Model reduction of large-scale systems Lecture I: Overview

Thanos Antoulas

Rice University and Jacobs University

email: aca@rice.edu URL: www.ece.rice.edu/~aca

International School, Monopoli, 7-12 September 2008

Outline

Introduction and model reduction problem

- The big picture
- Problem formulation
- Projections

Motivating examples

Overview of approximation methods

- SVD
- POD
- Balanced truncation
- Krylov methods
- Moment matching

Summary – Challenges – References

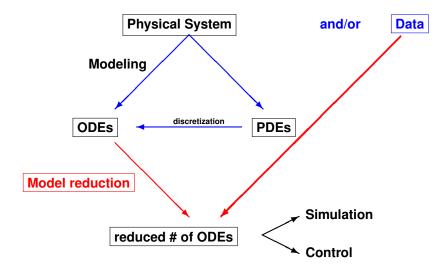
Outline

Introduction and model reduction problem

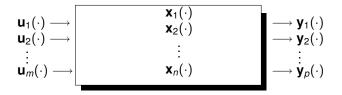
- The big picture
- Problem formulation
- Projections
- 2 Motivating examples
- Overview of approximation methods
 - SVD
 - POD
 - Balanced truncation
 - Krylov methods
 - Moment matching

4 Summary – Challenges – References

The big picture



Dynamical systems



We consider explicit state equations

 $\Sigma: \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \ \mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))$

with state $\mathbf{x}(\cdot)$ of dimension $n \gg m, p$.

Problem formulation

Problem statement

Given: dynamical system

 $\Sigma = (\mathbf{f}, \mathbf{h})$ with: $\mathbf{u}(t) \in \mathbb{R}^m$, $\mathbf{x}(t) \in \mathbb{R}^n$, $\mathbf{y}(t) \in \mathbb{R}^p$.

Problem: Approximate Σ with:

$$\hat{\Sigma} = (\hat{\mathbf{f}}, \hat{\mathbf{h}}) ext{ with : } \mathbf{u}(t) \in \mathbb{R}^m, \ \hat{\mathbf{x}}(t) \in \mathbb{R}^k, \ \hat{\mathbf{y}}(t) \in \mathbb{R}^p, \ k \ll n$$
 :

(1) Approximation error small - global error bound
 (2) Preservation of stability/passivity
 (3) Procedure must be computationally efficient

Approximation by projection

Unifying feature of approximation methods: projections.

Let V, $W \in \mathbb{R}^{n \times k}$, such that $W^*V = I_k \Rightarrow \Pi = VW^*$ is a projection. Define $\hat{\mathbf{x}} = W^*\mathbf{x}$. Then

$$\hat{\Sigma}: \begin{cases} \frac{d}{dt}\hat{\mathbf{x}}(t) = \mathbf{W}^* \mathbf{f}(\mathbf{V}\hat{\mathbf{x}}(t), \mathbf{u}(t)) \\ \mathbf{y}(t) = \mathbf{h}(\mathbf{V}\hat{\mathbf{x}}(t), \mathbf{u}(t)) \end{cases}$$

Thus $\hat{\Sigma}$ is "good" approximation of Σ , if $\mathbf{x} - \Pi \mathbf{x}$ is "small".

Projections

Special case: linear dynamical systems

Outline

- The big picture
- Problem formulation
- Projections

Motivating examples

Overview of approximation methods

- SVD
- POD
- Balanced truncation
- Krylov methods
- Moment matching

Summary – Challenges – References

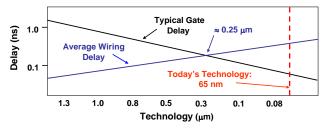
Motivating Examples: Simulation/Control

1. Passive devices	VLSI circuits	
	Thermal issues	
	Power delivery networks	
2. Data assimilation	 North sea forecast 	
	 Air quality forecast 	
3. Molecular systems	 MD simulations 	
	 Heat capacity 	
4. CVD reactor	Bifurcations	
5. Mechanical systems:	Windscreen vibrations	
	 Buildings 	
6. Optimal cooling	Steel profile	
7. MEMS: Micro Electro-		
-Mechanical Systems	 Elf sensor 	
8. Nano-Electronics	 Plasmonics 	

