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Abstract

Horner’s method is a standard minimum arithmetic method for evaluating and
deflating polynomials. It can also efficiently evaluate various order derivatives of
a polynomial, therefore is often used as part of Newton’s method. This note tries
to develop the various techniques called Horner’s method, nested evaluation, and
synthetic division in a common framework using a recursive structure and difference
equations. There is a similarity to Goertzel’s algorithm for the DFT, Z-transform
inversion by division, and Padé’s and Prony’s methods. This approach also allows
a straight forward explanation of “stability” or numerical errors of the algorithms.
Matlab implementations are given.

1 Polynomials

Polynomials are one of the oldest classes of mathematical functions with an important
history in mathematics, science, engineering, and other quantitative fields [1]. Part of the
polynomial’s appeal comes from the fact that it may be numerically evaluated using a
finite number of multiplications and additions. In the processes of factoring and deflating
polynomials, Horner’s methods are central and are the focus of this note.

Any N th degree polynomial

fN [a, z] = a0 + a1z + a2z
2 + · · · + aNzN (1)
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can be written in a nested form as:

fN [a, z] = a0 + z (a1 + z (a2 + · · · + z (aN−1 + z (aN))) · · ·), (2)

or nested in a different order as:

fN [a, z] = z (· · · z (z (z (aN) + aN−1) + aN−2) + · · ·) + a0, (3)

and in a factored form as:

fN [a, z] = aN

N∏

r=1
(z − zr) = aN

D∏

d=1

(z − zd)Qd , (4)

where Qd is the multiplicity of the dth zero, D is the number of distinct zeros, and∑
d Qd = N . The polynomial can be written in a first order remainder form as:

fN [a, z] = qN−1[b, z] (z − z0) + R, (5)

where
qN−1[b, z] = b0 + b1z + b2z

2 + · · · + bN−1z
N−1 (6)

is the quotient polynomial obtained when fN [a, z] is divided by (z−z0) and the remainder
is a constant easily seen to be the value of

R = fN [a, z0]. (7)

If z0 is a zero of fN(z), then R = 0 and qN−1(z) contains the same zeros as fN(z) except
for the one at z0. A more general formulation of (5) is:

fN [a, z] = qN−M [b, z] dM [c, z] + R(z). (8)

There are four polynomial problems[2] that are often posed:

1. Factor: Given the coefficients ak, find the roots or zeros zr.
Matlab command: roots()

2. Unfactor: Given the zeros zr, find the coefficients ak.
Matlab command: poly()

3. Evaluate: Given the coefficients or zeros and z0, find the value of the polynomial
at z = z0, f(z0) (or the value of the derivative of the polynomial at z = z0, f ′(z0)).
Matlab command: polyval()

4. Deflate: Given a polynomial and one of its roots, find the polynomial containing
the other roots.
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Horner’s methods are important for evaluation and deflation, therefore, for factoring. For
many high degree polynomial factoring schemes[2], it is important to use stable evalu-
ation and deflation and to deflate in an order that maximizes the conditioning of the
quotient. Unfactoring is simply the multiplying of the factors to obtain the polynomial
but, because of round-off error, the order of multiplication is important. As an alterna-
tive, the FFT/DFT can be used to unfactor and evaluate. Of the four, only factoring
is nonlinear and it is the most difficult [2]. In many strategies, factoring uses the other
three. For implementation of any of the four, the number of arithmetic operations re-
quired will determine the speed of execution and stability and conditioning will affect the
error characteristics.

2 Evaluate the Polynomial and its Derivatives

From the structure of the nested forms in (2) and (3), one can formulate a recursive
relation which is also a linear first order difference equation:

xk+1 = z xk + aN−1−k, x0 = aN , (9)

for k = 0, 1, . . . , N − 1 with the value of the polynomial at z given by fN [a, z] = xN

[3, 4, 5]. Here the xk are the values of the successively evaluated bracketed expressions in
(2). Matlab code to evaluate fN [a, z0] with coefficients a is given by:

m = length(a); % poly degree plus one: N+1
f = a(1); % initial condition
for k = 2:m % iterative Horner’s algorithm

f = z*f + a(k); % recursive evaluation of f(z)
end

Program 1. Forward Evaluation of Polynomial

Remember that Matlab stores polynomial coefficients in the reverse order of the notation
used by many writers and the reverse of that shown in (1) and starts indexing with 1
rather than 0.

