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Problem Setting

Problem setting

Linear dynamical systems are principally characterized through their input-output
map S : u 7→ y, via a state-space realization given as:

S :

{
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
with x(0) = 0, (1)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m, are constant matrices.
x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are, respectively, an internal variable (the
state if E is non-singular), the input and the output of the system S.

The goal of model reduction is to produce a surrogate dynamical system with I/O
map, Sr : u 7→ yr , r � n, described in state-space form as:

Sr

{
Er ẋr (t) = Ar xr (t) + Br u(t)

yr (t) = Cr xr (t) + Dr u(t)
with xr (0) = 0, (2)

where Ar ,Er ∈ Rr×r , Br ∈ Rr×m, Cr ∈ Rp×r and Dr ∈ Rp×m.
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Problem Setting

A successful reduced-order model should meet the following criteria:

Goals for Reduced Order Models

1 The reduced input-output map Sr should be uniformly close to S in an
appropriate sense. That is, for the same inputs, u(t), the difference between
full and reduced system outputs, y − yr , should be small.

2 Critical system structure should be preserved, e.g. passivity, Hamiltonian
structure, subsystem interconnectivity, or second-order structure.

3 Strategies for obtaining the reduced system should lead to robust,
numerically stable algorithms and furthermore require minimal
application-specific tuning with little to none expert intervention. They
should be robust and largely automatic to allow the broadest level of
flexibility and applicability in complex multiphysics setting.

We define transfer functions as

H(s) = C (sE− A)−1 B + D, Hr (s) = Cr (sEr − Ar )−1 Br + Dr

so that ŷ(s)− ŷr (s) = [H(s)−Hr (s)] û(s)
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Problem Setting

The general interpolation framework

Interpolation is a very simple approach that is used for the general
approximation of complex functions.

The accuracy of the resulting approximations and its connection with
strategic placement of interpolating points has been studied in many broad
contexts – e.g., for interpolation of meromorphic functions by polynomials or
rational functions, this work is tied in closely with potential theory and
classical complex analysis.

Our overarching goal is to produce a reduced order transfer function, Hr (s),
that approximates with high fidelity a very large order transfer function,
H(s): Hr (s) ≈ H(s). Interpolation is our primary vehicle. At its most
elementary level it can be viewed as selecting a set of points {σi}r

i=1 ⊂ C
and then seeking a reduced order transfer function, Hr (s), such that
Hr (σi ) = H(σi ) for i = 1, . . . , r .

This is a good starting place for SISO systems but turns out to be overly
restrictive for MIMO systems, since the condition Hr (σi ) = H(σi ) in effect
imposes m · p scalar conditions at each interpolation point. It is more
advantageous to consider interpolation conditions that are imposed in
specified directions: tangential interpolation.
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Problem Setting

Problem 1: Model Reduction given state space system data.

Given a full-order model E, A, B, C, and D and given

left interpolation points: right interpolation points:
{µi}q

i=1 ⊂ C, {σi}r
i=1 ⊂ C

with corresponding and with corresponding
left tangent directions: right tangent directions:

{c̃i}q
i=1 ⊂ Cp, {b̃i}r

i=1 ⊂ Cm.

Find a reduced-order model Er , Ar , Br , Cr , and Dr such that the associated
transfer function, Hr (s), is a tangential interpolant to H(s):

c̃T
i Hr (µi ) = c̃T

i H(µi ) and Hr (σj )b̃j = H(σj )b̃j ,
for i = 1, · · · , q, for j = 1, · · · , r , (3)
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Problem Setting

Remark. This is a remarkably flexible framework within which to consider model
reduction when one considers the significance of the interpolation data. Note that
if ỹ = H(σ)b̃ then eσt ỹ is precisely the response of the full order system to a pure
input given by u(t) = eσt b̃, so the tangential interpolation conditions that
characterize Hr (s) could (at least in principle) be obtained from measured
input-output data drawn directly from observations on the original system.
Similarly, if the dual dynamical system were driven by an input given by eµt c̃
producing an output eµt z̃ then c̃T H(µ) = z̃T .

This creates the following alternative problem.
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Problem Setting

Problem 2: Model reduction given input-output data.

Given a set of input-output response measurements on a system specified by

left driving frequencies: right driving frequencies:
{µi}q

i=1 ⊂ C, {σi}r
i=1 ⊂ C

using left input directions: and using right input directions:

{c̃i}q
i=1 ⊂ Cp, {b̃i}r

i=1 ⊂ Cm

producing left responses: producing right responses:
{z̃i}q

i=1 ⊂ Cm, {ỹi}r
i=1 ⊂ Cp

Find a system model by specifying (reduced) system matrices Er , Ar , Br , Cr , Dr

such that Hr (s), is a tangential interpolant to the given data:

c̃T
i Hr (µi ) = z̃T

i and Hr (σj )b̃j = ỹj ,
for i = 1, · · · , q, for j = 1, · · · , r . (4)

Interpolation points and tangent directions are determined (typically) by the
availability of experimental data.

For both problems, it is necessary to have a computationally stable method for constructing the (reduced) system matrices Er ,
Ar , Br , Cr , and Dr that produces an associated transfer function, Hr (s), satisfying the interpolation conditions.
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Problem Setting Interpolatory Projections

Model Reduction via Projection

Most model reduction methods proceed with some variation of a Petrov-Galerkin projective approximation to construct a
reduced-order model Sr .

Find x(t) contained in Cn such that

Eẋ(t)− Ax(t)− B u(t) ⊥ Cn (i.e., = 0).

Then the associated output is y(t) = Cx(t) + Du(t).