Passive devices: VLSI circuits

1960's: IC	1971: Intel 4004	2001: Intel Pentium IV
	10µ details 2300 components 64KHz speed	0.18µ details 42M components 2GHz speed 2km interconnect 7 layers

Passive devices: VLSI circuits



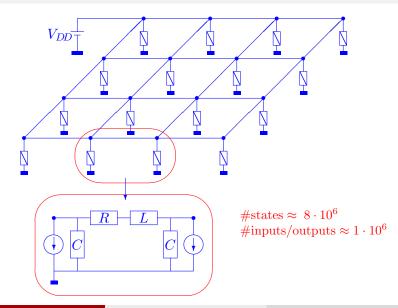
65nm technology: gate delay < interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic fields do not significantly delay or distort circuit signals. Therefore interconnections must be modeled.

⇒ Electromagnetic modeling of packages and interconnects ⇒ resulting models very complex: using PEEC methods (discretization of Maxwell's equations): $n \approx 10^5 \cdots 10^6 \Rightarrow$ SPICE: inadequate

• Source: van der Meijs (Delft)

Power delivery network for VLSI chips



Mechanical systems: cars

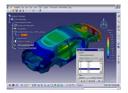
Car windscreen simulation subject to acceleration load.

Problem: compute noise at points away from the window. PDE: describes deformation of a structure of a specific material; FE discretization: 7564 nodes (3 layers of 60 by 30 elements). Material: glass with Young modulus $7 \cdot 10^{10} \, \text{N/m}^2$; density 2490 kg/m³; Poisson ratio 0.23 \Rightarrow coefficients of FE model determined experimentally. The discretized problem has dimension: 22,692.

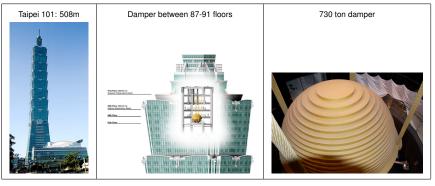
Notice: this problem yields 2nd order equations:

 $\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{f}(t).$

• Source: Meerbergen (Free Field Technologies)



Mechanical Systems: Buildings **Earthquake prevention**



Building	Height	Control mechanism	Damping frequency Damping mass
CN Tower, Toronto	533 m	Passive tuned mass damper	
Hancock building, Boston	244 m	Two passive tuned dampers	0.14Hz, 2x300t
Sydney tower	305 m	Passive tuned pendulum	0.1,0.5z, 220t
Rokko Island P&G, Kobe	117 m	Passive tuned pendulum	0.33-0.62Hz, 270t
Yokohama Landmark tower	296 m	Active tuned mass dampers (2)	0.185Hz, 340t
Shinjuku Park Tower	296 m	Active tuned mass dampers (3)	330t
TYG Building, Atsugi	159 m	Tuned liquid dampers (720)	0.53Hz, 18.2t

Thanos Antoulas (Rice U. & Jacobs U.)

Outline

- The big picture
- Problem formulation
- Projections

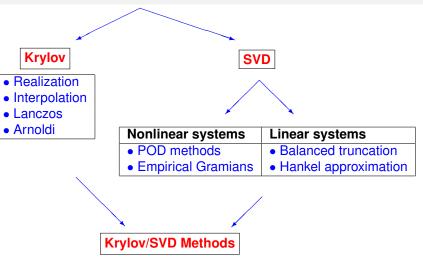
Motivating examples

Overview of approximation methods

- SVD
- POD
- Balanced truncation
- Krylov methods
- Moment matching

4 Summary – Challenges – References

Large-scale systems



Approximation methods

The Singular value decomposition: SVD

 $A = U\Sigma V^* \in \mathbb{R}^{n \times m}$

- Singular values: $\Sigma = \text{diag}(\sigma_1, \cdots, \sigma_n), \sigma_1 \ge \cdots \ge \sigma_n \ge 0$ $\Rightarrow \sigma_i = \sqrt{\lambda_i(A^*A)}$
- left singular vectors: $U = (u_1 \ u_2 \ \cdots \ u_n), \ UU^* = I_n$
- right singular vectors: $V = (v_1 \ v_2 \ \cdots \ v_m), \ VV^* = I_m$
- Dyadic decomposition:

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^* + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^* + \dots + \sigma_n \mathbf{u}_n \mathbf{v}_n^*$$

• σ_1 : 2-induced norm of A

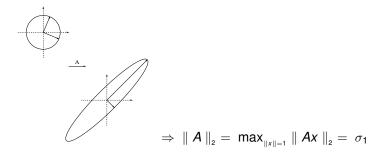
SVD

Reminder: 2-norm

Vectors:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \Rightarrow ||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$$

Matrices/Operators: induced 2-norm



Optimal approximation in the 2-norm

- Given: $A \in \mathbb{R}^{n \times m}$
- find: $X \in \mathbb{R}^{n \times m}$, rank $X = k < \operatorname{rank} A$
- Criterion: norm(error) is minimized, where error: E = A - X, norm: 2-norm

Theorem (Schmidt-Mirsky, Eckart-Young)

$$\min_{\operatorname{rank} X \leq k} \| A - X \|_2 = \sigma_{k+1}(A)$$

Minimizer (non-unique): truncation of dyadic decomposition of A:

$$X_{\#} = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \cdots + \sigma_k u_k v_k^*$$

Remarks.

(a) Importance of Schmidt-Mirsky: establishes a relationship between the rank k of the approximant, and the $(k + 1)^{st}$ largest singular value of A.

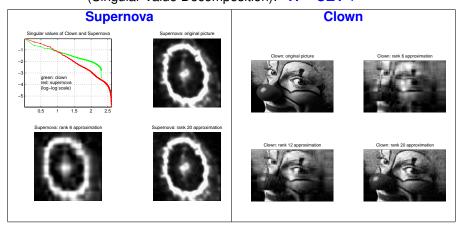
(b) Other minimizers:

$$X(\eta_1,\cdots,\eta_k):=\sum_{i=1}^k (\sigma_i-\eta_i)u_iv_i^*$$

where $0 \le \eta_i \le \sigma_{k+1}$. (c) The problem of minimizing the 2-induced norm of A - X over all matrices X of rank at most k, is *non-convex*. (d) Problem can also be solved in the Frobenius norm.

SVD Approximation methods

A prototype approximation problem – the SVD (Singular Value Decomposition): $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$.



Singular values provide trade-off between accuracy and complexity

Thanos Antoulas (Rice U. & Jacobs U.)

POD: Proper Orthogonal Decomposition

Consider: $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{u}(t)).$ Snapshots of the state:

$$\mathcal{X} = [\mathbf{x}(t_1) \ \mathbf{x}(t_2) \ \cdots \ \mathbf{x}(t_N)] \in \mathbb{R}^{n \times N}$$

SVD: $\mathcal{X} = \mathbf{U}\Sigma\mathbf{V}^* \approx \mathbf{U}_k\Sigma_k\mathbf{V}_k^*$, $k \ll n$. Approximate the state:

$$\hat{\mathbf{x}}(t) = \mathbf{U}_k^* \mathbf{x}(t) \; \Rightarrow \; \mathbf{x}(t) pprox \mathbf{U}_k \hat{\mathbf{x}}(t), \; \hat{\mathbf{x}}(t) \in \mathbb{R}^k$$

Project state and output equations. Reduced order system:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{U}_k^* \mathbf{f}(\mathbf{U}_k \hat{\mathbf{x}}(t), \mathbf{u}(t)), \ \mathbf{y}(t) = \mathbf{h}(\mathbf{U}_k \hat{\mathbf{x}}(t), \mathbf{u}(t))$

 $\Rightarrow \hat{\mathbf{x}}(t)$ evolves in a **low-dimensional** space.