This formulation is very efficient if implemented with the “multiply-accumulate” single-
cycle instruction of several DSP chips and some microprocessors.

The nested forms of (2) and (3), the remainder form of (5), and the recursive form
of (9) are all versions of Horner’s method [2, 5, 6] or synthetic division. There are also
similarities to the Goertzel algorithm to evaluate the DFT, the Padé or Prony method and
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inversion of z-transforms by division. Indeed, all of these methods convert an evaluation
into a recursion and then into a difference equation which has considerable literature [7].
While in some cases it is possible to reduce the number of multiplications used by Horner
in polynomial evaluation, it is generally a small gain and accompanied by an increase in
the number of additions and the complexity of the algorithm . If preprocessing of the
polynomial coefficients is not used, Horner gives a minimum arithmetic evaluation [3, 5].

If we differentiate (5), we get:

f ′
N [a, z] = qN−1[b, z] + q′

N−1[b, z] (z − z0), (10)

which, if evaluated at z = z0, gives:

f ′
N(a, z0) = qN−1[b, z0]. (11)

which can be evaluated by a minor variation of (9). Thus Horner’s method can evaluate
an N th degree polynomial with N multiplications and additions or evaluate it and its
derivative with 2N multiplications and additions. Note qN−1[b, z] is not the derivative,
but is the value of the derivative at z0. The simple Matlab code for this is:

m = length(a); % N+1
f = a(1); fp = 0; % initial conditions
for i = 2:m % iterative Horner’s algorithm

fp = z*fp + f; % recursive evaluation of f’(z)
f = z*f + a(i); % recursive evaluation of f(z)

end

Program 2. Forward Evaluation of Polynomial and Its Derivative

This can be made much faster by using the filter() function in Matlab as:

N = length(a) - 1;
b = filter(1,[1 -z], a); % Horner by filter: f(z)
f = b(N+1);
c = filter(1,[1 -z], b(1:N)); % Horner by filter: f’(z)
fp= c(N);

Program 3. Forward Evaluation of Polynomial and Its Derivative by Filters

From (11) and (6), we see that the value of the derivative of the N th degree polynomial
fN [a, z] is the value of the (N − 1)th degree polynomial qN−1[b, z] with coefficients bk as
solutions to the difference equation [7]:

bk+1 = z bk + aN−1−k (12)
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which has the same form as (9) but saving the intermediate values of bk. This means that
the solution to the difference equation (12) with the N input values of ak gives N − 1
output values of bk followed by the remainder R1 which is the value of fN [a, z].

A similar argument shows that solving (12) with an input of bk will give N − 2 output
values of ck followed by R2 which is the value of the derivative of fN [a, z]. Using the ck

as an input will give N − 3 values of dk and R3 which is the second derivative. This can
be continued N time to evaluate the function and all of its N − 1 derivatives (see Fig 1).
These values of Rk allow the original polynomial to be written as:

fN [a, z] = R1 + R2(z − z0) + R3(z − z0)2 + · · · + RN+1(z − z0)N (13)

which is a power series expansion [5] around z = z0 with the coefficients Rk being defined
in terms of the derivatives evaluated at z = z0.

The following program evaluates the function and its first and second derivatives in
a very compact single loop solution of the basic first order difference equation without
saving the coefficients bk or ck.

m = length(a); % poly degree + 1
f = 0; fp = 0; fpp=0; % initial values
for i = 1:m-2 % Horner’s algo.

f = z*f + a(i); % recursive evaluation of f(z)
fp = z*fp + f; % recursive evaluation of f’(z)
fpp = z*fpp + fp; % recursive evaluation of f’’(z)

end
f = z*f + a(m-1);
fp= z*fp + f;
f = z*f + a(m); % Finish evaluations
fpp = 2*fpp;

Program 4. Forward Evaluation of Polynomial and Two Derivatives
Higher order derivative can be evaluated by a simple extension of this idea.

Describing the algorithm as a flow-graph illustrates the recursion as a feed back path
with the feed back parameter being z and shows the structure of evaluating derivatives.