We choose an r -dimensional trial subspace, the right modeling subspace, Vr ⊂ Cn , and an r -dimensional test subspace, the
left modeling subspace, Wr ⊂ Cn :

Find v(t) contained in Vr such that

Ev̇(t)− Av(t)− B u(t) ⊥ Wr . (5)

Then the associated output is yr (t) = Cv(t) + Du(t).

Let Ran(R) denote the range of a matrix R. Let Vr ∈ Cn×r and Wr ∈ Cn×r be matrices defined so that Vr = Ran(Vr ) and

Wr = Ran(Wr ). We can represent the reduced system trajectories as v(t) = Vr xr (t) with xr (t) ∈ Cr for each t and the
Petrov-Galerkin approximation (5) can be rewritten as

WT
r (EVr ẋr (t)− AVr xr (t)− B u(t)) = 0 and yr (t) = CVr xr (t) + Du(t),

leading to the reduced order state-space representation (2) with

Er = WT
r EVr , Ar = WT

r AVr , Br = WT
r B, Cr = CVr and Dr = D. (6)

We choose the modeling subspaces to enforce interpolation.
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Problem Setting Interpolatory Projections

Interpolatory Projections

We seek Hr (s) so that

H(σi )bi = Hr (σi )bi , for i = 1, · · · , r ,
cT

j H(µj ) = cT
j Hr (µj ), for j = 1, · · · , r ,

}
(7)

The goal is to interpolate H(s) without ever computing the quantities to be
matched since these numbers are numerically ill-conditioned. This is achieved by
employing the projection framework.

Theorem: solution of rational tangential interpolation by projection.

Let σ, µ ∈ C be such that s E − A and s Er − Ar are invertible for s = σ, µ.
Also let Vr ,Wr ∈ Cn×r in (6) have full-rank. If b ∈ Cm and c ∈ C` are fixed
vectors then

(a) if (σ E− A)−1 Bb ∈ Ran(Vr ), then H(σ)b = Hr (σ)b;

(b) if
(

cT C (µE− A)−1
)T

∈ Ran(Wr ), then cT H(µ) = cT Hr (µ); and

(c) if both (a) and (b) hold, and σ = µ, then cT H′(σ)b = cT H′r (σ)b as well.
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Problem Setting Interpolatory Projections

Proof 1.1 Define

Pr (z) = Vr (zEr − Ar )−1WT
r (zEr − A) and

Qr (z) = (zE− A)Pr (z)(zE− A)−1 = (zE− A)Vr (zEr − Ar )−1WT
r .

Both Pr (z) and Qr (z) are analytic matrix-valued functions in neighborhoods of z = σ and z = µ. It is easy to verify that both

Pr (z) and Qr (z) are projectors, i.e. P2
r (z) = Pr (z) and Q2

r (z) = Qr (z). Moreover, for all z in a neighborhood of σ,

Vr = Ran(Pr (z)) = Ker (I− Pr (z)) and W⊥r = Ker(Qr (z)) = Ran (I− Qr (z)) where Ran(R) denotes the kernel of a
matrix R. First observe that

H(z)− Hr (z) = C(zE− A)−1 (I− Qr (z)) (zE− A)
(

I− Pr (z)
)

(zI− A)−1B

Evaluating this expression at z = σ and postmultiplying by b yields the first assertion; evaluating (1.1) at z = µ and

premultiplying by cT yields the second. Note that

((σ + ε)E− A)−1 = (σE− A)−1 − ε(σE− A)−1E(σE− A)−1 + O(ε2)

((σ + ε)Er − Ar )−1 = (σEr − Ar )−1 − ε(σEr − Ar )−1Er (σEr − Ar )−1 + O(ε2)

so evaluating (1.1) at z = σ + ε, premultiplying by cT , and postmultiplying by b under the hypotheses of the third assertion
yields

cT H(σ + ε)b− cT Hr (σ + ε)b = O(ε2).

Since cT H(σ)b = cT Hr (σ)b,

1

ε

(
cT H(σ + ε)b− cT H(σ)b

)
−

1

ε

(
cT Hr (σ + ε)b− cT Hr (σ)b

)
→ 0,

as ε→ 0, which proves the third assertion.

i
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Problem Setting Interpolatory Projections

Thus given a set of distinct right points (shifts), a set of distinct left points
(shifts), left-tangential and right tangential directions, the solution of the
tangential rational interpolation problem is straightforward. Simply construct Vr

and Wr .

Interpolatory projections

Vr =
[
(σ1E− A)−1Bb1, · · · , (σr E− A)−1Bbr

]
, (8)

WT
r =

 cT
1 C(µ1E− A)−1

...
cT

r C(µr E− A)−1

 . (9)
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Problem Setting Interpolatory Projections

Interpolatory projections with derivative constraints

For completeness:

Interpolation with derivative constraints

Let σ ∈ C be such that both σ E − A and σ Er − Ar are invertible. If b ∈ Cm

and c ∈ C` are fixed nontrivial vectors then

(a) if
(

(σ E− A)−1 E
)j−1

(σ E− A)−1 Bb ∈ Ran(Vr ) for j = 1, .,N

then H(`)(σ)b = H(`)
r (σ)b for ` = 0, 1, . . . ,N − 1

(b) if
(

(µE− A)−T ET
)j−1

(µE− A)−T CT c ∈ Ran(Wr ) for j = 1, .,M,

then cT H(`)(µ) = cT H(`)
r (µ)b for ` = 0, 1, . . . ,M − 1;

(c) if both (a) and (b) hold, and if σ = µ, then cT H(`)(σ)b = cT H(`)
r (σ)b,

for ` = 1, . . . ,M + N + 1
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Problem Setting Interpolatory Projections

The case Dr 6= D

The Petrov-Galerkin framework leads to Dr = D.

Sometimes it is useful to have the flexibility of choosing Dr 6= D, while still
satisfying the interpolation constraints. For instance if we wish to minimize
the maximum mismatch over the imaginary axis.

