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Introduction and model reduction problem The big picture

The big picture
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Introduction and model reduction problem Problem formulation

Dynamical systems

x1(·)
x2(·)

...
xn(·)

u1(·) −→
u2(·) −→

...
um(·) −→

−→ y1(·)
−→ y2(·)

...
−→ yp(·)

We consider explicit state equations

Σ : ẋ(t) = f(x(t), u(t)), y(t) = h(x(t), u(t))

with state x(·) of dimension n � m, p.
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Introduction and model reduction problem Problem formulation

Problem statement

Given: dynamical system

Σ = (f, h) with: u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp.

Problem: Approximate Σ with:

Σ̂ = (f̂, ĥ) with : u(t) ∈ Rm, x̂(t) ∈ Rk , ŷ(t) ∈ Rp, k � n :

(1) Approximation error small - global error bound

(2) Preservation of stability/passivity

(3) Procedure must be computationally efficient
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Introduction and model reduction problem Projections

Approximation by projection

Unifying feature of approximation methods: projections.

Let V, W ∈ Rn×k , such that W∗V = Ik ⇒ Π = VW∗ is a projection.
Define x̂ = W∗x. Then

Σ̂ :

{
d
dt x̂(t) = W∗f(Vx̂(t), u(t))

y(t) = h(Vx̂(t), u(t))

Thus Σ̂ is ”good” approximation of Σ, if x− Πx is ”small”.
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Introduction and model reduction problem Projections

Special case: linear dynamical systems

Σ: Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

Σ =

(
E, A B
C D

)
Problem: Approximate Σ by projection: Π = VW∗

Σ̂ =

(
Ê, Â B̂
Ĉ D̂

)
=

(
W∗EV, W∗AV W∗B

CV D

)
, k � n

Norms:
• H∞-norm:
worst output error
‖y(t)− ŷ(t)‖ for ‖u(t)‖ = 1.

• H2-norm: ‖h(t)− ĥ(t)‖

E, An

n

C

B

D

⇒ Ê, Âk

k

Ĉ

B̂

D̂

Σ: : Σ̂

= V
n

k

W∗
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Motivating examples

Motivating Examples: Simulation/Control

1. Passive devices • VLSI circuits
• Thermal issues
• Power delivery networks

2. Data assimilation • North sea forecast
• Air quality forecast

3. Molecular systems • MD simulations
• Heat capacity

4. CVD reactor • Bifurcations
5. Mechanical systems: •Windscreen vibrations

• Buildings
6. Optimal cooling • Steel profile
7. MEMS: Micro Electro-

-Mechanical Systems • Elf sensor
8. Nano-Electronics • Plasmonics
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Motivating examples

Passive devices: VLSI circuits

1960’s: IC 1971: Intel 4004 2001: Intel Pentium IV
10µ details 0.18µ details
2300 components 42M components
64KHz speed 2GHz speed

2km interconnect
7 layers
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Motivating examples

Passive devices: VLSI circuits

Typical Gate
Delay 

0.1

1.0
D

el
ay

 (n
s)

1.01.3 0.8 0.30.5
Technology (μm)

0.1 0.08

Average Wiring
Delay

≈ 0.25 μm

Today’s Technology: 
65 nm

65nm technology: gate delay < interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic
fields do not significantly delay or distort circuit signals. Therefore
interconnections must be modeled.

⇒ Electromagnetic modeling of packages and interconnects ⇒ resulting
models very complex: using PEEC methods (discretization of Maxwell’s
equations): n ≈ 105 · · · 106 ⇒ SPICE: inadequate

• Source: van der Meijs (Delft)
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Motivating examples

Power delivery network for VLSI chips

VDD
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Motivating examples

Mechanical systems: cars
Car windscreen simulation subject to acceleration load.

Problem: compute noise at points away from the window.
PDE: describes deformation of a structure of a specific material; FE
discretization: 7564 nodes (3 layers of 60 by 30 elements). Material:
glass with Young modulus 7·1010 N/m2; density 2490 kg/m3; Poisson
ratio 0.23 ⇒ coefficients of FE model determined experimentally.
The discretized problem has dimension: 22,692.

Notice: this problem yields 2nd order equations:

Mẍ(t) + Cẋ(t) + Kx(t) = f(t).

• Source: Meerbergen (Free Field Technologies)
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Motivating examples

Mechanical Systems: Buildings
Earthquake prevention

Taipei 101: 508m Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper
Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t
Sydney tower 305 m Passive tuned pendulum 0.1,0.5z, 220t
Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t
Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t
Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t
TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t
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Overview of approximation methods

Large-scale systems

What is the problem with very large systems?

