tangent plane of the manifold IT =
{u=G@)|zecm} at a=G().

e
Y The tangen
T U:G (Zo)

plane R,
(29 (z-2)

@ ) %

< > o©
oW 5

\)J </ -/

Figure 1: Illustration of the Gauss-Newton iteration

The Gauss-Newton iteration can be derived as follows. For the overdetermined nonlinear
system G(z) = a, we look for z where 1 = G(z) is the orthogonal projection of the point a to
II. At ugp = G (zp) in Il near u = G(z), we can approximate the manifold IT with the tangent

plane Py = {G(zo) + J(zo) (z — zp) ‘ z € C™ } We then orthogonally project the point a

to the tangent plane Py at G = G(z¢) + J(zo)(z1 — zo), by solving the overdetermined linear
system

G (zo) +J(z0) (z —2z9) =a or J(zo)(z—20) =—[G(z) — a] (4)

for its weighted least squares solution
21 =70 — [ J(20)3] [G(20) - a]. (5)
Here, J(zo);, is the weighted pseudo-inverse
Ty = [T(20) "W (20)] T (20)" W

of J(zg), as long as J(zo)? W?2J(z) is invertible. Then u; = G(z1) is expected to be a better
approximation of u = G(z) than ug = G(z¢) (see Figure 1).



It is neither necessary nor desirable to calculate the pseudo-inverse .J(zo);, explicitly. The
weighted least squares solution to (4) is the least squares solution to the scaled linear system

WJ(zo) (z — 2z9) = —W[G(zo) - a]
that can be solved by the standard linear least squares solvers. The Gauss-Newton iteration
Zjt1 = Zk — [J(zk)jv] [G(Zk) - a], k=0,1,---
is then a recursive application of (5) (also see [5, 8]).

The convergence theory of the Gauss-Newton iteration has been well established for overde-
termined systems in real spaces [8]. The following lemma is a straightforward generalization of
Theorem 10.2.1 in [8] to complex spaces. Since the lemma itself as well as its proof are nearly
identical to those in the real case as in [8], we shall present the lemma without proof.

Lemma 2.6 Let Q C C™ be a bounded open convez set and F : D C C"™ — C", analytic
in an open set D D Q. Let J(z) be the Jacobian of F(z). Suppose that there exists z € Q such
that J ()2 F(z) = 0 with J(2) full rank. Let o be the smallest singular value of J(%). Let
6 > 0 be a constant such that

|[76) - 7)) Fia)

Sé“z—i
2

. Vz € Q. (6)

If § < o2, then for any c € (%,%), there exists € > 0 such that for all zy € Q with
lzo — z||2 < €, the sequence generated by the Gauss-Newton iteration

zp1 =2z, — J (2)  F(2zg), k=0,1,---, where J(zx)" = [T (z)" T (z&)] " T (z£)",

is well defined inside €, converges to z, and satisfies

cd cary 2
Z -z <—Hz —ZH —Hz -z 7
|z =2, < e 2, + 5 o~ 2], ™
5 cd+ o 5 5
|1 =], < =5 o = 2], < [ 7], )

where o > 0 is the upper bound of ||J(z)||2 on Q, and v > 0 the Lipschitz constant of J(z)
in Q, namely

‘|j(z+h)—j(z)HZgfthH2, Vz, z+h € Q.

3 Algorithm I: root-finding with given multiplicities

In this section, we assume the multiplicity structure of a given polynomial is known. We
shall deal with the problem of determining this multiplicity structure in the next section.
The pejorative condition number will be introduced here to measure the sensitivity of multiple
roots. When the pejorative condition number is moderate, the multiple roots can be calculated
accurately by our Algorithm I.



3.1 The pejorative manifold

Introduced by Kahan [16], polynomials with roots in a given multiplicity structure form a
pejorative manifold. More explicitely, a monic polynomial of degree n corresponds to a vector
(or point) in C"

1

p(x): xn_i_alxn— +"'+an—1x+an ~ a = (al""aan)TECn,

where “~” denotes this one-to-one correspondence. For a fixed array of positive integers

by, by with 4+ -+£,, = n, a polynomial p(x) that has roots z1, - - - , z,,, with multiplicities
£y, -, 0, respectively can be written as

m n
p(z) = H(m—zj)éf = xn+Zgj(z1,---,zm) "7, (9)
j=1 J=1
where each g;(#1,- -+, 2p) is a polynomial in 21, -, z,. This leads to the correspondence
g1(z1, s Zm) 21
p(z) ~ Gy(z) = : € C", where z= : e Cc™. (10)
gn(zla"'azm) Zm

Definition 3.1 An ordered array of positive integers £ = [€1,- -+, €] is called a multiplicity
structure of degree n if {4 + -+ + £, = n. For any such given multiplicity structure £, the
collection of n-vectors

HgE{Gg(Z)‘ZGCm}CCn

is called the pejorative manifold of multiplicity structure £, where Gy : C™ — C™ defined
in (9) - (10) is called the coefficient operator associated with the multiplicity structure £.

For example, we consider polynomials of degree 3 with multiplicity structure ¢ = [1,2]. Since
(z—21)(x — )2 =23+ (=21 — 220) 2° + (22120 + 22) . + (—2123),

a polynomial with one simple root z; and one double root zy corresponds to the vector

— - 2222 3 : 21 2
G (z) = | 22129 +2z2 € C’, with z= 2 e C~ (11)
_2122

The vectors Gy 9(z) in (11) for all z € C? form the pejorative manifold TIj; 5. When £ = [3],
Mg = { (=32, 32% —2%)7T ‘ zeC }

is the submanifold of IIj; o) that contains all polynomials with a single triple root. Figure 2
shows the pejorative manifold ITj; ) (the wings) and IIj; (the sharp edge) in R?.

As a special case, the pejorative manifold IIj; ; .. ;) is C", representing the vector space of all
polynomials with degree n.



! ’

Figure 2: Pejorative manifolds of polynomials with degree 3 (view from two angles)

3.2 The nonlinear least squares problem

Let £ = [¢1,---,¢p] be a multiplicity structure of degree n and II, the corresponding pejorative
manifold. If the polynomial p(z) ~ a € II;, then there is a vector z € C™ such that Gy(z) = a.
In general, the polynomial system

g1(z1,,2m) = a1
g2f1y o m) = az or Gy(z)=a (12)
gn(21, s 2m) = an

is overdetermined except for the plain structure £ = [1,1,---,1]. Usually, there are no con-

ventional solutions. We thereby seek a weighted least squares solution to (12). Let W =
diag(wi,---,w,) be a weight matrix with weights w; >0, 7 =1,---n. Let H . HW denote the

weighted 2-norm defined in (3). The objective is to solve the minimization problem

n

2 2
= min {ijz‘gj(z) —aj‘ } (13)

m
2 zcC =

2
min HGg(Z) - aH = min

zcCm w zcCm W(G@(Z) B a)

The residual Gy(z) —a is a by-product of the computation. Its magnitude is also a measure
of the backward error and is handily verifiable.

Two common types of weights can be used. To minimize the overall backward error of the
solution, we can set W = diag(1,1,---,1). On the other hand, the weights

1
wj:min{l, —}, j=1,-,n (14)
|a;]

lead to minimization of the relative backward error at every coefficient larger than one. All
the numerical experiments for Algorithm I are conducted using the weights (14).

