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Introduction – S-parameters

Recall: the big picture
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Introduction – S-parameters

A motivation: electronic systems

• Growth in communications and networking and demand for high data
bandwidth requires streamlining of the simulation of entire complex systems
from chips to packages to boards, etc.
• Thus in circuit simulation, signal intergrity (lack of signal distortion) of high
speed electronic designs require that interconnect models be valid over a
wide bandwidth.

An important tool: S-parameters

• They represent a component as a black box. Accurate simulations require
accurate component models.

• In high frequencies S-parameters are important because wave phenomena
become dominant.

• Advantages: 0 ≤ |S| ≤ 1 and can be measured using VNAs (Vector
Network Analyzers).
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Introduction – S-parameters

Scattering or S-parameters

Given a system in I/O representation: y(s) = H(s)u(s),

the associated S-paremeter representation is

ȳ(s) = S(s)ū(s) = [H(s) + I][H(s)− I]−1︸ ︷︷ ︸
S(s)

ū(s),

where

ȳ = 1
2 (y + u) are the transmitted waves and,

ū = 1
2 (y− u) are the reflected waves.

S-parameter measurements.

S(jωk ): samples of the frequency response of the S-parameter system
representation.
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Introduction – S-parameters

Measurement of S-parameters

VNA (Vector Network Analyzer) – Magnitude of S-parameters for 2 ports
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Classical realization theory
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Classical realization theory

Model construction from data (at infinity): Classical realization

Given ht ∈ Rp×m, t = 1, 2, · · · , find A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, such that

ht = CAt−1B, t > 0

Main tool: Hankel matrix

H =


h1 h2 h3 · · ·
h2 h3 h4 · · ·
h3 h4 h5 · · ·
...

...
...

. . .

 =


C

CA
CA2

...


︸ ︷︷ ︸

O

[
B AB A2B · · ·

]︸ ︷︷ ︸
R
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Classical realization theory

Classical realization

Solvability ⇔ rankH = n < ∞

Solution:
• Find ∆ ∈ Rn×n: det ∆ 6= 0.
• Let σ∆ ∈ Rn×n: shifted matrix.
• Let Γ ∈ Rn×m: first m columns, while Λ ∈ Rp×n: the first p rows.

Then
A = ∆−1σ∆, B = ∆−1Γ, C = Λ.

Consequence. In terms of the data:

H(s) = Λ(s∆− σ∆)−1Γ

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 10 / 48



Finite data points
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Finite data points

Model construction from data at finite points: interpolation

Assume for simplicity that the given data are scalar:

(si , φi), i = 1, 2, · · · , N, si 6= sj , i 6= j

Find H(s) = n(s)
d(s) such that H(si) = φi , i = 1, 2, · · · , N,

and n, d: coprime polynomials.
A solution always exists (e.g. Lagrange interpolating polynomial).
Additional constraints for H: minimality, stability, bounded realness etc.

Main tool: Loewner matrix. Divide the data in disjoint sets:
(λi , wi), i = 1, 2, · · · , k , (µj , vj), j = 1, 2, · · · , q, k + q = N:

L =


v1−w1
µ1−λ1

· · · v1−wk
µ1−λk

...
. . .

...
vq−w1
µq−λ1

· · · vq−wk
µq−λk

 ∈ Cq×k
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Finite data points

Model construction from data at finite points: interpolation

Main result (1986). The rank of L encodes the information about the minimal
degree interpolants: rank L or N − rank L.

Remarks.
(a) In this framework the strict properness assumption has been dropped.
Thus rational functions with polynomial part can be recovered from
input-output data.
(b) The construction of interpolants will be deferred until later.
(c) If H(s) = C(sI− A)−1B + D, then

L = −


C(λ1I− A)−1

C(λ2I− A)−1

...
C(λk I− A)−1


︸ ︷︷ ︸

O

[
(µ1I− A)−1B · · · (µq I− A)−1B

]︸ ︷︷ ︸
R
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Finite data points

Scalar interpolation – multiple points

Special case. single point with multiplicity: (s0;φ0, φ1, · · · , φN−1), i.e.
the value of the function and that of a number of derivatives is
provided.The Loewner matrix becomes:

L =



φ1
1!

φ2
2!

φ3
3!

φ4
4! · · ·

φ2
2!

φ3
3!

φ4
4! · · ·

φ3
3!

φ4
4!

φ4
4!

...
. . .

...


⇒ HANKEL MATRIX

Thus the Loewner matrix generalizes the Hankel matrix when
general interpolation replaces realization.
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Problems
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Problems

General framework – tangential interpolation

Given: • right data: (λi ; ri , wi), i = 1, · · · , k

• left data: (µj ; `j , vj), j = 1, · · · , q.

