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Introduction and model reduction problem The big picture
The big picture

’ Physical System ‘ and/or

Modeling

A

\ Model reduction \

Simulation
| reduced # of ODEs | <
Control
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Introduction and model reduction problem Problem formulation

Dynamical systems

ui() — —V1()
U_2(') — — !_lz(')
Un(-) — ()

We consider explicit state equations
o x(t) = f(x(t),u(1)), y(t) = h(x(1), u(t))

with state x(-) of dimension n>> m, p.
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Introduction and model reduction problem Problem formulation

Problem statement

Given: dynamical system
Y = (f, h) with: u(t) € R™, x(t) € R", y(t) € RP.
Problem: Approximate ¥ with:

> = (f,h) with : u(t) e R™, x(t) e R, §(t) eRP, k < n:

(1) Approximation error small - global error bound
(2) Preservation of stability/passivity
(3) Procedure must be computationally efficient
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Introduction and model reduction problem Projections

Approximation by projection

Unifying feature of approximation methods: projections.

Let V, W € R™X, such that W*V = I, = I = VW* is a projection.
Define X = W*x. Then

.. { ax(t) = WH(VK(1), u(t))
Loy h(VX(t), u(1))

Thus ¥ is "good” approximation of ¥, if x — Mx is "small”.
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Introduction and model reduction problem Projections

Special case: linear dynamical systems

¥ EX(t) = Ax(t) + Bu({), y(t) = Cx({) + Du(t)

E,A|B
=~ (o)

Problem: Approximate ¥ by projection: 1 = VW*= v

n w+

o ( EA|B ) B ( WEV,W*AV | W'B > = n
~\ Cc |[p) CV D )’
n Norms:
K ® H,-norm:
n  EA worst output error
Y - k| E,A s y(@) = Y@l o [lu(e)]l = 1.

[ ¢ ][]
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Motivating examples

Motivating Examples: Simulation/Control

1. Passive devices e VLSI circuits
e Thermal issues
e Power delivery networks

2. Data assimilation ¢ North sea forecast
e Air quality forecast

3. Molecular systems o MD simulations
e Heat capacity

4. CVD reactor o Bifurcations

5. Mechanical systems: eWindscreen vibrations
e Buildings

6. Optimal cooling o Steel profile

7. MEMS: Micro Electro-
-Mechanical Systems | e Elf sensor
8. Nano-Electronics e Plasmonics
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Motivating examples

Passive devices: VLSI circuits

2001: Intel Pentium IV

1960’s: IC
10u details 0.18y details
2300 components | 42M components
64KHz speed 2GHz speed
2km interconnect
7 layers
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Motivating examples

Passive devices: VLSI circuits

Typical Gate

/ Delay

=
o
1

Average Wiring

Delay N

Delay (ns)

o
[
1

Today’s Technology:
65 nm

13 1.0 0.8 0.5 0.3
Technology (um)

65nm technology:

Conclusion: Simulations are required to verify that internal electromagnetic

fields do not significantly delay or distort circuit signals. Therefore

interconnections must be modeled.

= Electromagnetic modeling of packages and interconnects = resulting
models very complex: using PEEC methods (discretization of Maxwell’'s
equations): n~ 10° --. 108 = SPICE: inadequate

e Source: van der Meijs (Delft)
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Motivating examples

Power delivery network for VLSI chips

VDD%[

#states ~ 8- 10°

@
L
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Motivating examples

Mechanical systems: cars
Car windscreen simulation subject to acceleration load.

Problem: compute noise at points away from the window.

PDE: describes deformation of a structure of a specific material; FE
discretization: 7564 nodes (3 layers of 60 by 30 elements). Material:
glass with Young modulus 7-10'% N/m?; density 2490 kg/m?; Poisson
ratio 0.23 = coefficients of FE model determined experimentally.
The discretized problem has dimension: 22,692.