10



By Lemma 2.5, let J(z) be the Jacobian of G¢(z). In order to find a local minimum point of
F(z) = W[Gg(z) - a], with J(z) = W J(z), we look for z € C™ such that

H
J(@)"F(z) = [WIz)| W[Gi(2)-a] = J@)" W?[Gi(z) —a] =0. (15)
Namely, G¢(z) — a is orthogonal with respect to the inner product (v, w) = v W?2w to the

tangent plane
{u=Gyz)+ () (z—2) e C"

zECm}

of the pejorative manifold II, = { u = Gy(z) ‘ z e C™ } at a = Gy(z) € I,.

Definition 3.2 Let p(z) ~ a be a monic polynomial of degree n. For any given multiplicity
structure £ of the same degree, the vector z satisfying (15) is called a pejorative root vector
or simply pejorative root of p(x) corresponding to the multiplicity structure £ and weight W .

The following theorem is the foundation of our algorithms. This theorem indicates that one
may convert the singular problem of computing multiple roots with standard methods to a
regular problem by seeking the least squares solution of (12).

Theorem 3.1 Let Gy : C™ — C" be the coefficient operator associated with a multiplicity
structure £ = [0y, -, 4y,]. Then the Jacobian J(z) of G¢(z) is of full (column) rank if and only
if the entries of z = (21, -+, 2m) | are distinct.

Proof. Let z1,---, 2y be distinct. To prove J(z) is of full (column) rank, or the columns
9gi(z)
0z;

of J(z) are linearly independent, we write J(z) = ( ) and its j-th column J; =

0g1(z) Ogn(z)
(9Zj ’ ’ aZj

lows.
qj(z) = (3%172(;)) S (LQ%ZE(Z)) T+ (8%7;(;))

— 8%] [iU" +gi(z)z" !+ +gn(z)] B 3%3 [(‘T’ — ) (o - Zm)ém]

) . For j =1,---,m, let ¢j(z), a polynomial in z, be defined as fol-

k#j

If ciJJ1+--- 4 cemdm = 0 for constants cq,-- -, ¢y, we let

q(z) =crqi(z) + -+ cm gm(2)-

11



Then,

gz) = =) {ijj (& —2)5" [ (z — Zk)zk] }
Jj=1 k#j
= — l (Jt — zg)zoll { Z ngj H(l‘ — Zk,)] }

o=1 J=1 k#j

[H (z — Zk)] = 0. Therefore,

m
is a zero polynomial implies r(z) = Z cil;
= ki

7=1

0:7"(2:]-) = [Ej H(zj—zk)] , J=1,---,m.

ki
So, ¢;j = 0 for j = 1,---,m since ¢;’s are positive and z;’s are distinct.
On the other hand, suppose zi, - -, z, are not distinct, say, for instance, z; = z3. Then the

first two columns of J(z) are coefficients of polynomials

a(z) = —b(z—2)"" (@ —2)" lH (v — zk)ék] and

P
@) = —l(r—2)"(z—2n)"" lH (z — zk)é’“]
P

as above. Since z; = z2, these two polynomials differ by constant multiples /1 and 5. Therefore
J(z) is of (column) rank deficient. Q.E.D.

As a special case for the structure ¢ = [1,1,---,1], equations in (12) form Viéte’s system of
n-variate polynomial system. Solving such a system via Newton’s iteration is equivalent to the
Weierstrass (Durand-Kerner) algorithm [20]. When a polynomial has multiple roots, Viéte’s
system becomes singular at the non-distinct root vector. Apparently, this singularity is the
very reason that causes the ill-conditioning of the conventional root-finding: it is on a wrong
pejorative manifold.

3.3 The Gauss-Newton iteration on the pejorative manifold
We apply the Gauss-Newton iteration
zr1 =2 — | ()| [Ge(zi) —al, k=01, (16)

on IT;. When the pejorative root z = (%1,---, %,) € C™ has distinct components, the system
(12) is nonsingular by Theorem 3.1, making the Gauss-Newton iteration well defined. Based
on Lemma 2.6, we have the convergence theorem.

Theorem 3.2  Let 7z = (%,--+,%y,) € C™ be a pejorative root of p(x) ~ a associated
with multiplicity structure ¢ and weight W. Assume that Z1, Zo, -+, Zy, are distinct. Then
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there are €,¢ > 0 such that, if H a— Gy(z) HW <e and H Z) — Z H2 < €, the iteration

a1 =2~ [J(o)f] [Gelzr) —a], k=01, (17)

is well defined and converges to the pejorative root z with at least a linear rate. If, we have
a = Gy(z) in addition, then the convergence is quadratic.

Proof. Let F(z) = W[Gg(z) — a] and J(z) be its Jacobian. F(z) is obviously analytic.
From Theorem 3.1, the smallest singular value o of [J(2) is strictly positive. If a is sufficiently
close to G¢(z), then H F(z) H2 = H Gy(z) —a HW will be small enough, making (6) holds with

§ < o%. Therefore all conditions of Lemma 2.6 are satisfied and there is a neighborhood of
z such that, if zy is in the neighborhood, the iteration (17) converges and satisfies (7). If in
addition a = Gy(z), then F(z) = 0 and thereby § = 0 in (6) and (7), and the convergence
becomes quadratic. Q.E.D.

3.4 The pejorative condition number and inexact polynomials

There are many discussions on numerical condition of polynomial roots in the literature such
as [6, 13, 16, 23, 26, 27]. In general, a condition number can be characterized as the smallest
number satisfying

[ forward_error] < [condition_number] X [backward_ewor] (18)

For a polynomial with multiple roots, under unrestricted perturbation, the only condition num-
ber satisfying (18) is infinity. This fact can easily be seen from a simple perturbed polynomial
pla) =pl@) —e=(z—1)* —¢
where the double root 2 = 1 breaks into two simple roots 1+ /. The forward error is /¢ and

the backward error is . There is no finite number ¢ that makes

Ve <ce, VYe>0.

By changing the computational objective from solving a polynomial equation p(z) = 0 to the
nonlinear least squares problem in the form of (13), the structure-altering noise is filtered out,
and the perturbation is restricted to be multiplicity preserving. In such cases, the sensitivity
of the roots can be analyzed differently.

Let’s consider the pejorative root vector z of the polynomial p(z) ~ a = Gy(z). The polynomial
p(z) is perturbed to be §(z) ~ a = Gy(z) with multiplicity structure ¢ preserved. Then

a—a = Gule) - Go) = J(aa -+ 0 ([a—o )

where J(z) is the Jacobian of Gy(z). Assuming the entries of z are distinct, by Theorem 3.1,
J(z) is of full rank. We have, using h.o.t. to stand for higher order terms,

|wa-a HQ = |WJ@)@ - 2) + hot. |2,
namely, H a—a HW > Ominllz —2 H2 + h.o.t.,
or Hi—zH2 < ( 1. ) é.—aH + h.o.t. (19)
Tmin w
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where oy, > 0 is the smallest singular value of W.J(z). The distance H Z—7 H2 is the forward

error and the weighted distance H a—a HW measures the backward error. The sensitivity of

the root vector is thereby asymptotically bounded by ﬁ times the size of the multiplicity
preserving perturbation. In this sense, the multiple roots are not infinitely sensitive.