The Dr term

Given H(s), 2r distinct points, {µi}r
i=1 ∪ {σj}r

j=1, together with 2r nontrivial

vectors, {ci}r
i=1 ⊂ Cp and {bj}r

j=1 ⊂ Cm, let Vr ∈ Cn×r and Wr ∈ Cn×r be as
before. Define F and G as

F = [b1, b2, ..., br ] and G = [c1, c2, . . . , cr ]T

For any Dr ∈ Cp×m, define

Er = WT
r EVr , Ar = WT

r AVr + GDr F, Br = WT
r B−GDr , Cr = CVT

r −Dr F.

Then the reduced-order model satisfies the interpolation constraints.
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Problem Setting Measures of Performance

Measures of Performance: the H∞ and H2 norms

The H∞ norm . We want the output error y(t)− yr (t) to be small in a root mean square sense:
∫∞

0 ‖y(t)− yr (t)‖2
2 dt to

be small, uniformly over all inputs, u(t), having bounded “energy,”
∫∞

0 ‖u(t)‖2
2 dt ≤ 1. There holds

ŷ(s)− ŷr (s) = [H(s)− Hr (s)] û(s), so by the Parseval relation:

∫ ∞
0
‖y(t)− yr (t)‖2

2 dt =
1

2π

∫ ∞
−∞
‖ ŷ(ıω)− ŷr (ıω)‖2

2 dω

≤
1

2π

∫ ∞
−∞
‖H(ıω)− Hr (ıω)‖2

2 ‖û(ıω)‖2
2 dω

≤max
ω
‖H(ıω)− Hr (ıω)‖2

2

(
1

2π

∫ ∞
−∞

‖û(ıω)‖2
2 dω

)1/2

≤ max
ω
‖H(ıω)− Hr (ıω)‖2

2

(∫ ∞
0
‖u(t)‖2

2 dt

)1/2
≤ max

ω
‖H(ıω)− Hr (ıω)‖2

2 = ‖H− Hr‖2
H∞

Thus the ‖H‖H∞ norm is the L2 induced operator norm of the associated system mapping, S : u 7→ y. If E is singular, we

must require in addition that 0 is a nondefective eigenvalue of E so that H(s) is bounded at infinity.
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Problem Setting Measures of Performance

The H2 norm

The H2 norm is:

‖H‖H2
=

(
1

2π

∫ ∞
−∞
‖H(ω)‖2

F

)1/2

,

where now ‖R‖2
F is the Frobenius norm of R. If E is singular then 0 must be a nondefective eigenvalue of E and that

lims→∞ H(s) = 0, for the H2 norm of the system to be finite.

If we want maxt>0 ‖y(t)− yr (t)‖∞ to be small, over all inputs, u(t) with
∫∞

0 ‖u(t)‖2
2 dt ≤ 1:

max
t>0
‖y(t)− yr (t)‖∞ = max

t>0

∥∥∥∥∥ 1

2π

∫ ∞
−∞

(̂y(ıω)− ŷr (ıω)) eıωt dω

∥∥∥∥∥
∞

≤
1

2π

∫ ∞
−∞
‖ŷ(ıω)− ŷr (ıω)‖∞ dω ≤

1

2π

∫ ∞
−∞
‖H(ıω)− Hr (ıω)‖F ‖û(ıω)‖2 dω

≤
(∫ ∞
−∞

‖H(ıω)− Hr (ıω)‖2
F dω

)1/2 (
1

2π

∫ ∞
−∞

‖û(ıω)‖2
2 dω

)1/2

≤
(∫ ∞
−∞

‖H(ıω)− Hr (ıω)‖2
F dω

)1/2 (∫ ∞
0
‖u(t)‖2

2 dt

)1/2

≤
(∫ +∞

−∞
‖H(ıω)− Hr (ıω)‖2

F dω

)1/2

= ‖H− Hr‖H2

In the single-input single-output case, the above relation holds with equality sign, because the H2 norm is equal to the (2,∞)
induced norm of the convolution operator.
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Problem Setting Measures of Performance

H2 is the set of matrix-valued functions, G(z), with components that are analytic for z in the open right half plane, Re(z) > 0,
and such that for each fixed Re(z) = x > 0, G(x + ıy) is square integrable in the sense that

sup
x>0

∫ ∞
−∞
‖G(x + ıy)‖2

F dy <∞.

H2 is a Hilbert space. Transfer functions associated with stable finite dimensional dynamical systems are elements of H2. If
G(s) and H(s) are transfer functions associated with stable dynamical systems the H2-inner product can be defined as

〈G, H〉H2
=

1

2π

∫ ∞
−∞

Tr
(

G(ıω)H(ıω)T
)

dω =

∫ ∞
−∞

Tr
(

G(−ıω)H(ıω)T
)

dω,

with a norm defined as

‖G‖H2
=

(
1

2π

∫ +∞

−∞
‖G(ıω)‖2

F dω

)1/2

. (10)

where Tr(M) and ‖M‖F denote the trace and Frobenius norm of M, respectively.

There are two characterizations of this inner product.
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Problem Setting Measures of Performance

First characterization

Suppose A ∈ Rn×n and Ã ∈ Rñ×ñ are stable and given B, C ∈ Rm×n and B̃, C̃ ∈ Rm̃×ñ define associated transfer functions,

G(s) = CT (sI− A)−1B and H(s) = C̃T (sI− Ã)−1B̃.