We assume for simplicity that all points are distinct.

Problem: Find rational p ×m matrices H(s), such that

H(λi)ri = wi `jH(µj) = vj

Right data:

Λ =

 λ1
. . .

λk

 ∈ Ck×k ,
R = [r1 r2, · · · rk ] ∈ Cm×k ,

W = [w1 w2 · · · wk ] ∈ Cp×k

Left data:

M =

 µ1
. . .

µq

∈Cq×q, L =

 `1
...
`q

∈Cq×p, V =

 v1
...

vq

 ∈ Cq×m
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Problems

Problems

Model Construction
• Data Λ, M, R, L, W, V
• Construct [E, A, B, C, D], such that H(λi)ri = wi , `jH(µj) = vj .

Model Reduction
• Data M, Λ, R, L and high-order system [Ê, Â, B̂, Ĉ, D̂]

• Contrsuct [E, A, B, C, D] of lower order such that

Ĥ(λi)ri = Hi(λi)ri , `j Ĥ(µj) = `jH(µj).

Model Construction and Reduction (MR from data)
• Data Λ, M, R, L, W, V
• First step: construct high-order [E, A, B, C, D]

• Second step: reduce its dimension appropriately
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Tangential interpolation
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Tangential interpolation The Loewner matrix

General framework – tangential interpolation

Input-output data. The Loewner matrix is:

L =


v1r1−`1w1

µ1−λ1
· · · v1rk−`1wk

µ1−λk
...

. . .
...

vqr1−`qw1
µq−λ1

· · · vqrk−`qwk
µq−λk

 ∈ Cq×k

Recall:

H(λi)ri = wi , `jH(µj) = vj

Therefore L satisfies the Sylvester equation

LΛ−ML = VR− LW
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Tangential interpolation The Loewner matrix

General framework – tangential interpolation

State space data. Suppose that E, A, B, C of minimal degree n are given
such that H(s) = C(sE− A)−1B.
Let X, Y satisfy the following Sylvester equations

EXΛ− AX = BR and MYE− YA = LC

If the generalized eigenvalues of (E, A) are distinct from λi and µj , X, Y are
unique solutions of these equations. Actually

xi = (λiE− A)−1Bri ⇒ X: generalized reachability matrix
yj = `jC(µjE− A)−1 ⇒ Y: generalized observability matrix.

⇒ L = −YEX
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Tangential interpolation The Loewner matrix

Construction of Interpolants

Suggested construction procedure for an interpolant of McMillan degree n:

1 Factor L = −YEX, so that E has rank n.

2 Construct A, B, C to satisfy the Sylvester equations above.
3 Define D := wj − C(sjE− A)−1B.

Steps 2 and 3 are easy; the first step is problematic: how do we choose E?

If the system is proper, then size (E) = rank (E), and we could use, for
example, the SVD to factor L ⇒ proper systems are easy.

If the system is singular, then size (E) > rank (E), and we’re stuck.

Solution: use the shifted Loewner matrix σL
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Tangential interpolation The shifted Loewner matrix

The shifted Loewner matrix

The shifted Loewner matrix, σL, is the Loewner matrix associated
to sH(s).

σL =


µ1v1r1−`1w1λ1

µ1−λ1
· · · µ1v1rk−`1wk λk

µ1−λk
...

. . .
...

µqvqr1−`qw1λ1
µq−λ1

· · · µqvqrk−`qwk λk
µq−λk

 ∈ Cq×k

σL satisfies the Sylvester equation

σLΛ−MσL = VRΛ−MLW

σL can be factored as

⇒ σL = −YAX
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Tangential interpolation Construction of interpolants

Construction of Interpolants (Models)

Assume that k = `, and let

det (xL− σL) 6= 0, x ∈ {λi} ∪ {µj}

Then

E = −L, A = −σL, B = V, C = W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(σL− sL)−1V

interpolates the data.
Proof. Multiplying the first equation by s and subtracting it from the second we get

(σL− sL)Λ− M(σL− sL) = LW(Λ− sI)− (M − sI)VR.
Multiplying this equation by ei on the right and setting s = λi , we obtain

(λi I− M)(σL− λi L)ei = (λi I− M)Vri ⇒ (λi L− σL)ei = Vri ⇒ Wei = W(λi L− σL)−1V

Therefore wi = H(λi )ri . This proves the right tangential interpolation property. To prove the left tangential interpolation property,
we multiply the above equation by e∗j on the left and set s = µj :

e∗j (σL− µj L)(Λ− µj I) = e∗j LW(µj I− Λ) ⇒ e∗j (σL− µj L) = `j W ⇒ e∗j V = `j W(σL− µj L)−1V

Therefore vj = `j H(µj ).
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Tangential interpolation Construction of interpolants

Construction of interpolants: New procedure

Main assumption:

rank (xL− σL) = rank
(

L σL
)

= rank
(

L
σL

)
=: k , x ∈ {λi} ∪ {µj}

Then for some x ∈ {λi} ∪ {µj}, we compute the SVD

xL− σL = YΣX

with rank (xL− σL) = rank (Σ) = size (Σ) =: k , Y ∈ Cν×k , X ∈ Ck×ρ.

Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

E = −Y∗LX∗ B = Y∗V
A = −Y∗σLX∗ C = WX∗

Remark. The system [E, A, B, C] can now be further reduced using any of
the usual reduction methods.
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Tangential interpolation Examples

Example

A =

 1 0 0
0 1 0
0 0 0

 , E =

 0 −1 0
0 0 0
0 0 1

 , B =

 0 1
1 0
0 1

 , C =

[
1 0 0
0 1 1

]
.

Thus the transfer function is

H(s) = C(sE− A)−1B =

[
s −1

−1 1
s

]
.

We now define the interpolation data. Λ = diag([1, 2, 3]), M = diag([−1, −2, −3, −4]), while

L =


1 −1
1 −2
1 −3
1 0

 , R =

[
1 1 0
1 2 1

]
.

These imply:

V =


0 0
0 0
0 0
−4 −1

 , W =

[
0 0 −1

0 0 1
3

]
.
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Tangential interpolation Examples

Example

It follows that the tangential controllability and observability matrices associated with this data are:

X =
[

(E− A)−1BR(:, 1), (2E− A)−1BR(:, 2), (3E− A)−1BR(:, 3)]
]

=

 0 0 −1
−1 −1 0

1 1 1
3

 ,

Y =


L(1, :)C(−1E− A)−1

L(2, :)C(−2E− A)−1

L(3, :)C(−3E− A)−1

L(4, :)C(−4E− A)−1

 =


−1 0 1
−1 0 1
−1 0 1
−1 −4 0

 .

We notice that rank X = rank Y = 2. Thus the Loewner and shifted Loewner matrices are

L =


0 0 − 1

3
0 0 − 1

3
0 0 − 1

3
1 1 0

 , σL =


0 0 −1
0 0 −1
0 0 −1
−4 −4 −1

 .

We check the assumption for δ = 0:

rank (1 · L− σL) = 2, rank (2 · L− σL) = 2, rank (3 · L− σL) = 1
rank (−1 · L− σL) = 2, rank (−2 · L− σL) = 2
rank (−3 · L− σL) = 2, rank (−4 · L− σL) = 1
rank ([L σL]) = 2, rank ([L; σL]) = 2,
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Tangential interpolation Examples

Example

and for δ = 1:
rank (L− σL + L · R) = 3
rank (2 · L− σL + L · R) = 3
rank (3 · L− σL + L · R) = 3
rank (−1 · L− σL + L · R) = 3
rank (−2 · L− σL + L · R) = 3
rank (−3 · L− σL + L · R) = 3
rank (−4 · L− σL + L · R) = 3
rank ([L σL− L · R]) = 3
rank ([L; σL− L · R]) = 3

Since the assumption is violated for δ = 0, but is not violated for δ = 1, we will compute interpolants with δ 6= 0.
For non-zero D, the dimension is 3. From L− σL + LR, we obtain the projectors

πl =

 1 0 −1 0
0 0 0 1
0 1 2 0

 , πr =

 1 0 0
0 1 0
0 0 1

 .

The resulting transfer function is

Ĥ(s) = (W− δR)πr (πl (sL− σL + δLR)πr )
−1

πl (V− δL)− δI2) =

 − δs2

s2+δs+s−12
δs

s2+δs+s−12
δs

s2+δs+s−12
− δ

s2+δs+s−12


Notice that the original rational function is obtained for δ →∞.
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Tangential interpolation Examples

Example

It can be readily checked that all seven interpolation conditions are satisfied. A realization of this interpolant is as follows

sÊ− Â = πl · (sL− σL + δLR) · πr =

 2 · d 4 · d 2 · d
s + 4 + d s + 4 + d 1
−5 · d −13 · d 3− s − 8 · d


and thus Ê = πl · L · πr , Â = πl · σL · πr , turn out to be

Ê =

 0 0 0
1 1 0
0 0 −1

 , Â =

 −2 · δ −4 · δ −2 · δ
−4− δ −4− δ −1

5 · δ 13 · δ −3 + 8 · δ

 .