Definition 3.3 Let p(x) be a polynomial and z be its pejorative root corresponding to multi-
plicity structure £ and weight W. Let Gy be the coefficient operator associated with £, J be its
Jacobian, and oy, be the smallest singular value of W J(z). Then the pejorative condition

number of z is defined as
1

ke(z) = —
min

We now estimate the error on pejorative roots of polynomials with inexact coefficients.

Theorem 3.3 Let b~ p(x) be an approximation to the polynomial b ~ p(z). Correspond-
ing to the multiplicity structure ¢ and weight W, let z and z be pejorative roots of p(x) and

p(x) respectively, with components of z being distinct. If H b-b HW is sufficiently small, then

Hz—i

|, <2 n(2) - (||Gelz) - b HW +[p-b HW) + hot. (20)

where opmin > 0 is the smallest singular value of W .J(z).

Proof. From (19),

H zZ—Z , < U:Lm | Gi(z) — Gy(2) |W + h.o.t.
< (el +[p-b, + |60 -b],) che
Since H Gi(2) — b HW is a local minimum, we have

|6i@) B, <| i@ -b], <|cdm —p], +[o-B],.
That proves the theorem. Q.E.D.
Corollary 3.1 Under the condition of Theorem 3.3, if z is the exact root vector of p(z) with

multiplicity structure £, then

|72, SZ-W(Z)-Hb—BHW—Fh.o.t. (21)

Proof. Since z is exact,

Ge(z) — b HW = 0 in (20). Q.E.D.
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As a consequence, when an inexact polynomial approximates a polynomial that has exact
multiple roots, then the pejorative root approximates the exact (multiple) roots. The (forward)
root error is no more than being proportional to the (backward) coefficient error, while the
proportionality constant is the doubled pejorative condition number.

The pejorative condition number has no obvious correlation with the magnitude of multiplici-
ties. For example, consider polynomials

ple) = (@ +1)" (0 = )z~ 2"

with different multiplicities [¢1,/2,¢3]. For the multiplicities pejorative condition
weight W defined in (14), Figure 3 lists the pejora- 6 b 4 number
tive condition numbers for different multiplicities. 1 1 1 3.1499
As seen in this example, the magnitude of root er- 1 2 3 2.0323
10 20 30 0.0733
ror can actually be less than that of the data error 100 200 300 0.0146

when the pejorative condition number is less than
one. The pejorative condition theory here indicates Figure 3: The pejorative condition number and
that multiprecision arithmetic should not be a ne- root multiplicities

cessity. The “attainable accuracy” barrier appears to be highly questionable.

The pejorative condition number k/(z) can be calculated with negligible cost. The Jacobian
J(z) and its QR decomposition are required by the Gauss-Newton iteration, and can be recycled
to calculate ky(z). The inverse iteration described in Lemma 2.4 is suitable for finding the
smallest singular value. Since only the size, rather than the accurate digits, of the smallest
singular value is required, a few inverse iteration steps are sufficient.

In §3.6 and §5, more examples will show that our iterative algorithm indeed reaches the accu-
racy permissible by the pejorative condition.

3.5 The numerical procedures

The iteration (16) requires evaluation of Gy(z;) and J(z;) at every iterative step, where the
components of Gy(z) are defined in (9) as coefficients of the polynomial

p(z) = (x —2)" - (& = zm). (22)

While the explicit formulas for each g;(21,- -, z») and g—g can be symbolically, inefficiently in
general, computed using softwares like Maple, we list more efficient numerical procedures for
computing Gy(z) and J(z) in Figure 4.

The polynomial multiplication is equivalent to the vector convolution (Lemma 2.1). The
polynomial p(z) in (22) can thereby be constructed from recursive convolution with vectors
(1,—2;)". As a result, Gy(z) is computed through the nested loops shown in Figure 4 as
Algorithm EVALG. It takes n2 +O(n) floating point operations (additions and multiplications)
to calculate Gy(z).

The j-th column of the Jacobian J(z), as shown in the proof of Theorem 3.1, can be considered
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Algorithm EVALG: Algorithm  EVALJ:

input: m, n, z= (21, -, 2m) input: m, n, z= (21, ", 2Zm)
C=1[l, L] =Tl 0]
output: vector Gy(z) € C" output: Jacobian matrix J(z) € C**™
s=(1) u~[[(x-2)%"" by EVALG

for i=1,2,---m do for j=1,2,---,m do

fOrlZl,Q,---,Zi do s:—fju .
s = conv (s,(l,—zi)—'—) for I=1,---,m, l #j do

end do s =conw (s, (1,—2)")
end do end do
g;j(z) =(j +1)-th component of s j-th column of J(z)=s
j=1,---,n end do
) )

Figure 4: Pseudo-codes for evaluating G,(z) and J(z)

as the coefficients of the following polynomial in x

(- ) lnm - >] - [H (o >]

i#] k=1

—; H(az - z,)] .

i#j
The cost of computing J(z) is no more than mn? + O(n) flops. The complete pseudo-code of
the Algorithm I is shown in Figure 5.

Each step of the Gauss-newton iteration takes O(nm?) flops. Therefore, for a polynomial of
degree n with m distinct roots, the complexity of Algorithm T is O(m?n + mn?). The worst
case occurs when m = n and the complexity becomes O(n?).

The recursive polynomial multiplication appears to be robust and stable from our experience
on all the polynomials we have tested.

3.6 Numerical results for Algorithm I

A Matlab code PEJROOT is implemented for Algorithm I. All the testing are conducted with
IEEE double precision (16 decimal digits). The testing polynomials are in general form.

3.6.1 The effect of “attainable accuracy”

Conventional methods, such as Farmer-Loizou methods [12], are subject to the “attainable
accuracy” barrier. We made straightforward Matlab and Maple implementations of the Farmer-
Loizou third order iteration

(k) -1 k) .
o e =57 ) e C S I

and use the same example in that paper

p(z) = (& = 1)*(z — 2)°(z = 3)*(z — 4).

=
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Pseudo-code PEJROOT (Algorithm I):
input: m, n, a € C", weight matrix W, initial iterate zp,
multiplicity structure ¢, error tolerance T
output: Roots z= (21, -,2py), or message of failure

for k=0,1,--- do

Calculate Gy(z;) and J(zj) with EVALG and EvaLJ

Compute the least squares solution Az, to the linear system

W J(2k)](Azi) = W[G(2k) — a]
Set Zpy1 = Zg — Az, and 6 ::HZ&Zk|h
if k> 1 then
if 6 > k1 then, stop, output failure message
2

. [
else if gzjfig; < 7 then, stop, output z =2z
end if
end if

end do

Figure 5: Pseudo-code of Algorithm I

The test uses standard TEEE double precision (16 digits). Both iterations start from zy =
(1.1,1.9,3.1,3.9). The “attainable accuracy” of the roots are 4, 5, 8, 16 digits respectively.
For 100 iteration steps, the Farmer-Loizou method produces iterates that bounce around the
roots. On the other hand, our iteration smoothly converges to the roots and reaches accuracy
of 14 digits. The “attainable accuracy” barrier has no effect on our algorithm. The iterations
are shown below for three roots z = 1,2,3 with highest multiplicities