The inner product 〈G, H〉H2
is associated with solutions to Sylvester equations:

If P solves AP + PÃT + BB̃T = 0 then 〈G, H〉H2
= trace

(
CPC̃T

)
If Q solves QA + ÃT Q + C̃T C = 0 then 〈G, H〉H2

= trace
(

B̃T QB
)

Note that if A = Ã, B = B̃, and C = C̃ then P is the “reachability Gramian” of G(s) and Q is the “observability Gramian” of
G(s). Then

‖G‖2
H2

= trace
(

CPCT
)

= trace
(

BT QB
)
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Problem Setting Measures of Performance

Recently, we obtained a new expression for ‖G‖H2
based on the poles and residues of the transfer function G(s) that

complements the widely known alternative expression above. Let λ be a simple pole of f (s), and the residue is nontrivial:

res[f (s), λ] = lims→λ(s − λ)f (s) 6= 0. For matrix-valued functions F(s), if λ is simple res[F(s), λ] = lims→λ(s − λ)f (s) has
rank 1. We define the order or dimension of F(s) by dim F =

∑
λ rank (res[F(s), λ]) where the sum is taken over all poles λ. In

this case, we can represent F(s) as

F(s) =
dim F∑
i=1

1

s − λi

ci bT
i ,

where λi are indexed according to multiplicity as indicated by rank(res[F(s), λi ]) times.

Second characterization

Suppose that G(s) and H(s) are stable (poles contained in the open left halfplane) and suppose that H(s) has poles at
µ1, µ2, . . . µm . Then

〈G, H〉H2
=

m∑
k=1

res[Tr
(

G(−s)H(s)T
)
, µk ].

In particular, if H(s) has only simple or semi-simple poles at µ1, µ2, . . . µm and m = dim H then H(s) =
∑m

i=1
1

s−µi
ci bT

i

and

〈G, H〉H2
=

m∑
k=1

cT
k G(−µk )bk

and

‖H‖H2
=

 m∑
k=1

cT
k H(−µk )bk

1/2

.
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Problem Setting Measures of Performance

Proof. Notice that the function Tr
(

G(−s)H(s)T
)

has singularities in the left half plane only at µ1, µ2, . . . µm . For any

R > 0, define the semicircular contour in the left halfplane:

ΓR = {z |z = ıω with ω ∈ [−R, R] } ∪
{

z

∣∣∣∣z = R eıθ with θ ∈ [
π

2
,

3π

2
]

}
.

ΓR bounds a region that for sufficiently large R contains all the system poles of H(s) and so, by the residue theorem

〈G, H〉H2
=

1

2π

∫ ∞
−∞

Tr
(

G(−ıω)H(ıω)T
)

dω

= lim
R→∞

1

2πı

∫
ΓR

Tr
(

G(−s)H(s)T
)

ds

=
m∑

k=1

res[Tr
(

G(−s)H(s)T
)
, µk ].

The remaining assertions follow from the definition.

H2 norm of error system

Given a full-order real system, H(s) and a reduced model, Hr (s), having the form Hr (s) =
∑r

i=1
1

s−λ̂i
ci bi

T (Hr has simple

poles at λ̂1, λ̂2, . . . λ̂r and rank-1 residues c1bT
1 , . . . , cr bT

r .), the H2 norm of the error system is given by

‖H− Hr‖2
H2

= ‖H‖2
H2
− 2

r∑
k=1

cT
k H(−λ̂k )bk +

r∑
k,`=1

cT
k c` bT

` bk

−λ̂k − λ̂`
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Interpolatory Optimal H2 Approximation

Interpolatory Optimal H2 Approximation

Given a full-order system H(s), the optimal H2 model reduction problem seeks to
find a reduced-order model Hr (s) that minimized the H2 error; i.e.

‖H−Hr‖H2 = min
dim(H̃r ) = r

H̃r : stable

‖H− H̃r‖H2 .

The optimization problem is nonconvex. The common approach is to find
reduced order models that satisfy first-order necessary optimality conditions.

Condition for optimal H2 reduced model

Suppose H(s) is a real stable dynamical system and that Hr (s) =
∑r

i=1
1

s−λ̂i
ci b

T
i

is a real dynamical system that is the best stable r th order approximation of H
with respect to the H2 norm. (Hr has simple poles at λ̂1, λ̂2, . . . λ̂r and rank-1
residues c1bT

1 , . . . , cr bT
r .) Then

(a) H(−λ̂k )bk = Hr (−λ̂k )bk , (b) cT
k H(−λ̂k ) = cT

k Hr (−λ̂k ),

(c) cT
k H′(−λ̂k )bk = cT

k H′r (−λ̂k )bk , for k = 1, · · · , r .

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 24 / 79



Interpolatory Optimal H2 Approximation

Proof. Suppose H̃r (s) is a transfer function associated with a stable r -th order dynamical system. Then

‖H− Hr‖2
H2
≤ ‖H− H̃r‖2

H2
= ‖H− Hr + Hr − H̃r‖2

H2

= ‖H− Hr‖2
H2

+ 2<e 〈H− Hr ,Hr − H̃r 〉H2
+ ‖Hr − H̃r‖2

H2

so that 0 ≤ 2<e 〈H− Hr ,Hr − H̃r 〉H2
+ ‖Hr − H̃r‖2

H2

By making judicious choices in how H̃r is made to differ from Hr , we arrive at tangential interpolation conditions.
Toward this end, pick an arbitrary unit vector ξ ∈ Cm , ε > 0, and for some `, define

θ = π − arg ξT
(

H(−λ̂`)− Hr (−λ̂`)
)

b`, and so that

Hr (s)− H̃r (s) =
εeıθ

s − λ̂`
ξbT
`

and hence
〈H− Hr ,Hr − H̃r 〉H2

= −ε |ξT
(

H(−λ̂`)− Hr (−λ̂`)
)

b`|.