Furthermore B̂ = πl · (V− δL) and Ĉ = (W− δR) · πr :

B̂ =

 0 −2 · d
−4− d −1
−3 · d 8 · d

 , Ĉ =

[
−d −d −1
−d −2 · d 1/3− d

]
.

Finally we need to check that the characteristic polynomial of the system is non zero at all interpolation points:

χ(s) = det (sÊ− Â) = 2δ(s2 + (δ + 1)s − 12)

Therefore
χ(1) = 2δ(δ − 10), χ(2) = 4δ(δ − 3), χ(3) = 6δ2

χ(−1) = −2δ(δ + 12), χ(−2) = −4δ(δ + 5)

χ(−3) = −6δ(δ + 2), χ(−4) = −8δ2

Thus δ must be different from−12,−5,−2, 0, 3, 10.
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Tangential interpolation Examples

Example: revisited

H =

 s 1

1 s−1



Λ =



1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

 , M =



−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4



R =

 1 0 1 1

0 1 1 −1

 , L =



1 0

0 1

1 1

1 −1



W =

 1 1 4 3

1 1/2 4/3 3/4

 , V =



−1 1

1 −1/2

−2 2/3

−5 5/4
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Tangential interpolation Examples

Example: revisited

P =



1 0 1 1

0 1/4 1/6 −1/8

1 1/6 10
9

11
12

1 −1/8 11
12

17
16


, Q =



0 1 3 2

1 0 1 1

−1 1 2 1

−4 1 −1 −2



Π =



0 0 10

10 0 0

0 10 0

−19 21 −11

 ⇒ Π∗PΠ


7297
16 − 9723

16
733
16

− 9723
16

138913
144 − 1741

48

733
16 − 1741

48
137
16

 , Π∗QΠ =


−1102 1298 332

918 −682 −588

−808 1292 −22



Notice rank Π∗PΠ = 2 = McMillan degree of H.

⇒ WΠ︸︷︷︸
C

s Π∗PΠ︸ ︷︷ ︸
E

−Π∗QΠ︸ ︷︷ ︸
A


−1

Π∗V︸ ︷︷ ︸
B

= C(sE − A)−1B = H(s) =

 s 1

1 s−1
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Tangential interpolation Examples

Example: mechanical system

Mechanical example: Stykel, Mehrmann

106 Volker Mehrmann and Tatjana Stykel

see [Sty04a]. System (3.33) has only one non-zero improper Hankel singular
value θ1 = 0.0049743.

We approximate the semidiscretized Stokes equation (3.33) by two mo-
dels of order ` = 11 (`f = 10, `∞ = 1) computed by the approximate
GSR and GSRBF methods. The absolute values of the frequency responses
of the full order and the reduced-order systems are not presented, since they
were impossible to distinguish. In Figure 3.3 we display the absolute errors
‖G(iω)−G̃(iω)‖2 and ‖G(iω)−Ĝ(iω)‖2 for a frequency range ω ∈ [ 10−2, 106 ]
as well as the approximate error bound computed as twice the sum of the trun-
cated approximate Hankel singular values ς̃11, . . . ς̃39. One can see that over
the displayed frequency range the absolute errors are smaller than 2 × 10−10

which is much smaller than the discretization error which is of order 10−4.

Constrained damped mass-spring system

Consider the holonomically constrained damped mass-spring system illus-
trated in Figure 3.4.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Fig. 3.4. A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring
and a damper with constants ki and di, respectively, and also to the ground by
a spring and a damper with constants κi and δi, respectively. Additionally, the
first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system
is described by a descriptor system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT λ(t) + B2u(t),

0 = G p(t),
y(t) = C1p(t),

(3.34)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vec-
tor, λ(t) ∈ R is the Lagrange multiplier, M = diag(m1, . . . , mg) is the

The vibration of this system is described in generalized state space form as:

ṗ(t) = v(t)
Mv̇(t) = Kp(t) + Dv(t)−G∗λ(t) + B2u(t)

0 = Gp(t)
y(t) = C1p(t)

Measurements: 500 frequency response data between [−2i ,+2i].
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Tangential interpolation Examples

Mechanical system: plots
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Frequency responses of original n=97 and identified systems k=2,6,10,14,18
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Error plots identified systems k=2,6,10,14,18

Left: Frequency responses of original system and
approximants (orders 2, 6, 10, 14, 18)

Right: Frequecy responses of error systems
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Tangential interpolation Examples

Example: Four-pole band-pass filter

•1000 measurements between 40 and 120 GHz; S-parameters 2× 2,
MIMO (approximate) interpolation ⇒ L, σL ∈ R2000×2000.
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Tangential interpolation Examples

Example: co-axial cable

•1000 measurements between 0 and 40 MHz; S-parameters 2× 2,
tangential interpolation ⇒ L, σL ∈ R1000×1000.
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Tangential interpolation Examples

Example: co-axial cable
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Tangential interpolation Examples

Example: delay system

Eẋ(t) = A0x(t) + A1x(t − τ) + Bu(t), y(t) = Cx(t),

where E, A0, A1 are 500× 500 and B, C∗ are 500-vectors.