(three roots are shown, unimportant digits are truncated)

Farmer-Loizou third order iteration
steps iterateas

PejRoot result
steps iterates

I
I
1 1.0009 1.998 3.001 |1 1.03 1.8 3.4
2 0.99997 1.9999992  3.000000008 | 2 0.997 1.98 2.6
3 0.01 3.4 2.9988 | 3 1.00009 2.05 2.8
4 0.8 2.3 3.000007 | 4 0.99994 1.994 2.98
5 0.998 2.007 3.0000001 | 5 1.000003 2.0001 2.9990
6 1.0000007  2.00000007 2.99996 | 6 0.999999997 2.000000005 2.9999990
7 -11.0 1.6 3.0000001 |7 1.00000000000000 2.0000000000002  2.999999999998
.. ce | 8 1.00000000000000 2.00000000000000 2.99999999999999
100 1.00000008 3.3 2.99999997 |

The multiplicities of the Farmer-Loizou test problem are quite low. In the same problem, we
increase the multiplicities 10 times as large:

p(z) = (& = 1)z~ 2)*(z - 3) (& — 4.

The polynomial is constructed with 16-digit accuracy in coefficients. To make the comparison
more clear, our method still uses the standard IEEE 16 digits arithmetic, while Farmer-Loizou
method uses 1000-digit operations in Maple. Since the polynomial coefficients are inexact,
conventional method fails even with multiprecision arithmetic, while PEJTROOT still attains 14
correct digits of the four roots (Three roots iterations are shown below).

17



Farmer-Loizou third order iteration

PejRoot result

I
steps iterateas | steps iterates
1 0.47 -.33 3.02 | 1 1.004 1.98 3.05
2 32.92 -4.65 2.69 | 2 1.0001 1.998 3.003
3 4.75 -1.80 1.75 | 3 0.9999998 2.000006 2.99997
4 205.96 .40 1.54 | 4 0.999999999994 2.00000000001 2.9999999990
5 3.41 -.07 .88 | 5 1.00000000000000 2.00000000000001 2.99999999999997
6 11.55 1.16 .14 | 6. 1.00000000000000 2.00000000000001 2.99999999999998
7 3.51 -.96 .72 | 7. 1.00000000000000 2.00000000000000 2.99999999999999
.. ce |
100 5.99 1.10 0.30 I

The true barrier of accuracy for Algorithm I is the pejorative condition. Matlab constructed
the test polynomial with a relative coefficient error of 4.56 x 10716, the pejorative condition
number is 29.3. The root error is approximately 1 x 1074, which is within the error bound
2 x (29.3) x (4.56 x 10716) = 2.67 x 107! established in (21).

3.6.2 Clustered multiple roots

Consider f(z) = (z — 0.9)¥(z — 1)!°(z — 1.1)'® in expanded

form. The roots are highly multiple and clustered. The Mat- : A .

lab function roots produces 44 ill-conditioned roots scattered - .

in a box of 2.0 x 2.0. (see Figure 6). In contrast, Algorithm I { 8
code PEJROOT obtains all three roots for at least 14 correct - R

digits each by taking two additional steps on the information - e L ’

of multiplicity structure and initial root approximation pro-

vided by our Algorithm II in §4. Figure 6: The root cluster from

three multiple roots calculated by

step | 21 22 23 Matlab function roots
0 0.89999999993 0.9999999993 1.0999999998
1 0.999999999999991  1.00000000000001 1.10000000000001
2 0.999999999999991  1.000000000000001  1.10000000000001

The backward accuracy can easily be verified to be less than 1.36 x 107'®. The pejorative
condition number is 60.4. Therefore, with perturbation at the sixteenth digit of the coefficients,
14 digits accuracy is the best possible accuracy that can be expected from any method.

An important feature of Algorithm I is that it does not require the correct multiplicity structure.
Computation with different structures is often needed and is permissible with Algorithm I. If
the computation is on a “wrong” pejorative manifold, then either the pejorative condition
number or the backward error becomes large. Table 1 is a partial list of pejorative roots
under different multiplicity structures. As shown in Table 1, if the computing objective is
unconstraint minimization of the backward error, like standard methods, then we would get
simple, clustered, and incorrect roots as shown in Figure 6. On the other hand, if the objective
is to minimize backward error, subject to the condition requirement x < 100, we would obtain
accurate approximation of the desired roots.

3.6.3 Roots with huge multiplicities

The accuracy as well as stability of Algorithm I seem independent of the multiplicities of the
roots. For instance, let’s consider the polynomial of degree 1000

g(z) = [z — (0.3 4+ 0.60)]"% [z — (0.1 + 0.74)]*°° [z — (0.7 + 0.5i)]3% [z — (0.3 + 0.44)]*%°.
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multiplicity pejorative backward error pejorative condition

structure roots (relative) number
[1,1,...,1] (see Figure 9) .0000000000000006 1390704851032436
[18,10,16] (.9000, 1.0000, 1.1000) .000000000000002 60.4
[17,11,16] (.8980, .9934, 1.10086) .0000004 53.8
[14,16,14] (.8890, .9892, 1.1090) .000003 29.0
[10,24,10] (.8711, .9906, 1.1315) .000008 26.7
[2, 40, 2] (.7390, .9917, 1.3277) .00009 23.6
[1, 43] (.5447, 1.0054) .004 1.3
[44] ( .9925) .04 .0058

Table 1: Partial list of multiple roots on different pejorative manifolds

The multiplicities of the roots are 100, 200, 300 and 400. These multiplicities are “huge”in
the sense that numerical examples with multiplicities of 10 or more are rarely used in the
literature.

In addition to such high multiplicities, s :

we perturb the sixth digits of all coeffi- sof- Lo T . 1
cients of g(z) by multiplying (141079) s . - :
on each one of them. Using any conven- 20 - ' - 1

tional approach, this perturbation will
result in the total loss of forward accu-
racy even if multiprecision is used. The
code PEJROOT of Algorithm I takes a
few seconds under Matlab to calculate
all roots up to 7 digits accuracy. Taking
the pejorative condition number 0.58
into account, this accuracy is optimal. Figure 7: Result for the degree 1000 polynomial by Matlab
(On the same machine, Matlab func- function roots

tion roots takes about 15 minutes to produce 1000 incorrect roots, see Figure 7).

imaginary part

real part

Al | z9 | Z3 | Z4
.289 +.601i .100 +.702i .702 +.498i 301 +.399i
.309 +.602i .097 +.698i .698 +.499i .299 +.400i
.293 +.5961 101 +.7003i .7002 +.5005i .3007 +.4003i
.3003 +.5994i .09994 +.70008i .69996 +.50003i .29996 +.40007i
.300005 +.600006 .099998 +.6999992i .69999992  4.4999993i 2999992 +.3999992i

.3000002  +.60000005i | .09999995  4.69999998i | .69999997  +.49999998i | .29999997  +4.400000002i

4 Algorithm II: the multiplicity structure and initial root es-
timates

While Algorithm I can be used on any particular pejorative manifold, of course, the “correct”
multiplicity structure is much more preferred if obtainable. In this section, we present Algo-
rithm IT that calculates the multiplicity structure of a given polynomial as well as the initial
root approximation for Algorithm I. As in Lemma 2.2, for p(z) = po(z — 21)" - -- (z — 2 )’
with z;’s being distinct, the key to calculating z;’s is to factor p(z) and p'(z) with a GCD
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(Greatest Common Divisor) triple (u,v,w):

{ u(z) v(z

u(z)w(z) = p'(z)

|
=
B

, v(z) and w(z) are co-prime. (23)
If this can be accomplished, then we have

wz)=u [[(z—2)5" o) = Po (2 —21) (& — 2m).
j=1

The polynomial factor v(z) has all the distinct roots of p(x) as its simple roots that can
be solved with standard root-finders. By applying the same strategy on u(z) = GCD(p,p’)
recursively, the roots and the multiplicity structure can be calculated.