Issues with POD:

(a) Choice of snapshots, (b) singular values not I/O invariants.

SVD methods: balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is provided by the Hankel Singular Values. Define the gramians as solutions of the Lyapunov equations

$$\begin{array}{l} \mathsf{AP} + \mathsf{PA}^* + \mathsf{BB}^* = \mathbf{0}, \ \mathsf{P} > \mathbf{0} \\ \mathsf{A}^* \mathsf{Q} + \mathsf{QA} + \mathsf{C}^* \mathsf{C} = \mathbf{0}, \ \mathsf{Q} > \mathbf{0} \end{array} \right\} \Rightarrow \boxed{\sigma_i = \sqrt{\lambda_i(\mathsf{PQ})} }$$

 σ_i : Hankel singular values of the system. There exists balanced basis where $\mathbf{P} = \mathbf{Q} = \mathbf{S} = \text{diag}(\sigma_1, \dots, \sigma_n)$. In this basis partition:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{pmatrix}, \ \mathbf{C} = (\mathbf{C}_1 \mid \mathbf{C}_2), \ \mathbf{S} = \begin{pmatrix} \boldsymbol{\Sigma}_1 \mid \mathbf{0} \\ \mathbf{0} \mid \boldsymbol{\Sigma}_2 \end{pmatrix}.$$

The reduced system is obtained by balanced truncation

 $\left(\begin{array}{c|c} \mathbf{A}_{11} & \mathbf{B}_{1} \\ \hline \mathbf{C}_{1} & \end{array}\right)$, where Σ_{2} contains the small Hankel singular values.

Properties of balanced reduction

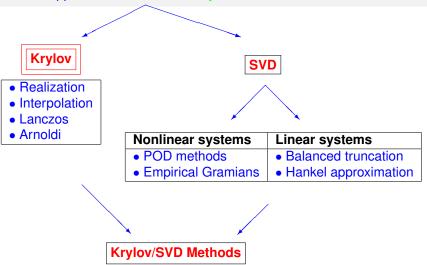
- Stability is preserved
- Global error bound:

 $\sigma_{k+1} \leq \parallel \Sigma - \hat{\Sigma} \parallel_{\infty} \leq 2(\sigma_{k+1} + \cdots + \sigma_n)$

Drawbacks

- Dense computations, matrix factorizations and inversions ⇒ may be ill-conditioned
- ② Need whole transformed system in order to truncate ⇒ number of operations O(n³)
- Bottleneck: solution of two Lyapunov equations

Approximation methods: Krylov methods



The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$, let $\mathbf{v}_1 = \frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the k^{th} step:

 $|\mathbf{AV}_k = \mathbf{V}_k \mathbf{H}_k + \mathbf{f}_k \mathbf{e}_k^*|$ where

 \Rightarrow

 $\begin{array}{l} \mathbf{e}_k \in \mathbb{R}^k \text{: canonical unit vector} \\ \mathbf{V}_k = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_k] \in \mathbb{R}^{k \times k}, \ \mathbf{V}_v^* \mathbf{V}_k = \mathbf{I}_k \\ \mathbf{H}_k = \mathbf{V}_k^* \mathbf{A} \mathbf{V}_k \in \mathbb{R}^{k \times k} \end{array}$

$$\mathbf{v}_{k+1} = rac{\mathbf{f}_k}{\|\mathbf{f}_k\|} \in \mathbb{R}^n$$

Computational complexity for *k* steps: $O(n^2k)$; storage O(nk).

The Lanczos and the Arnoldi algorithms result.

The **Krylov iteration** involves the subspace $\mathcal{R}_k = [\mathbf{b}, \mathbf{A}\mathbf{b}, \cdots, \mathbf{A}^{k-1}\mathbf{b}]$.