Procedure: compute 1000 frequency response samples. Then apply recursive/adaptive Loewner-framework procedure.
(Blue: original, red: approximants.)
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10!1
 Adaptive/Recursive approximant N = 35; Hinf!error = .008

0 1 2 3
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 Non!adaptive/recursive approximant N = 50; Hinf!error = .180

35-th order adaptively constructed model; 50-th order non-adaptively constructed model;
H∞ norm of error: 0.008. H∞ norm of error: 0.180.
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The data-to-model method when (E, A, B, C) is given
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The data-to-model method when (E, A, B, C) is given Motivation

Motivation
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The data-to-model method when (E, A, B, C) is given Dominant poles

Dominant system poles

Goal: compute a reduced order model by evaluating the transfer function of
the original high-order system, in as few frequencies as possible.

Given a rational function H(s), let s0 ∈ C be a (simple) pole, The
corresponding residue is defined as

ρ0 = (s − s0)H(s)|s=s0 .

Concept of dominance:

µi :=
|ρi |

|Re(si)|
.

Remark: for poles si , sj which are not too close to each other, µi , µj , give the
(local) maxima of the amplitude Bode plot; these are attained at the
frequencies ωi = Im(si), ωj = Im (sj), respectively.
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The data-to-model method when (E, A, B, C) is given The resulting procedure

The procedure

The proposed method (sometime referred to as FSS - Fast Frequency
Sweep) consists of the following steps.

1 Compute some of the most dominant system poles si = σi + jωi .

2 Evaluate the transfer function of the system at the frequencies ωi ,
that is at the imaginary parts of the computed dominant poles.

3 Finally, compute a low order model of the underlying system using
the Loewner matrix-based, data-to-reduced-model method
described above.

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 40 / 48



The data-to-model method when (E, A, B, C) is given Examples

Three examples

Goal: construction of reduced models for three systems given by means of
(E, A, B, C), using the proposed interpolation approach.

A CD player model, with order n = 120.

The model of a flexible beam, fixed at one, with oder n = 348.

The model of a transmission line, with order n = 199.
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The data-to-model method when (E, A, B, C) is given Examples

CD player
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Left pane: amplitude Bode plot of the original model (blue), 8th order reduced (red) and 18th order reduced models.
Right pane: amplitude Bode plots of the corresponding error systems. Notice the local character of the approximants: the first
one captures the first main peak, while the second reproduces both.
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The data-to-model method when (E, A, B, C) is given Examples

Clamped beam
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Left pane: amplitude Bode plots of original system (blue), 8th order approximant (red dash-dot), 17th order approximant (blue
dash-dot), and 12th oder approximant obtained by balanced truncation (green dash-dot). The stars indicate the value of the
dominance index µi , for the first 5 dominant poles.
Right pane: amplitude Bode plots of error systems for the 8th order approximant (blue), for the 17th order approximant (red), and
for the 12th order approximant obatined by balanced truncation.
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The data-to-model method when (E, A, B, C) is given Examples

Transmission line
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The data-to-model method when (E, A, B, C) is given Examples

Transmission line – continued
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Summary and conclusions
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Summary and conclusions

Summary and conclusions

Given frequency response data, we can construct with no computation, a high order system in generalized state space
form⇒

let the data reveal the underlying system

The system is such that (A, E) is neither regular nor stable and hence (E, A, B, C) is not passive.

An SVD of L, (σL), will produce a regular (and stable) system.

At this stage all usual model reduction methods are applicable.

Approach is the natural way to construct models and reduced models from data as it does not require inversion of E.

For small systems described by (E, A, B, C), one can compute all poles si , and their dominance indices µi . The major
issue for the applicability of the proposed method to large-scale systems is the determination of a few dominant poles of
(A, E), without computing all the poles first. This can be achieved using the iterative method known as SADPA (subspace
accelerated dominant pole algorithm) developed by Joost Rommes.

The proposed method reduces systems at specific frequency ranges.

This in not a Krylov method. It is an interpolation method.

It exhibits similarities with Krylov methods, like the spectral zero method and the optimal H2 method.
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Summary and conclusions
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