Numerical computation of GCD’s has been studied extensively, such as in [3, 4, 11, 17, 22].
Our algorithm employs a partial singular value decomposition by an implicit inverse iteration
(Lemma 2.4) and an iterative refinement by the Gauss-Newton iteration. As a remarkable
consequence, the GCD’s can be calculated accurately and efficiently without using symbolic
computation or multiprecision.

4.1 Calculating the greatest common divisor

Algorithm IT is based on the following GCD-finder:

STEP 1. Find the degree m of GCD(p,p’).

STEP 2. According to the degree m, set up the system (23) for the GCD triple (u, v, w).
STEP 3. Find an initial approximation to u, v and w for the GCD system (23).

STEP 4. Use the Gauss-Newton iteration to refine the GCD triple (u, v, w).

We shall describe each step in detail.

4.1.1 Finding the degrees of the GCD triple

Let p(z) be a polynomial of degree n. By Lemma 2.2, the degree of u(z) = GCD(p,p’) is
m = n — k if and only if the k-th Sylvester discriminant matrix is the first rank-deficient
matrix. Therefore, m = deg(u) can be identified by calculating the sequence of the smallest
singular values ¢; of Sj(p), j = 1,2,---, until reaching ¢;, that is zero numerically. Since only
one singular pair is needed, the inverse iteration described in Lemma 2.4 is suitable for this
purpose. Moreover, we can reduce the computing cost even further by recycling and updating
the QR decomposition of S;(p)’s along the way. More specifically, let

2

p(z) = apz" + 12"+ an, p(x) =bor" T + 012" P+ 4 by
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We rotate the columns of S;(p) to form S'j (p) in such a way

i+t i 2+l
-~ % N -~ % N < N
bo ao bo ao
. by al bo ao
b1 T ai
. b1 a1
bo . - ao N . .
bn—1 an-1 : : bo ao
b1 . a1 an  bn_1 an—1 b1 a1 bo
bn_1 . An . an . : : by
bnfl An—1
bn—l an Qan bn—l

that the odd columns of S'j(p) consist of the coefficients of p’, and even columns are the
coefficients of p. Consequently, the matrix S’Hl(p) is formed simply by adding a zero row at
bottom and augmenting two columns at right on S'j (p). Tt is easy to see that updating the
QR decomposition of each S'j (p) requires only O(n) additional flops. The inverse iteration (1)
consists of a forward and a backward substitutions of triangular systems that requires O(5?)
flops at each S;(p).

Let 0 be a given zero singular value threshold. We shall discuss more about this number in §4.2.
The process of finding the degree of the GCD triple (u,v,w) can be summarized as follows.

Calculate the QR decomposition of the (n + 1) x 3 matrix S;(p) = Q1R;.
For j =1,2,--- do
Use the implicit inverse iteration (Lemma 2.4) to find the smallest
singular value ¢; of S*j (p) and the corresponding right singular vector y;.
if ¢ < 9H p H2 then
k=3, m=mn—k, extract vand w from y;, exit.
else
update Sj(p) to Sjii1(p) = Qj+1 R
end if
end do

4.1.2 The quadratic GCD system

Let m = n — k be the degree of GCD(p,p’) calculated in STEP 1. We can now formulate the
GCD system of STEP 2. This system can be written in vector form, with unknown vector

(u,v,w)":
F(u,v,w) = l g, , ueCc™l vecrmtl wegh ™, (24)
where F(u,v,w) = l conv(u, v) ] .
conv(u, w)

Here, the convolution conv(:,-) is defined in Lemma 2.1. The following lemma ensures that
solving this quadratic system is a nonsingular problem in finding the GCD triple (u, v, w).
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Lemma 4.1 The Jacobian of F(u,v,w) in (24) is

. Cm 1(1)) Ck (U,) 0
J(u,v,w) = ij:l(w) +01 Co(w) | (25)

If uw(z) = GCD(p,p') with (u,v,w) satisfying (24), then J(u,v,w) is of full (column) rank.
Proof. It is straightforward to verify (25) using Lemma 2.1. This Jacobian is the generalized

Sylvester resultant matrix for u, v, w (see [22]), that are co-prime since v = GCD(p,p’). By
Proposition 3.1 in [22], it is of full rank. Q.E.D.

This nonsingularity also ensures that the Gauss-Newton iteration is locally convergent with

quadratic rate.

Theorem 4.1 Let u(x) = GCD(p,p') with o(z) and w(z) satisfying (24), and W be a

diagonal weight matriz. Then there exists € > 0 such that for all ug, vy, Wo satisfying
O T L

the Gauss-Newton iteration

Uj+1 u; p
vigr | = | vi | = (v, W) [F(uj,Vj,Wj) - ( D ) , j=0,1, (26)
Wi+l Wi

converges to [, v, W] quadratically.

Proof. WF(u,v,w) is obviously analytic. Since (@,v,w) is a solution to (24), we have
WF(a,v,w) =W (p,p')" and therefore § = 0 in (6) of Lemma 2.6. By Lemma 4.1, W.J (&1, V, W)
is of full rank and its smallest singular value o > 0. Let Q be a neighborhood of (@, v,w) in
which

H WJ(u,v,w) \\2 <a, Y(u,v,w)ec.

Let v be the Lipschitz constant of W.J(u,v,w) over . Then, by Lemma 2.6, we have

~ ~ 2
u; u u; u
J+1 - < cary J -
Vit - v S — \Z - v
It ~ 20 J -
Wj+1 A\\% 9 W]' A\\% 9

Q.E.D.

After finding the degree of GCD(p,p’) , to employ the Gauss-Newton iteration to obtain the
solution [@1, v, W], we need an initial approximation [ug, vq, wo]
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4.1.3 Setting up the initial iterate

In STEP 1, when the degree of GCD(p,p') is calculated, the singular vector yj, of Si(p) asso-
ciated with the singular value ¢; consists of v and w that satisfy (24) (see Lemma 2.3). For
refinement, we will use them as initial approximations vy and wy. Because of the column
rotation in §4.1.1, the odd and even entries of y; form vy and wq respectively.

While polynomial long division yields p(z) + v(z) = u(z) in theory. The process may not be
numerically stable especially with inexact data. By Lemma 2.3, long division is equivalent to
solving the linear system

(27)

When v and p are inexact, finding least squares solution to (27) is to minimize

Cm+1(v)ug =p

for ug.
N ey . .