Figure 1. Flowgraph for Horner’s Algorithm
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3 Polynomial Deflation

If z0 is a zero of the polynomial fN [a, z], then R = 0 and (5) becomes

fN [a, z] = qN−1[b, z] (z − z0) (14)

with qN−1 being the N − 1 degree polynomial (6) having the same zeros at fN except
for the one at z = z0. In other words, Horner’s method can also be used to deflate a
polynomial with a known zero. A Matlab program that will deflate fN [a, z] is given by:

m = length(a); % order + one: N+1
b = zeros(1,m-1);
b(1) = a(1); % initial condition
for k = 1:m-2 % iterative Horner’s algorithm

b(k+1) = z*b(k) + a(k+1); % recursive deflation of f(z)
end

Program 5. Forward Deflation of Polynomial

or using the Matlab “filter” command:

N = length(a)-1
b = filter(1,[1 -z], a); % Deflation by filter
b = b(1:N);

Program 6. Forward Deflation of Polynomial using Filter

Because multiplication of two polynomials is the same operation as the convolution of
their coefficients, one can get the same results by multiplying the discrete Fourier trans-
form (DFT)’s of the polynomial coefficients and taking the inverse DFT of the product.
This gives an alternative to Horner’s algorithm for deflating polynomials and is the tech-
nique use in the Lindsey-Fox polynomial factoring scheme [8, 2]. The use of the FFT
for deflation or unfactoring of polynomials has very different error characteristics from
Horner’s method and is often superior. A Matlab program that deflates a polynomial
with coefficients ak by a divisor with coefficients dk to give a quotient with coefficients qk

using the FFT is:
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m = length(a); md = length(d);
q = ifft(fft(a)./fft([d,zeros(1,(m-md))]));

Program 7. Deflation of Polynomial using the FFT

A more general formulation of the deflation problem is of the form:

fN [a, z] = qN−M [b, z] dM [c, z] + R(z) (15)

If the factors of dM(z) are all roots of fN(z), then qN−M contains the others when R(z) = 0.
This allows the easy deflation by quadratic factors or other factor that are already known.

4 Stability

Horner’s method is implemented by the recursive equation (9) or (12) which, in this
form, is seen to be a linear first order constant coefficient difference equation. There is a
considerable literature on the stability of linear differential and difference equations [7],
and an equation of this form is known to be stable[9] for |z| < 1 and unstable for |z| > 1.

To reduce error accumulation when |z| > 1 we nest (1) and (2) in still a different way:

fN [a, z] = zN [z−1(· · · z−1(z−1(z−1(a0) + a1) + · · ·) + aN−1) + aN ], (16)

to give an alternate recursive relationship to (9) which is the following difference equation:

xk+1 = z−1 xk + ak+1, x0 = a0 , (17)

for k = 0, 1, . . . , N − 1 with the value of the polynomial at z given by fN [a, z] = zNxN .
This equation is stable [7, 9] for |z| > 1.

Again, remembering the Matlab index convention, the program for this form of Horner’s
algorithm is:

m = length(a); % N+1
f = a(m); % initial condition
for k = 1:m-1 % iterative Horner’s algorithm

f = f/z + a(m-k); % recursive evaluation of f(z)
end
f = (zˆ(m-1))*f; % remove the factor of zˆ{-m+1}

Program 8. Backward Evaluation of Polynomial
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which is stable for |z| > 1. The same can be done for deflation.

This algorithm is equivalent to reversing the order (“flipping”) the polynomial coeffi-
cients and applying (9) which will give zeros that are the reciprocal of those of the original
polynomial [6, 2]. Using the standard Matlab commands, this can be done by:

m = length(a)
f = (zˆ(m-1))*polyval(a(m:-1:1),1/z);

Program 9. Backward Evaluation of Polynomial by using Reversed Order Coefficients

It is easy to see that stability is very important when evaluating or deflating high
degree polynomials by considering the effects if the degree is as high as one million[2].
Using this difference equation formulation of Horner’s methods allows a more general
deflation using a quadratic or higher degree divisor polynomial based on (8) and (15) to
be easily analysed for stability.

5 Conclusions

We have seen that polynomial evaluation and deflation can be done by Horner’s approach
which is the conversion of the problem into a linear difference equation. Indeed, evaluation
and first order deflation are accomplished by the same algorithm and the stability is easily
controlled.

Having forwards and backwards algorithms allows one to always use a stable evaluation
or deflation scheme [10, 11, 5, 12, 6, 2, 9]. If the magnitude of z where the polynomial is
being evaluated (or where the polynomial is being deflated) is less than one, use (9), if it
is greater than one, use (17).
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