Notice: this problem yields 2nd order equations:
Mx(t) + Cx(t) + Kx(t) = f(t).

e Source: Meerbergen (Free Field Technologies)
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Motivating examples

Mechanical Systems: Buildings
Earthquake prevention

Taipei 101: 508m

Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper

Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t

Sydney tower 305m Passive tuned pendulum 0.1,0.5z, 220t

Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t

Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t

Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t

TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t
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Overview of approximation methods

Large-scale systems

What is the problem with very large systems?

e Storage
e Computational speed
e Accuracy

e System theoretic properties
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Overview of approximation methods

Approximation methods: Overview

/\

e Realization
e Interpolation
e Lanczos

e Arnoldi
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Nonlinear systems

Linear systems

e POD methods
e Empirical Gramians

e Balanced truncation
e Hankel approximation

/

| Krylov/SVD Methods |
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Overview of approximation methods SVD

Approximation methods

The Singular value decomposition: SVD

A=UZV* e R™"

@ Singular values: ¥ = diag (o1, - ,0pn), 01 >--->0p>0
= g; = \/Ai(A*A)

@ left singular vectors: U = (uy U --- up), UU* = I,

@ right singular vectors: V. =(vy vo -+ vp), VW =1

@ Dyadic decomposition:
A = o1UV§ + ooUoV5 + - - + oplnVy

@ o: 2-induced norm of A
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Overview of approximation methods SVD

Reminder: 2-norm

Vectors:
X1

x=| i | = Xl
Xn

Matrices/Operators: induced 2-norm

= || A ||2 = max‘ || Ax ”2 = 01

[x)1=1

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 20/36



Overview of approximation methods SVD

Optimal approximation in the 2-norm

@ Given: A e R™M
@ find: X € R™ rank X = k < rank A
@ Criterion: norm(error) is minimized, where

error: E=A— X, norm: 2-norm
Theorem (Schmidt-Mirsky, Eckart-Young)

in [|A-X|2= A
min | l2 =" o+1(A)

Minimizer (non-unique): truncation of dyadic decomposition of A:

Xy = o1UL VY + ooUa Vs + -+ ok Uk Vi
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Overview of approximation methods SVD

Remarks.

(a) Importance of Schmidt-Mirsky: establishes a relationship between
the rank k of the approximant, and the (k + 1)S! largest singular value
of A.

(b) Other minimizers:

where 0 < n; < okyq.

(c) The problem of minimizing the 2-induced norm of A — X over all
matrices X of rank at most k, is non-convex.

(d) Problem can also be solved in the Frobenius norm. .
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Overview of approximation methods

SVD Approximation methods

A prototype approximation problem — the SVD

(Singular Value Decomposition): A = UXV*.
Supernova Clown
Singular values of Clown and Supernova Supernova: original picture

T

-1
-2
-3

green: clown
-4 Ted: supermova

(log-log scale)
-5

Supernova: rank 6 approximation

Supernova: rank 20 approximation

[0}

Clown: original picture

Clown: rank 6 approximation

!“‘

\ Singular values provide trade-off between accuracy and complexity \
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______________Overview of approximation methods [
POD: Proper Orthogonal Decomposition

Consider: x(t) = f(x(t),u(t)), y(t) = h(x(t), u(t)).
Snapshots of the state:

X =[x(t) x(&) --- x(ty)] € R™N
SVD: ¥ = UXV* = UcX«V}, k < n. Approximate the state:
X(t) = Uix(t) = x(t) =~ UkX(t), X(t) € R¥

Project state and output equations. Reduced order system:

(1) = Upt(Uik(1),u(1)), y(t) = h(UiR(1), u(?))

= X(t) evolves in a low-dimensional space.

Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.
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Overview of approximation methods Balanced truncation

SVD methods: balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is

provided by the Hankel Singular Values. Define the gramians as solutions
of the Lyapunov equations

AP+PA*+BB*=0, P>0
A'Q+QA+CC=0, @>0

= [oi= V3PQ)

o;: Hankel singular values of the system. There exists balanced basis
where P = Q =S = diag (o1, -+, op). In this basis partition:

(A1 | Ap [ By B [z ] 0

The reduced system is obtained by balanced truncation

( pé” Bi ) where ¥, contains the small Hankel singular values.
)
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Overview of approximation methods Balanced truncation

Properties of balanced reduction

@ Stability is preserved
@ Gilobal error bound:

okt S| E =2 |loo< 20kt + -+ on)

@ Dense computations, matrix factorizations and inversions = may
be ill-conditioned

© Need whole transformed system in order to truncate = number of
operations O(n®)
© Bottleneck: solution of two Lyapunov equations
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Overview of approximation methods Krylov methods