Now we have

0 ≤ |ξT
(

H(−λ̂`)− Hr (−λ̂`)
)

b`| ≤ ε
‖b`‖2

2

−2<e(λ̂`)

which by taking ε small implies first that

ξ
T
(

H(−λ̂`)− Hr (−λ̂`)
)

b` = 0

but then since ξ was chosen arbitrarily, we must have that

(
H(−λ̂`)− Hr (−λ̂`)

)
b` = 0.
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A similar argument yields (b).

If (c) did not hold then cT
` H′(−λ̂`)b` 6= cT

` H′r (−λ̂`)b` and we may pick 0 < ε < |<e(λ̂`)| and

θ = − arg cT
`

(
H′(−λ̂`)− H′r (−λ̂`)

)
b` in such a way that µ = λ̂` + εeıθ does not coincide with any reduced order poles

λ̂1, λ̂2, . . . , λ̂r . Note that <e(µ) < 0. Define H̃r (s) so that

Hr (s)− H̃r (s) =

(
1

s − λ̂`
−

1

s − µ

)
c`bT

` .

H̃r (s) has the same poles and residues as Hr (s) aside from µ which replaces λ̂` as a pole in H̃r (s) with no change in the
associated residue. Because of conditions (a-b), we calculate

〈H− Hr ,Hr − H̃r 〉H2
=cT
`

(
H(−λ̂`)− Hr (−λ̂`)

)
b` − cT

` (H(−µ)− Hr (−µ)) b`

=− cT
` (H(−µ)− Hr (−µ)) b`

Then we get

0 ≤ −2<e(cT
` (H(−µ)− Hr (−µ)) b`)−

|µ− λ̂`|2

|µ + λ̂`|2
<e(µ + λ̂`)

2<e(λ̂`)<e(µ)
‖c`‖

2
2 ‖b`‖

2
2

Now, easy manipulations yield first a resolvent identity

(−µE− A)−1 =(−λ̂`E− A)−1 + (µ− λ̂`)(−λ̂`E− A)−1E(−µE− A)−1

and then resubstituting,

(−µE− A)−1 =(−λ̂`E− A)−1 + (µ− λ̂`)(−λ̂`E− A)−1E(−λ̂`E− A)−1

+(µ− λ̂`)2(−λ̂`E− A)−1E(−µE− A)−1E(−λ̂`E− A)−1
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Premultiplying by C and postmultiplying by B, implies

H(−µ) = H(−λ̂`) + (µ− λ̂`)H′(−λ̂`)

+ (µ− λ̂`)2C(−λ̂`E− A)−1E(−µE− A)−1E(−λ̂`E− A)−1B

and analogous arguments yield

Hr (−µ) = Hr (−λ̂`) + (µ− λ̂`)H′r (−λ̂`)

+(µ− λ̂`)2Cr (−λ̂`Er − Ar )−1Er (−µEr − Ar )−1Er (−λ̂`Er − Ar )−1Br

Using these expressions yields

0 ≤ −2ε|cT
`

(
H′(−λ̂`)− H′r (−λ̂`)

)
b`| + O(ε2).

Letting ε→ 0 forces a contradiction unless |cT
`

(
H′(−λ̂`)− H′r (−λ̂`)

)
b`| = 0.
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Remarks.

(a) One consequence of this Theorem is that if Hr (s) interpolates a real system H(s) at the mirror images its own poles (i.e., at
the poles of Hr (s) reflected across the imaginary axis), then Hr (s) is guaranteed to be an optimal approximation of H(s)
relative to the H2 norm among all reduced order systems having the same reduced system poles {µi}

r
i=1.

(b) The set of stable r th order dynamical systems is not convex and so, the original problem allows for multiple minimizers. A
reduced order system, Hr , is a local minimizer, if for all ε > 0 sufficiently small,

‖G − Gr‖H2
≤ ‖G − G̃ (ε)

r ‖H2
,

for all stable dynamical systems, G̃
(ε)
r with dim(G̃

(ε)
r ) = r and

‖Gr − G̃ (ε)
r ‖H2

≤ C ε,

C is a constant that may depend on the particular family G̃
(ε)
r considered.

(c) As a practical matter, the global minimizers are difficult to obtain with certainty; current approaches favor seeking reduced
order models that satisfy a local (first-order) necessary condition for optimality. Even though such strategies do not guarantee
global minimizers, they often produce effective reduced order models.
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A numerical algorithm for optimal H2 model reduction

The Iterative Rational Krylov Algorithm (IRKA) resolves this problem.

Let Y∗ and X denote the left and right eigenvectors for λEr − Ar so that
Y∗Ar X = diag(λ̃i ) and Y∗Er X = Ir .

Denote the columns of Cr X as c̃i and the rows of Y∗Br as b̃T
i .

Then in IRKA interpolation points used in the next step are λ(Ar , Er ), of the
pencil λEr − Ar in the current step. The tangent directions are corrected using
the residues of the previous reduced-ordered model until the optimality condition
is satisfied.
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A numerical algorithm for optimal H2 model reduction

Optimal H2 MIMO tangetial interpolation alorithm

1 Make an initial r -fold shift selection: {σ1, . . . , σr} that is closed under conjugation

and initial tangent directions b̂1, . . . , b̂r and ĉ1, . . . , ĉr , also closed under conjugation.

2 Vr =
[

(σ1E− A)−1Bb̂1 · · · (σr E− A)−1Bb̂r

]
Wr =

[
(σ1 E− AT )−1CT ĉ1 · · · (σr E− AT )−1CT ĉ1

]
.

3 while (not converged)

1 Ar = WT
r AVr , Er = WT

r EVr , Br = WT
r B, and Cr = CVr

2 Compute Y∗Ar X = diag(λ̃i ) and Y∗Er X = Ir where Y∗ and X are
the left and right eigenvectors of λEr − Ar .

3 σi ←− −λi (Ar , Er ) for i = 1, . . . , r , b̂∗i ←− eT
i Y∗Br and ĉi ←− Cr Xei .