H conv(u,v) — p H2 This “least squares division” is consistently more accurate in our nu-

merical experiment. The example shown in Table 2 is quite common, in which p = conv(u, v)
is rounded up at the eighth digit after decimal point. Substantial difference exists between
long division (Matlab deconv) and least squares division.

approx. coef. | coefficients coef.’s of least squares long
of p(z) of v(z) p(z) + v(z) division division

1.00000000 1.00000000 | 1.00000000 | 0.9999999999 1.00000000
23.35360257 23.01829201 0.33531056 0.3353105599 0.33531056
29.89831582 | 22.05776405 | 0.12227539 | 0.1222753902 0.122275385
10.75803809 0.54726624 | 0.5472662398 0.5472663
15.57240922 0.27815340 0.2781534002 0.278151
18.76038493 0.28629915 | 0.2862991496 0.28634
13.73079603 1.00523653 1.0052365305 1.004
30.45600101 1.00205392 | 1.0020539195 1.02
46.21275197 0.97391204 0.9739120403 0.5
44.89871211 0.37785145 | 0.3778514500 | 11.
30.17981700

8.33455813

Table 2: A numerical comparison between long division and least squares division

Extracting vy and wy from the singular vector, and solving (27) for ug, they will be used as
the initial iterates for the Gauss-Newton iteration (26) that refines the GCD triple. Moreover,
the linear system (27) is banded with the bandwidth being the number of distinct roots plus
one. Therefore, the cost of solving (27) is insignificant (no more than O(n?)) in the overall
complexity.

4.1.4 Refining the GCD with the Gauss-Newton iteration

Each step of the Gauss-Newton iteration reduces the weighted residual

s -

H = H WEF(uj,vj,wj) =W
w

p ]
pl

until it is numerically unreducible. We stop the iteration when the residual no longer decreases.

2

The diagonal weight matrix W is used to scale the GCD system (24) so that the entries of

W [ g, are of similar magnitude. Each step of the Gauss-Newton iteration requires solving
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Figure 8: Sparsity of J(u,v,w) and its triangularization

an overdetermined linear system

Uj+1 u; p
[WJ(uj,vj,wj)] Vj+1 — Vj =W lF(uj,vj,wj)— ( p, )]
Wi+l Wi

for its least squares solution, which requires a QR decomposition of the Jacobian J(u;, v, w;)
and backward substitution for an upper triangular linear system. This Jacobian is a sparse
matrix with a special structure. This sparsity can be largely preserved during the process.
Figure 8 shows the typical sparsity of J(u,v,w) and its triangularization. When p(z) is a
polynomial of degree n. A straightforward QR decomposition of J(u, v, w) costs O(n?) flops.
Taking the sparsity structure of J(u, v, w) into account, it can be verified that the sparse QR
decomposition costs O(mk? +m?k+k3) where k be the number of distinct roots and m = n—k.
This complexity is significantly reduced to between O(n?) and O(n?).

4.2 Computing the multiplicity structure

From Lemma 2.3, if u, v and w satisfy the GCD system (24), then v(z) has all simple roots
that are identical to all the distinct roots of p(z). On the other hand, this GCD calculation
can be applied recursively to determine the multiplicity structure of p(z):

ug(z) = p(z)
for m =1,2,---s, until deg(us) =0 do
Find the GCD triple (up,, vm, wy,) that satisfies

{ Z:Ei; 1;,;((:1;)) i Z,m_ig; , Um(x) and wy,(z) are co-prime.
m—
by using the the GCD finder given in §4.1.

end do

Let dp, = deg(vp,), m = 1,2,---,s. To determine the multiplicity structure of p(z), first of
all, p(x) has a total of k = d;. It is straightforward to verify that the multiplicity structure is
=1[ly,--, L] with

Ej:max{t‘dtZk—j—i—l}, j=1,2- k. (29)
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Moreover, an [-fold root of p(x) appears [ times as a simple root of v,,(z), m = 1,2,--- .
Therefore, multiple root-finding on p(x) is reduced to a sequence of simple root-finding on
vj(z), 7 = 1,2,---,s. Since the the computation is carried out with inexact floating point
operations, the computed roots of vj(x)’s do not reach the optimal accuracy permitted by the
pejorative condition of p(z) in general. Using the multiplicity structure determined by (29),

S
we may group the numerically “identical” roots of { vj(x) }1 as the initial root approximation
of p(z).

In practice, the m-loop above stops either at deg(u,,) = 0 or deg(v,,) = 1. In latter case,
there is only one root remaining in u,, 1. The structure is thereby determined with no need
for further GCD calculation.

Each step in the m-loop above involves solving a GCD system

Frn (W, Vin, Win) = [ conw(Um, Vin) ] = [ ulmi1 ] (30)

conv (W, Wiy )

by the Gauss-Newton iteration

AR uji)
VI | = | V| = (0,9, WD) [Fm (ul) V9, w) - ( o1 )] . (31)
W%H) W%) w u, 1

j:()a]-a"'

where J,, (u%),v%),wgn)) is the Jacobian of F, (uﬁn),v%),wﬁn)) and J,, (uin),vg%),wﬁ,%)y is

its pseudo-inverse.

We use three control parameters this process. The first one is the zero singular value threshold
6 that is used to identify the zero singular value. The default choice is § = 1078, In calculating
U, the smallest singular value ¢ of S’l(um,l) that is less than OH Uy, H2’ will be tentatively
considered as a zero, pending confirmation from the residual information produced by the
Gauss-Newton iteration.

When the smallest singular value is below the threshold, the Gauss-Newton iteration is initiated
to further reduce the residual (28) to its numerical limit. We use the second control parameter,
the initial residual tolerance g, to decide if this refined residual is tiny enough. Our default
choice is o = 107'°. When the (weighted) residual

o = (32)

u
Fm(umavmawm) - [ m=l ]H ‘

Um—1
um,vm,wm)—Wl ; ]

Uy

satisfies
Pm S QH Um—1 HQ’

we accept the GCD triple (U, Vm,wn,). Otherwise, the Sylvester’s discriminant matrix is
expanded to the next order and the partial singular value computation is continued.

The third parameter is the residual tolerance growth factor ¢. Whenever a GCD triple
(U, Um, Wy, ) is calculated, there is a residual p,, defined in (32). The error in (um,, v, W)
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Pseudo-code GcDRooOT (Algorithm IT)
input: The polynomial p of degree n, singular threshold 0,
residual tolerance p, residual growth factor ¢.
(If only p is provided, set § =10"%, o=10"1%, ¢ =100 )
output: the root estimates (z1,-:-,2;)' and multiplicity structure [(1,--,{]

Initialize ug =p
for m=1,2,---,s, where deg(us) =0 do
for [ =1,2, -+ until residual p < QH Wyt H do
calculate the singular pair (g,y:) onS'l(um,l) by iteration (1)
if g < 9‘

W1 ) then

set up the GCD system (30) according to [ (see Section 4.1.2 )
extract v,(,?),wﬁi’) from y; and calculate u£2) (see Section 4.1.3)
apply the Gauss-Newton iteration (31) from
ug),vg),wg)to obtain Uy, Vm, W
extract the residual p =p, as in (32)
end if
end do
adjust the residual tolerance p to be max{p, ¢p;}

set d,, = deg(vy,)

end do
set k=di, Zj:max{t‘dtZk—j—i—l}, i=1,2, k.
match the simple roots z;’s of vp(z), m=1,2,---,s

according to the multiplicities ¢;’s.