⇓

• Storage

• Computational speed

• Accuracy

• System theoretic properties

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 17 / 36



Overview of approximation methods

Approximation methods: Overview
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Overview of approximation methods SVD

Approximation methods

The Singular value decomposition: SVD

A = UΣV ∗ ∈ Rn×m

Singular values: Σ = diag (σ1, · · · , σn), σ1 ≥ · · · ≥ σn ≥ 0

⇒ σi =
√

λi(A∗A)

left singular vectors: U = (u1 u2 · · · un), UU∗ = In
right singular vectors: V = (v1 v2 · · · vm), VV ∗ = Im
Dyadic decomposition:

A = σ1u1v∗1 + σ2u2v∗2 + · · ·+ σnunv∗n

σ1: 2-induced norm of A
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Overview of approximation methods SVD

Reminder: 2-norm

Vectors:

x =

 x1
...

xn

 ⇒ ‖ x ‖2 =
√

x2
1 + · · ·+ x2

n

Matrices/Operators: induced 2-norm

A

⇒ ‖ A ‖2 = max‖x‖=1 ‖ Ax ‖2 = σ1
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Overview of approximation methods SVD

Optimal approximation in the 2-norm

Given: A ∈ Rn×m

find: X ∈ Rn×m, rank X = k < rank A
Criterion: norm(error) is minimized, where
error: E = A− X , norm: 2-norm

Theorem (Schmidt-Mirsky, Eckart-Young)

min
rankX≤k

‖ A− X ‖2 = σk+1(A)

Minimizer (non-unique): truncation of dyadic decomposition of A:

X# = σ1u1v∗1 + σ2u2v∗2 + · · ·σkukv∗k
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Overview of approximation methods SVD

Remarks.
(a) Importance of Schmidt-Mirsky: establishes a relationship between
the rank k of the approximant, and the (k + 1)st largest singular value
of A.
(b) Other minimizers:

X (η1, · · · , ηk ) :=
k∑

i=1

(σi − ηi)uiv∗i

where 0 ≤ ηi ≤ σk+1.
(c) The problem of minimizing the 2-induced norm of A− X over all
matrices X of rank at most k , is non-convex.
(d) Problem can also be solved in the Frobenius norm.
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Overview of approximation methods SVD

SVD Approximation methods

A prototype approximation problem – the SVD
(Singular Value Decomposition): A = UΣV∗.
Supernova Clown

0.5 1 1.5 2 2.5

−5

−4

−3

−2

−1

Singular values of Clown and Supernova Supernova: original picture

Supernova: rank 6 approximation Supernova: rank 20 approximation

green: clown
red: supernova
(log−log scale) 

Clown: original picture Clown: rank 6 approximation

Clown: rank 12 approximation Clown: rank 20 approximation

Singular values provide trade-off between accuracy and complexity
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Overview of approximation methods POD

POD: Proper Orthogonal Decomposition

Consider: ẋ(t) = f(x(t), u(t)), y(t) = h(x(t), u(t)).
Snapshots of the state:

X = [x(t1) x(t2) · · · x(tN)] ∈ Rn×N

SVD: X = UΣV∗ ≈ UkΣk V∗k , k � n. Approximate the state:

x̂(t) = U∗k x(t) ⇒ x(t) ≈ Uk x̂(t), x̂(t) ∈ Rk

Project state and output equations. Reduced order system:

˙̂x(t) = U∗k f(Uk x̂(t), u(t)), y(t) = h(Uk x̂(t), u(t))

⇒ x̂(t) evolves in a low-dimensional space.

Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.
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Overview of approximation methods Balanced truncation

SVD methods: balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is
provided by the Hankel Singular Values. Define the gramians as solutions
of the Lyapunov equations

AP + PA∗ + BB∗ = 0, P > 0
A∗Q + QA + C∗C = 0, Q > 0

}
⇒ σi =

√
λi(PQ)

σi : Hankel singular values of the system. There exists balanced basis
where P = Q = S = diag (σ1, · · · , σn). In this basis partition:

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C = (C1 | C2), S =

(
Σ1 0
0 Σ2

)
.