- Arnoldi iteration \Rightarrow arbitrary $\mathbf{A} \Rightarrow \mathbf{H}_k$ upper Hessenberg.
- Symmetric (one-sided) Lanczos iteration ⇒ symmetric A = A*
 - \Rightarrow **H**_k tridiagonal and symmetric.
- Two-sided Lanczos iteration with two starting vectors **b**, **c** \Rightarrow arbitrary **A** \Rightarrow **H**_k tridiagonal.

Three uses of the Krylov iteration

(1) Iterative solution of Ax = b: approximate the solution x iteratively.

(2) Iterative approximation of the eigenvalues of **A**. In this case **b** is not fixed apriori. The eigenvalues of the projected H_k approximate the dominant eigenvalues of **A**.

(3) Approximation of linear systems by moment matriching.

\Rightarrow | Item (3) is of interest in the present context.

Approximation by moment matching

Given $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$, expand transfer function around s_0 :

$$\mathbf{G}(s) = \frac{\eta_0}{\eta_1} + \frac{\eta_1(s-s_0)}{\eta_2(s-s_0)^2} + \frac{\eta_3(s-s_0)^3}{\eta_3(s-s_0)^3} + \cdots$$

Moments at s_0 : η_j .

Find
$$\hat{\mathbf{E}}\dot{\mathbf{x}}(t) = \hat{\mathbf{A}}\dot{\mathbf{x}}(t) + \hat{\mathbf{B}}\mathbf{u}(t), \ \mathbf{y}(t) = \hat{\mathbf{C}}\dot{\mathbf{x}}(t) + \hat{\mathbf{D}}\mathbf{u}(t), \text{ with}$$

 $\hat{\mathbf{G}}(s) = \hat{\eta}_0 + \hat{\eta}_1(s - s_0) + \hat{\eta}_2(s - s_0)^2 + \hat{\eta}_3(s - s_0)^3 + \cdots$

such that for appropriate s_0 and ℓ :

$$\eta_j = \hat{\eta}_j, \ j = 1, 2, \cdots, \ell$$

Projectors for Krylov and rational Krylov methods

Given:

$$\Sigma = \begin{pmatrix} \mathbf{E}, \mathbf{A} & | \mathbf{B} \\ \mathbf{C} & | \mathbf{D} \end{pmatrix} \text{ by projection: } \Pi = \mathbf{VW}^*, \ \Pi^2 = \Pi \text{ obtain}$$
$$\hat{\Sigma} = \begin{pmatrix} \hat{\mathbf{E}}, \hat{\mathbf{A}} & | \hat{\mathbf{B}} \\ \hat{\mathbf{C}} & | \hat{\mathbf{D}} \end{pmatrix} = \begin{pmatrix} \mathbf{W}^* \mathbf{EV}, \mathbf{W}^* \mathbf{AV} & | \mathbf{W}^* \mathbf{B} \\ \mathbf{CV} & | \mathbf{D} \end{pmatrix}, \text{ where } k < n.$$

Krylov (Lanczos, Arnoldi): let
$$\mathbf{E} = \mathbf{I}$$
 and
 $\mathbf{V} = \begin{bmatrix} \mathbf{B}, & \mathbf{AB}, & \cdots, & \mathbf{A}^{k-1}\mathbf{B} \end{bmatrix} \in \mathbb{R}^{n \times k}$
 $\bar{\mathbf{W}}^* = \begin{bmatrix} \mathbf{C} \\ \mathbf{CA} \\ \vdots \\ \mathbf{CA}^{k-1} \end{bmatrix} \in \mathbb{R}^{k \times n}$
 $\Rightarrow \mathbf{W}^* = (\bar{\mathbf{W}}^* \mathbf{V})^{-1} \bar{\mathbf{W}}^*$
then the Markov parameters match:

 $\textbf{C}\textbf{A}^{i}\textbf{B}=\hat{\textbf{C}}\hat{\textbf{A}}^{i}\hat{\textbf{B}}$

$$\label{eq:relational Krylov: let} \begin{bmatrix} \textbf{Rational Krylov: let} \\ \textbf{V} = \begin{bmatrix} (\lambda_1 \textbf{E} - \textbf{A})^{-1} \textbf{B} \cdots (\lambda_k \textbf{E} - \textbf{A})^{-1} \textbf{B} \end{bmatrix} \in \mathbb{R}^{n \times k} \\ \vec{\textbf{W}}^* = \begin{bmatrix} \textbf{C}(\lambda_{k+1} \textbf{E} - \textbf{A})^{-1} \\ \textbf{C}(\lambda_{k+2} \textbf{E} - \textbf{A})^{-1} \\ \vdots \\ \textbf{C}(\lambda_{2k} \ \textbf{E} - \textbf{A})^{-1} \end{bmatrix} \in \mathbb{R}^{k \times n} \\ \Rightarrow \ \textbf{W}^* = (\bar{\textbf{W}}^* \textbf{V})^{-1} \bar{\textbf{W}}^* \\ \text{then the moments of } \hat{\textbf{G}} \text{ match those of } \textbf{G} \text{ at } \lambda_i \text{:} \\ \textbf{G}(\lambda_i) = \textbf{D} + \textbf{C}(\lambda_i \textbf{E} - \textbf{A})^{-1} \textbf{B} = \hat{\textbf{D}} + \hat{\textbf{C}}(\lambda_i \hat{\textbf{E}} - \hat{\textbf{A}})^{-1} \hat{\textbf{B}} = \hat{\textbf{G}}(\lambda_i) \end{bmatrix}$$

Properties of Krylov methods

(a) Number of operations: $\mathcal{O}(kn^2)$ or $\mathcal{O}(k^2n)$ vs. $\mathcal{O}(n^3) \Rightarrow$ efficiency

(b) Only matrix-vector multiplications are required. No matrix factorizations and/or inversions. No need to compute transformed model and then truncate.

(c) Drawbacks

- global error bound?
- $\hat{\Sigma}$ may not be stable.

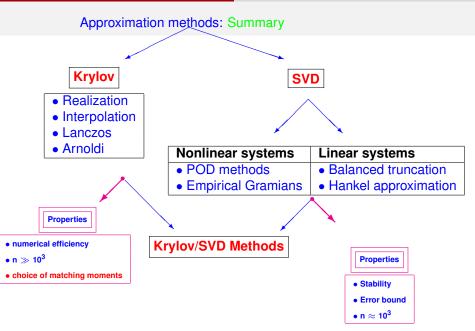
Q: How to choose the projection points?

Outline

Introduction and model reduction problem

- The big picture
- Problem formulation
- Projections
- 2 Motivating examples
- Overview of approximation methods
 - SVD
 - POD
 - Balanced truncation
 - Krylov methods
 - Moment matching

Summary – Challenges – References



(Some) Challenges in complexity reduction

- Model reduction of uncertain systems
- Model reduction of differential-algebraic (DAE) systems
- Domain decomposition methods
- Parallel algorithms for sparse computations in model reduction
- Development/validation of control algorithms based on reduced models
- Model reduction and data assimilation (weather prediction)
- Active control of high-rise buildings
- MEMS and multi-physics problems
- VLSI design
- Molecular Dynamics (MD) simulations
- CAD tools for nanoelectronics

References

- Passivity preserving model reduction
 - Antoulas SCL (2005)
 - Sorensen SCL (2005)
 - Ionutiu, Rommes, Antoulas IEEE TCAD (2008)
- Optimal \mathcal{H}_2 model reduction
 - Gugercin, Antoulas, Beattie SIMAX (2008)
- Low-rank solutions of Lyapunov equations
 - Gugercin, Sorensen, Antoulas, Numerical Algorithms (2003)
 - Sorensen (2006)
- Model reduction from data
 - Mayo, Antoulas LAA (2007)
 - Lefteriu, Antoulas, Tech. Report (2008)
- General reference: Antoulas, SIAM (2005)