4 Vr =
[

(σ1E− A)−1Bb̂1 · · · (σr E− A)−1Bb̂r

]
5 Wr =

[
(σ1 E− AT )−1CT ĉ1 · · · (σr E− AT )−1CT ĉ1

]
.

4 Ar = WT
r AVr , Er = WT

r EVr , Br = WT
r B, Cr = CVr
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A numerical algorithm for optimal H2 model reduction

• The main computational cost of this algorithm involves solving 2r linear
systems to generate Vr and Wr . Computing the eigenvectors Y and X, and the
eigenvalues of the reduced pencil λEr − Ar are cheap since the dimension r is
small.

• IRKA has been remarkably successful in producing high fidelity reduced-order
approximations; it has been successfully applied to finding H2-optimal reduced
models for systems of order n > 160, 000.
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Numerical Results for IRKA

• This problem arises during a cooling process in a rolling mill and is modeled as boundary control of a two dimensional heat

equation. A finite element discretization results in a descriptor system state-dimension n = 79, 841, i.e., A, E ∈ R79841×79841,

B ∈ R79841×7, C ∈ R6×79841.

• Using IRKA, we reduce the order of the full-order system, H(s), to r = 20 to obtain our H2 optimal reduced model,

HIRKA(s). The figure depicts how the relative H∞ error,
‖H− HIRKA‖H∞

‖H‖H∞
evolves through out the iteration

• The important observation is that starting from an initial relative error values close to 1, the method automatically, corrects

both the interpolation points and tangential directions, and reaches an optimal solution with an error value around 3× 10−2.
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We compare our approach with other commonly used MIMO model reduction techniques.

1 Modal Approximation: We reduce the order r = 20 using 20 dominant modes of H(s). The reduced model is denoted
by Hmodal

2 Interpolation points on the imaginary axis: Based on the Bode plot of H(s), we have placed interpolation points on the
imaginary axis where ‖H(ω)‖ is dominant. This was a very common approach of choosing the interpolation before the
optimal shift selection strategy have been developed. The reduced model is denoted by Hω .

3 20 real interpolation points are chosen in the mirror images of the poles of H(s). This selection is a good initialization
for IRKA in the SISO case. The reduced model is denoted by Hreal.

HIRKA Hmodal Hω Hreal
Relative H∞ error 3.03× 10−2 1.03× 10−1 5.42× 10−1 2.47× 10−1

In order to be able to find reasonable interpolation points and directions for Hω and Hreal, we needed to run several
experiments. They either resulted in unstable systems or very poor performance results. Here we are presenting the best
selection we were able to find.

We initiate IRKA it once, randomly in this case, and the algorithm automatically find the optimal points and directions. There is
no need for an ad hoc search.
Note from Figure 14 that the initial guess for IRKA has a higher error than all the other methods. However, even after only two
steps of the iteration long before convergence, the IRKA iterate has already a smaller error norm than all other three
approaches. Note that H(s) has 7 inputs and 6 outputs; hence there are 42 input-output channels. HIRKA with order r = 20,

less than the total number of input-output channels, is able to replicate these behaviors with a relative accuracy of order 10−2.
Even though IRKA is an H2-based approach, superior H∞ performance is also observed and is not surprising. It is an efficient
general purpose H2 and H∞ model reduction method, not only H2 optimal.
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Left pane: depicts the Bode Plots of the error systems. It is clear that HIRKA outperforms the rest of the methods. To give an
example how the reduced models match the full-order model for a specific input/output channel, we show in the right pane the
Bode plots for the transfer function between the third input u3 and the fifth output y5.
Since IRKA yielded a much lower error value, we have checked what lowest order model from IRKA would yield similar error

norms as the other approaches. We have found that IRKA for order r = 2 yields a relative H∞ error of 2.26× 10−1; already

better than 20th order Hω and Hreal. For r = 6, for example, IRKA yielded a relative H∞ error of 1.64× 10−1, a number

close to the one obtained by 20th order Hmodal.
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Interpolatory Passivity Preserving Model Reduction

Interpolatory Passivity Preserving Model Reduction

A system is passive if

Re

∫ t

−∞
u(τ)∗y(τ)dτ ≥ 0,

for all t ∈ R and for all u ∈ L2(R). A rational (square) matrix function H(s) is positive real if:

1 H(s), is analytic for Re(s) > 0,

2 H(s) = H(s) for all s ∈ C, and

3 the Hermitian part of H(s), i.e., H(s) + HT (s), is positive semidefinite for all Re(s) ≥ 0.

• Dynamical systems are passive if and only if the associated transfer function H(s) = C(sE− A)−1B + D, is positive real.
• A consequence of positive realness is the existence of a spectral factorization: a matrix function Φ(s) for which

H(s) + HT (−s) = Φ(s)ΦT (−s), and the poles as well as the (finite) zeros of Φ(s) are all stable. The spectral zeros are λ, for

which Φ(λ) (and hence H(λ) + HT (−λ)) loses rank. Assume for simplicity that λ is a spectral zero with multiplicity one (so

that nullity(Φ(λ)) = 1). Then there is a right spectral zero direction, z, such that (H(λ) + HT (−λ))z = 0. Evidently, if (λ, z)

is a right spectral zero pair for the system represented by H(s), then (−λ, z∗) is a left spectral zero pair:

z∗(H(−λ) + HT (λ)) = 0. The key result that is:

Passivity preserving tangential interpolation

Suppose the dynamical system given in (1) and represented by the transfer function H(s) = C(sE− A)−1B + D is stable and
passive. Suppose that for some index r ≥ 1, λ1, · · · , λr are stable spectral zeros of H with corresponding right spectral zero
directions z1, . . . , zr .