Figure 9: Pseudo-code of Algorithm I1

will cause the residual p,,+1 of the next triple (w41, Vmt1, Wmr1) to grow. Therefore, the
residual tolerance o may need to be adjusted after a GCD triple is found. Our default growth
factor is 100. After obtaining p,,, the residual tolerance p is adjusted to be

wax{ 0. dpu }

Notice that the growth factor is applied to residual p,, rather than the residual tolerance o to
provide some breathing room. The residual tolerance p itself may not grow at every step.

From our computing experience, the default control parameters works well for “normal” poly-
nomials, such as those with unclustered roots of moderate multiplicities. For difficult problems,
one may manual adjustment those parameters.

4.3 Numerical results for Algorithm II
The effectiveness of Algorithm IT can be shown by the polynomial
p(z) = (z = 1)*(x - 2)P(z - 3)"(z - 4)°, (33)

that is generated by Matlab function poly. Using the default control parameters, Algorithm
II code GEDROOT correctly identifies the multiplicity structure. The roots are approximated
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to an accuracy of 10 digits or more. Starting from this result as an input to Algorithm I code
PEJROOT, in the end we obtained all multiple roots with at least 14 digits correct (Table 4.3).

Algorithm II (code GcdRoot) result: Algorithm I (code PejRoot) result

I
| THE BACKWARD ERROR: 6.16e-016
The backward error is 6.057721e-010 | THE ESTIMATED FORWARD ROOT ERROR: 9.46e-014

I
computed roots multiplicities | computed roots multiplicities

I
4.000000000109542 5 I 3.999999999999985 5
3.000000000176196 10 I 3.000000000000011 10
2.000000000030904 15 | 1.999999999999997 15
1.000000000000353 20 | 1.000000000000000 20

Table 3: Roots of p(z) in (33) computed in two stages

This polynomial used to be extremely difficult by any standard for root-finding. The magnitude
of its coefficients stretches from 1 to 10?'. Our algorithms have no difficulty finding all its
multiple roots. To the best of our knowledge, there is no other method that can calculate
multiple roots for such polynomials unless the machine precision is extended substantially
according to the requirement of “attainable accuracy”.

The Euclid method may also be used to find GCD in order to identify the multiplicities [2, 24].
F. Uhlig’s pzero [24] is a Matlab implementation based on the Euclid method. The drawback
of the Euclid method is its reliance on recursive long division that is numerically unstable (see
Table 2). Moreover, it is not easy to identify a numerical zero remainder in the process. To
identify multiplicities, pzero must rely on a root cluster matching that is inherently unreliable.
Here we compare our code GCDROOT with pzero on the polynomial

p(z) = (& = )" (@ = 2) (@ - 3)*(z — 4",

for k =1,2,---,8. When the multiplicities increase, the root accuracy deteriorates with pzero.
It successfully identifies the multiplicity structure for £ = 1 and k£ = 2, but fails to do so after
that. When k£ > 5, pzero no longer recognizes multiplicities, it only outputs simple clustered
roots. In comparison, GCDROOT consistently attains a root accuracy of 11 or more digits with
increasing multiplicities. The multiplicity structures are identified correctly for & up to 7. For
the current implementation, the limitation of GCDROOT on this sequence is k < 7, although
the root accuracy will stay the same for even larger k. When GCDROOT errs at £ = 8, the
multiplicities are up to 32, and the magnitude of coefficients stretches from 1 to 103°.

4.4 Some remarks on the GCD calculation

In this paper, our main interest is in root-finding. We therefore confine our discussion in GCD-
finding only to calculating GCD(p,p’). Actually, with minor modifications, the algorithm can
be applied to numerical computation of general GCD’s of two or more polynomials.

The idea of using singular values to calculate GCD is not new. Extensive studies have been
reported [4, 11, 22]. In [3, 17], GCD refinement by using complicated nonlinear program-
ming methods has also been proposed. In contrast, the Gauss-Newton iteration is simple and
efficient, it seems well suitable for numerical GCD computation.
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k code 331:1 332:2 I3:3
k=1 | pzero 1.00000000001 (4) | 1.99999999998 (3) | 3.000000000005 (2)
GcepRooT | 0.999999999999990 (4) | 1.99999999999998 (3) | 3.0000000000005 (2)
k=2 | pzero 1.0000000001 (8) | 2.000000002 (6) | 3.000000004 )
GcepRooT | 0.9999999999998 (8) | 1.999999999983 (6) | 2.99999999991 (4)
k=3 | pzero 0.9999999897 (13) | 1.99999990 (8) | 2.9999998 (5)
GcepRooT | 0.9999999999997 (12) | 1.99999999997 (9) | 2.9999999998 (6)
k=4 | pzero 0.9999995 (21) | 1.099994 (6) | 2.999990 (7)
GcepRoot | 1.0000000000003 (16) | 2.00000000002 (12) | 3.0000000001 (8)
k=5 | pzero 1.0000009 (28) | 2.00001 (8) | 3.00002 (6)
GcepRooT | 1.0000000000004 (20) | 2.00000000003 (15) | 3.0000000002 (10)
k=6 | pzero - — 1y | ———— (1) | ———— (1)
GcepRoot | 1.0000000000002 (24) | 2.00000000001 (18) | 3.00000000004 (12)
k=7 | pzero - — 1y | ———— (1) | ———— (1)
GcepRooT | 1.0000000000001 (28) | 2.00000000001 (21) | 3.00000000006 (14)
k=8 | pzero - — 1 | -——-— 1 | -——-— (1)
GcepRoot | 1.0000000000002 (47) | 2.00000000002 (15) | 3.00000000001 (11)

Table 4: Partial results on p(z) = (z — 1)**(z — 2)* (z — 3)** (¢ — 4)* and comparison between pzero and
GcpRooOT. Numbers in parenthesis are computed multiplicities. Wrong multiplicities are in boldface.

5 Numerical results for the combined method

5.1 The effect of inexact coefficients
In applications, input data of problems are expected to be inexact. The following experiment

tests the effect of data error on the accuracy as well as stability of both Algorithm I and II.

For the polynomial

p) = (o - 10/11)5(x - 20/11)3(95 - 30/11)2

in general form, every coefficient is rounded up to k-digit accuracy, where k£ = 10,9, 8, ---. For
this sequence of problems, Algorithm IT code GCDROOT correctly identifies the multiplicity
structure if the coefficients has at least 7 digits. If the multiplicities are manually given,
Algorithm I code PEJROOT continues to converge even when data accuracy is down to 3
digits. For lower data accuracy, the residual tolerance p in GCDROOT needs to be adjusted
accordingly. Table 5 shows the results of both programs.