Approximation methods: Krylov methods

/\

¢ Realization
e Interpolation
e Lanczos

e Arnoldi
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e POD methods
e Empirical Gramians
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‘ Krylov/SVD Methods‘
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Overview of approximation methods Krylov methods

The basic Krylov iteration

Given A e R™"and b € R, let vi = ﬁ. At the k' step:

]Avk =ViH +fe;|  where

e € R¥: canonical unit vector = Viiq = H}—:H € R”
Vk = [V1 Vk] S Rka7 V;';Vk = Ik
Hi = V; AV, € Rkxk

Computational complexity for k steps: O(n?k); storage O(nk).
The Lanczos and the Arnoldi algorithms result.
The Krylov iteration involves the subspace Rx = [b,Ab,--- ,A¥""b].

¢ Arnoldi iteration = arbitrary A = H, upper Hessenberg.

e Symmetric (one-sided) Lanczos iteration = symmetric A = A*
= H tridiagonal and symmetric.

¢ Two-sided Lanczos iteration with two starting vectors b, ¢
= arbitrary A = H tridiagonal.
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Overview of approximation methods Krylov methods

Three uses of the Krylov iteration

(1) lterative solution of Ax = b: approximate the solution x iteratively.

(2) Iterative approximation of the eigenvalues of A. In this case b is not fixed
apriori. The eigenvalues of the projected Hy approximate the dominant
eigenvalues of A.

(3) Approximation of linear systems by moment matriching.

= ‘Item (3) is of interest in the present context.
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Overview of approximation methods Moment matching

Approximation by moment matching

Given Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around Sgp:

G(S) = 10 + 711(S — So) + 72(S — 0)? + 13(S — S0)® + - - -

Moments at s,: 7;.

N

Find Ex(t) = AX(t) + Bu(t), y(t) = €x(t) + Du(t), with
G(S) =1 + 771(8 — So) + 772(3 — 30)2 + ﬁ3(S - So)3 + -

such that for appropriate s, and ¢:

=y =12, (]
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Overview of approximation methods Moment matching

Projectors for Krylov and rational Krylov methods

Given:
E.A| B
Y = (éD by projection: I = VW*, N? = I1 obtain
& _ EA[B\ [ WEV,WAV|WB where k < n
~\ c|p) cV D ) :
Krylov (Lanczos, Arnoldi): let E = I and Rational Krylov: let
V=B, AB, ..., Ak"1B| e rTXK V=[(ME-A)TB - (\WE - A)'B| e R7XK
c Cr1E—A)!
CA v 2E — A
W* — 6]kan W — ) GRan
ca o E— A)!
= W* = (W*v)~'w*

then the Markov parameters match:

CAB = CA'B

= W* = (W*V)~Tw*

then the moments of G match those of G at Aj

G()\j) =D+C(\E—A)"'B=D+E(NE—A)"TB = G(

Ai)
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Overview of approximation methods Moment matching

Properties of Krylov methods

(a) Number of operations: O(kn?) or O(k?n) vs. O(n®) = efficiency

(b) Only matrix-vector multiplications are required. No matrix factorizations
and/or inversions. No need to compute transformed model and then truncate.

(c)

e global error bound?
3 may not be stable.

Q: ’ How to choose the projection points?
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Summary — Challenges — References

Approximation methods: Summary

e Realization
e Interpolation
e Lanczos

e Arnoldi

e

e numerical efficiency

on > 10°

e choice of matching moments
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Nonlinear systems | Linear systems

e POD methods

e Empirical Gramians

e Balanced truncation
e Hankel approximation

a

| Krylov/SVD Methods |

o Stability

e Error bound

on =~ 10°
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Summary — Challenges — References

(Some) Challenges in complexity reduction

Model reduction of uncertain systems

Model reduction of differential-algebraic (DAE) systems
Domain decomposition methods

Parallel algorithms for sparse computations in model reduction

Development/validation of control algorithms based on reduced
models

Model reduction and data assimilation (weather prediction)
Active control of high-rise buildings

MEMS and multi-physics problems

VLSI design

Molecular Dynamics (MD) simulations

CAD tools for nanoelectronics
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Summary — Challenges — References
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@ Passivity preserving model reduction
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