If a reduced order system Hr (s) tangentially interpolates H(s) with σi = λi , bi = zi , µi = −λi , and cT
i = z∗ for

i = 1, . . . , r , then Hr (s) is stable and passive.

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 36 / 79



Interpolatory Passivity Preserving Model Reduction

The computation of the spectral zeros of the system can be formulated as a structured eigenvalue problem. Let

H =

 A 0 B

0 −AT −CT

C BT D + DT

 , E =

 E 0 0

0 ET 0
0 0 0

 .
The spectral zeros of the system are the generalized eigenvalues of the pencil: Hxi = λi Exi . To see this, partition the
eigenvector xi into components vi , wi , and zi such that

 A 0 B

0 −AT −CT

C BT D + DT

 vi
wi
zi

 = λi

 E 0 0

0 ET 0
0 0 0

 vi
wi
zi

 ,
Then

vi = (λi E− A)−1Bzi , wT
i = z∗i C(−λi E− A)−1 and (H(λi ) + HT (−λi ))zi = 0.

Thus, λi are spectral zeros of H(s) associated with the right spectral zero directions, zi , for i = 1, · · · , r . Furthermore, the
right and left conditions are determined by the remaining two components of xi : Vr = [v1, v2, . . . , vr ] and
Wr = [w1, w2, . . . , wr ].
Since H and E are real, the eigenvalues of Hx = λEx occur in complex conjugate pairs. Thus, the spectral zeros, associated
spectral zero directions, and bases for the left and right modeling subspaces can be obtained by means of the above Hamiltonian
eigenvalue problem.
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The question remains of which r spectral zeros to choose. The concept of dominance arising in modal approximation is useful in
distinguishing effective choices of spectral zero sets.

Assume for simplicity that D + DT is invertible, take ∆ = (D + DT )−1 and define

B =

 B

−CT

0

∆, C = −∆[C, BT
, 0],

It can be checked that

G(s)
∆
= [H(s) + HT (−s)]−1 = ∆ + C(sE−H)−1

B.

Let the partial fraction expansion of G(s) be

G(s) =
2n∑

j=1

Rj

s − λj

, with Rj =
1

y∗j Exj

Cxj y∗j B,

where λi are the spectral zeros of the original system (poles of the associated Hamiltonian system) and Rj are the residues. The

left and right eigenvectors of yj , xj , are computed from Hxj = λj Exj and y∗j H = λj y∗j E.

A spectral zero λi is dominant over another spectral zero λj , if

‖Ri‖2

|<e(λi )|
>
‖Rj‖2

|<e(λj )|
.

To efficiently compute the r most dominant spectral zeros of a dynamical system represented by H(s), the algorithm SADPA
(Subspace Accelerated Dominant Pole Algorithm) is used.
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An example

Consider the following RLC circuit:

L1

R1

C1

L2

R2

C2

-

?

?

-
- -

y

u

Using the voltages across C1, C2, and the currents through L1, L2, as state variables, xi , = 1, 2, 3, 4, respectively, we end up
with equations of the form Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), where

E =



C1 0 −G1L1 G2L2

0 C2 0 −G2L2

0 0 L1 0

0 0 0 L2

 , A =



0 0 1 −1

0 0 0 1

−1 0 0 0

1 −1 0 0

 ,

B =


0
0
1
0

 , C = [−G1, 0, 1, 0], D = G1,
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Gi = 1
Ri

, i = 1, 2, are the corresponding conductances. By construction, the system is passive and it is easy to see that its

transfer function has a zero at s = 0. Hence the system has a double spectral zero at s = 0. According to the definition of
dominance mentioned above, among all finite spectral zeros, those on the imaginary axis are dominant. Hence we will compute
a second order reduced system by using the the eigenpairs of (H, E), corresponding to the double zero eigenvalue. The
Hamiltonian pair is:

H =



0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0 1
1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 G1
0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 −1
0 0 0 0 1 −1 0 0 0
−G1 0 1 0 0 0 1 0 2G1


,

and

E =



C1 0 −G1L1 G2L2 0 0 0 0 0
0 C2 0 −G2L2 0 0 0 0 0
0 0 L1 0 0 0 0 0 0
0 0 0 L2 0 0 0 0 0
0 0 0 0 C1 0 0 0 0
0 0 0 0 0 C2 0 0 0
0 0 0 0 −G1L1 0 L1 0 0
0 0 0 0 G2L2 −G2L2 0 L2 0
0 0 0 0 0 0 0 0 0


.
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It follows that although the algebraic multiplicity of this eigenvalue is two, its geometric multiplicity is only one. Hence we need
a Jordan chain of eigenvectors x1, x2, corresponding to this eigenvalue. In particular, x1 satisfies Hx1 = 0, while x2, satisfies
Hx2 = Ex1. These eigenvectors are:

[x1, x2] =



1 0
1 0
0 1

0
C2

C1+C2
−1 0
−1 0
−G1 −1

0
−C2

C1+C2
1 0


.

Thus the projection is defined by means of Vr = [x1(1 : 4, :), x2(1 : 4, :)] and Wr = −[x1(5 : 8, :), x2(5 : 8, :)], that is

Vr =


1 0
1 0
0 1

0
C2

C1+C2

 , Wr =


1 0
1 0
G1 1

0
C2

C1+C2

 .

Therefore by (6) the reduced quantities are:

Er = W∗r EVr =

 C1 +C2 0

0 L1 +
C2

2

(C1+C2)2 L2

 ,Ar = W∗r AVr =

(
−G1 1
−1 0

)
,

Br = W∗r B =

(
G1
1

)
, Cr = CVr =

(
−G1 1

)
, Dr = D.
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The corresponding transfer function Hr (s) = D + Cr (sEr − Ar )−1Br , can be expressed as follows:

H−1
r (s) =

1

s(C1 + C2)
+

1

G1 +
κ

s

where κ =
L1L2(C1 + C2)2

L1C2
2 + L2(C1 + C2)2

.