The reduced system is obtained by balanced truncation(
A11 B1

C1

)
, where Σ2 contains the small Hankel singular values.
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Overview of approximation methods Balanced truncation

Properties of balanced reduction

1 Stability is preserved
2 Global error bound:

σk+1 ≤‖ Σ− Σ̂ ‖∞≤ 2(σk+1 + · · ·+ σn)

Drawbacks

1 Dense computations, matrix factorizations and inversions ⇒ may
be ill-conditioned

2 Need whole transformed system in order to truncate ⇒ number of
operations O(n3)

3 Bottleneck: solution of two Lyapunov equations

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 26 / 36



Overview of approximation methods Krylov methods

Approximation methods: Krylov methods
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Overview of approximation methods Krylov methods

The basic Krylov iteration

Given A ∈ Rn×n and b ∈ Rn, let v1 = b
‖b‖ . At the k th step:

AVk = Vk Hk + fk e∗k where

ek ∈ Rk : canonical unit vector
Vk = [v1 · · · vk ] ∈ Rk×k , V∗v Vk = Ik
Hk = V∗k AVk ∈ Rk×k

⇒ vk+1 = fk
‖fk‖ ∈ Rn

Computational complexity for k steps: O(n2k); storage O(nk).

The Lanczos and the Arnoldi algorithms result.

The Krylov iteration involves the subspace Rk =
[
b, Ab, · · · , Ak−1b

]
.

• Arnoldi iteration ⇒ arbitrary A ⇒ Hk upper Hessenberg.
• Symmetric (one-sided) Lanczos iteration ⇒ symmetric A = A∗

⇒ Hk tridiagonal and symmetric.
• Two-sided Lanczos iteration with two starting vectors b, c

⇒ arbitrary A ⇒ Hk tridiagonal.
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Overview of approximation methods Krylov methods

Three uses of the Krylov iteration

(1) Iterative solution of Ax = b: approximate the solution x iteratively.

(2) Iterative approximation of the eigenvalues of A. In this case b is not fixed
apriori. The eigenvalues of the projected Hk approximate the dominant
eigenvalues of A.

(3) Approximation of linear systems by moment matriching.

⇒ Item (3) is of interest in the present context.
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Overview of approximation methods Moment matching

Approximation by moment matching

Given Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around s0:

G(s) = η0 + η1(s − s0) + η2(s − s0)
2 + η3(s − s0)

3 + · · ·

Moments at s0: ηj .

Find Ê ˙̂x(t) = Âx̂(t) + B̂u(t), y(t) = Ĉx̂(t) + D̂u(t), with

Ĝ(s) = η̂0 + η̂1(s − s0) + η̂2(s − s0)
2 + η̂3(s − s0)

3 + · · ·

such that for appropriate s0 and `:

ηj = η̂j , j = 1, 2, · · · , `
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Overview of approximation methods Moment matching

Projectors for Krylov and rational Krylov methods

Given:

Σ =

(
E, A B
C D

)
by projection: Π = VW∗, Π2 = Π obtain

Σ̂ =

(
Ê, Â B̂
Ĉ D̂

)
=

(
W∗EV, W∗AV W∗B

CV D

)
, where k < n.

Krylov (Lanczos, Arnoldi): let E = I and

V =
[
B, AB, · · · , Ak−1B

]
∈ Rn×k

W̄∗ =


C

CA
.
.
.

CAk−1

 ∈ Rk×n

⇒ W∗ = (W̄∗V)−1W̄∗

then the Markov parameters match:

CAiB = ĈÂiB̂

Rational Krylov: let

V =
[
(λ1E− A)−1B · · · (λk E− A)−1B

]
∈ Rn×k

W̄∗ =


C(λk+1E− A)−1

C(λk+2E− A)−1

.

.

.
C(λ2k E− A)−1

 ∈ Rk×n

⇒ W∗ = (W̄∗V)−1W̄∗

then the moments of Ĝ match those of G at λi :

G(λi) = D+C(λiE−A)−1B = D̂+ Ĉ(λiÊ− Â)−1B̂ = Ĝ(λi)
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Overview of approximation methods Moment matching

Properties of Krylov methods

(a) Number of operations: O(kn2) or O(k2n) vs. O(n3) ⇒ efficiency

(b) Only matrix-vector multiplications are required. No matrix factorizations
and/or inversions. No need to compute transformed model and then truncate.

(c) Drawbacks

• global error bound?
• Σ̂ may not be stable.

Q: How to choose the projection points?
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Summary – Challenges – References

Approximation methods: SummaryPPPPPPPPq
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Properties

• numerical efficiency

• n � 103

• choice of matching moments

Properties

• Stability

• Error bound

• n ≈ 103
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Summary – Challenges – References

(Some) Challenges in complexity reduction

Model reduction of uncertain systems

Model reduction of differential-algebraic (DAE) systems

Domain decomposition methods

Parallel algorithms for sparse computations in model reduction

Development/validation of control algorithms based on reduced
models

Model reduction and data assimilation (weather prediction)

Active control of high-rise buildings

MEMS and multi-physics problems

VLSI design

Molecular Dynamics (MD) simulations

CAD tools for nanoelectronics
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Summary – Challenges – References
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