5.2 The effect of nearby multiple roots

When two or more multiple roots are nearby, it can be difficult to identify the correct multi-
plicity structure. We test the example

pe(@) = (& — 1+ )*(z = 1)* (2 + 0.5)°

for decreasing root gap € = 0.1, 0.01,---. Namely, the first root 1 = 0.9, 0.99, 0.999,---.
When root gap decreases, the default control parameters may not work properly. In this test,
we use the default parameters for all cases except € = 0.0001, in which case, the residual

growth factor ¢ = 5. GCDROOT is used to find the initial input for PEJRoOT. Computing
results are shown for both programs in Table 6.
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number of control
correct parameters code 1 = 0.90 xo = 1.81 3 = 2.72 backward
digits o, 0 error
k=10 o=1le—9 | GepRooT | 0.90909090 1.8181818 2.7272727 1.7e-08
0=1le—7 PEJROOT | 0.909090909 | 1.81818181 | 2.7272727 2.4e-10
k=9 o=1e—38 GopRooT | 0.909090 1.81818 2.72727 7.0e-06
0=1le—6 PEJROOT | 0.9090909 1.8181818 2.727272 2.3e-09
k=28 o=1le—7 | GepRoot | 0.90909 1.8182 2.727 1.3e-04
0=1e—5 PeEJROOT 0.9090909 1.818181 2.72727 2.3e-08
k=17 o=1le—6 GopRooT | 0.9090 1.82 2.7 1.3e-02
0=1le—4 PEJROOT | 0.90909 1.81818 2.7272 2.3e-07
k=6 - —— GepRooT | — — —— - —— - —— - —
PeEJROOT 0.9090 1.8181 2.727 3.7e-06
k=5 - — GcepRooT | — — —— - - — - —
PEJROOT 0.909 1.818 2.72 2.4e-05
k=14 - —— GepRooT | — — —— - —— - —— - —
PeEJROOT 0.90 1.81 2.7 1.9e-04
k=3 - — GcepRooT | — — —— - - — - —
PEJROOT 0.9 1.8 2.8 1.8e-03
Table 5: Effect of coefficient error on computed roots
root gap pejorative
code 1 =1—¢ o =1 r3 = —0.5 backward condition
€ error number
e=0.1 GcepRooT | 0.89999999999 0.99999999999 -0.49999999999999 9.7e-10
PrJRooT 0.9000000000000 0.9999999999999 | -0.50000000000000 2.7e-13 7
e =0.01 GepRooT | 0.98999999 0.99999999 -0.50000000000000 3.2e-07
PrJROOT | 0.989999999999 1.000000000000 -0.49999999999999 1.0e-12 6.7
e =0.001 GcepRooT | 0.99900 1.00000 -0.49999999999999 1.9e-04
PrJRooT 0.99899999999 1.00000000000 -0.500000000000000 4.1e-13 62.5
e = 0.0001 GepRooT | 0.9997 0.99996 -0.4999999999999 1.1e-02
PrJROOT | 0.999900000 0.999999999 -0.50000000000000 4.0e-12 621.7
e = 0.00001 | PrJROOT | 0.999989990 1.0000000 -0.50000000000000 4.0e-10 5791.8
Table 6: Effect of decreasing root gap on computed roots
root gap pejorative
code r1=1—¢ xro =1 xr3 = —0.5 backward condition
€ error number
e = 0.0001 GcepRooT | 0.99994999 0.99994999 -0.5000000000 5.7e-08
PrJRooT 0.999949999 0.999949999 -0.500000000 2.2e-08 0.0066
€ = 0.00001 | GepRooT | 0.9999949999 0.9999949999 -0.500000000000 1.1e-10
PrJROOT | 0.99999499999 | 0.99999499999 | -0.50000000000 4.0e-12 0.0066

Table 7: If the control parameter is not adjusted, tiny root gap makes computed roots identical. However,

from the backward errors and pejorative condition, they are not necessarily wrong answers.
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When the default growth factor stays the same as the default ¢ = 100 and the gap ¢ < 0.0001,
GCDROOT outputs a multiplicity structure [40, 5]. Namely, GCDROOT treats the two nearby
20-fold roots as a single 40-fold one. From the computed backward error and the pejorative
condition, this may not necessarily be incorrect. See Table 7. When backward error becomes
10~ '? and pejorative condition number is tiny (0.0066), they are numerically accurate! In
contrast, using the “correct” multiplicity structure [20,20, 5], PEJROOT outputs roots with
backward error 1071? and a large condition number 5791.8 (last line in Table 6).

By adjusting the control parameters, GCDROOT can find different pejorative manifolds that
are closer to the given polynomial. PEJROOT then calculates corresponding pejorative roots.
The selection of the most suitable solution should be application dependent.

5.3 A large inexact problem

Implementing the combination of two methods, we have produced a  coefficients of £(x)

Matlab code MULTROOT. We conclude this report by testing this code 1
on our final test problem. First of all, 20 complex numbers are randomly 0.7
generated as roots: -0.19
0.177
. . . . . . . : . -0.7364
B, —14.24, —.14i, —.8+.6i, —.7+.7i, 1.4, —4+.9, .9, —.8+.3i, .3+.8i, .6+.4i ey
. -0.952494
These roots are used to generate polynomial f(z) of degree 20. We then -0.2998258
round all coefficients to 10 decimal digits. The coefficients are shown -0.00322203
at the right side. We construct multiple roots by squaring f(z) again :8:232223325
and again. Namely, -0.9616679762
0.4410459281
2k 0.1090273141
ge(z) = [f(@)]" , k=1,2,3,4,5. 0.6868094008
0.0391923826
At k=5, g5(x) has a degree 640 and 20 complex roots of multiplicity 8'22833‘;2222
32. Since the machine precision is 16 digits, the polynomials g; are 0.1495784988
inexact. Using the default control parameters, our combined program -0.3437618593
0.4357949015

encounters no difficulty in calculating all the roots as well as finding
accurate multiplicities. The worst accuracy of the roots is 11-digit. Here is the final result.

THE PEJORATIVE CONDITION NUMBER: 0.0780464
THE BACKWARD ERROR: 6.38e-012

THE ESTIMATED FORWARD ROOT ERROR: 9.96e-013

computed roots multiplicities | computed roots multiplicities

I

0.499999999999399 + 1.000000000006247 i 32 | 1.400000000000303 + 0.000000000000000 i 32
0.499999999999399 - 1.000000000006247 i 32 | -0.399999999999482 + 0.899999999996264 i 32
-1.000000000003141 + 0.200000000004194 i 32 | -0.399999999999482 - 0.899999999996264 i 32
-1.000000000003140 - 0.200000000004193 i 32 | 0.899999999996995 - 0.000000000000000 i 32
-0.099999999996612 + 1.000000000001018 i 32 | -0.799999999987544 + 0.299999999995441 i 32
-0.099999999996612 - 1.000000000001018 i 32 | -0.799999999987544 - 0.299999999995441 i 32
0.800000000001492 + 0.600000000001814 i 32 | 0.299999999995789 + 0.799999999976189 i 32
0.800000000001492 - 0.600000000001815 i 32 | 0.299999999995789 - 0.799999999976189 i 32
-0.699999999997635 + 0.699999999997984 i 32 | 0.599999999989084 + 0.399999999997279 i 32
-0.699999999997635 - 0.699999999997984 i 32 | 0.599999999989084 - 0.399999999997279 i 32
Acknowledgment. The author is grateful for the e-correspondence with Frank Uhlig on

the subject. Moreover, the author wishes to thank Frank Uhlig and Peter Kravanja for freely
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