From this expression or from the state space matrices, we can read-off an RLC realization. The reduced order circuit contains

namely, a capacitor Ĉ = C1 + C2, an inductor L̂ = 1
κ

= L1 +
C2

2

(C1+C2)2 L2, and a resistor of value R̂ = R1. Thereby the

capacitor is in series with a parallel connection of the inductor and the resistor as shown below.

L̂

R̂

Ĉ

?

-
-

ŷ

u

Hence in this particular case, after reduction besides passivity, the structure (topology) of the circuit using the spectral zero
reduction method, is preserved.
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Model reduction for co-prime factorization models

There exist linear dynamical systems whose description takes a from different from the standard one.

Example: the dynamic response of a viscoelastic body. Vibrations of an isotropic incompressible viscoelastic solid are described as

∂tt w(x, t)− η∆w(x, t)−
∫ t

0
ρ(t − τ) ∆w(x, τ) dτ +∇$(x, t) = b(x) · u(t),

∇ · w(x, t) = 0 determining y(t) = [w(x̂1, t), . . .w(x̂p , t)]T ,

where

w(x, t) is the displacement field
$(x, t) is the associated pressure field
∇ · w = 0 represents the incompressibility constraint
ρ(τ) is a known “relaxation function” satisfying ρ(τ) ≥ 0 and

∫∞
0 ρ(τ) dτ <∞

η > 0 is a known constant associated with the “initial elastic response”
b(x) · u(t) =

∑m
i=1 bi (x) ui (t) is a superposition of the m inputs

Displacements at x̂1, . . . , x̂p are the outputs.

Semidiscretization with respect to space produces a large order linear dynamical system of the form:

M ẍ(t) + η K x(t) +

∫ t

0
ρ(t − τ) K x(τ) dτ + D$(t) = B u(t),

DT x(t) = 0, which determines y(t) = C x(t). (11)

where

x ∈ Rn1 is the discretization of the displacement field w
$ ∈ Rn2 is the discretization of the pressure field $
M and K are n1 × n1 real, symmetric, positive-definite matrices
The state dimension is n = n1 + n2.
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Applying Laplace transform yields

ŷ(s) = [C 0]

[
s2M + (ρ̂(s) + η) K D

DT 0

]−1 [
B
0

]
û(s) = H(s) û(s),

defining the transfer function, H(s). This is a descriptor system described by differential-algebraic equations with a hereditary
damping. A reformulation into the standard form is usually not feasible. Hence the question becomes how one can obtain a
reduced-order model in this setting.
An effective reduced model should take into account the structure associated with the effect of distributed material properties.
Therefore, we consider reduced models of the form

Mr ẍr (t) + η Kr xr (t) +

∫ t

0
ρ(t − τ) Kr xr (τ) dτ + Dr $r = Br u(t)

DT
r xr (t) = 0 which determines yr (t) = Cr xr (t) (12)

where

Mr and Kr are r1 × r1 real, symmetric, positive-definite matrices
the reduced state space dimension is r = r1 + r2.

We define matrices of trial vectors Ur ∈ Rn1×r1 and Zr ∈ Rn2×r2 ; use the ansatz x(t) ≈ Ur xr (t) and $(t) ≈ Zr$r (t);
and force Galerkin condition on the reduced state-space trajectories to obtain the reduced coefficient matrices as

Mr = UT
r MUr , Kr = UT

r KUr , Dr = UT
r DZr , Br = UT

r B and Cr = CUr .

This construction prevents mixing displacement state variables and pressure state variables. Also both symmetry and
positive-definiteness are preserved automatically. Now, in addition to preserving the structure we want to choose Ur and Zr so
that the reduced model Hr (s) to interpolate H(s) as before.
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Coprime factorization systems

We now consider MIMO systems with the following structure in the Laplace
transform domain:

K(s) v̂(s) = B(s)û(s) then ŷ(s) = C(s) v̂(s) + D û(s)

with the transfer function H(s) = C(s)K(s)−1B(s) + D,

where D ∈ Rp×m, both C(s) ∈ Cp×n and B(s) ∈ Cn×m are analytic in the right
half plane; and K(s) ∈ Cn×n is analytic and full rank throughout the right half
plane. Hence, the goal is to find a reduced transfer function using a
Petrov-Galerkin projection:

Hr (s) = Cr (s)Kr (s)−1Br (s) + Dr

where Cr (s) = C(s)Vr ∈ Cp×r , Br (s) = WT
r B(s) ∈ Cr×m,

Kr (s) = WT
r K(s)Vr ∈ Cn×n, and Wr ,Vr ∈ Cn×r .

For simplicity we only consider D = Dr , which is equivalent to D = Dr = 0.
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Coprime factorization systems

Model reduction by generalized interpolation

Suppose that B(s), C(s), and K(s) are analytic at σ ∈ C and µ ∈ C. Also let
K(σ), K(µ), Kr (σ) = WT

r K(σ)Vr , and Kr (µ) = WT
r K(µ)Vr have full rank.

Let nonnegative integers M and N be given as well as vectors b ∈ Rm and
c ∈ Rp.

(a) If Di
σ[K(s)−1B(s)]b ∈ Ran(Vr ) for i = 0, . . . , N

then H(`)(σ)b = H
(`)
r (σ)b for ` = 0, . . . , N.

(b) If
(
cT Dj

µ[C(s)K(s)−1]
)T ∈ Ran(Wr ) for j = 0, . . . , M

then cT H(`)(µ) = cT H
(`)
r (µ) for ` = 0, . . . , M.

(c) If both (a) and (b) hold and if σ = µ,

then cT H(`)(σ)b = cT H
(`)
r (σ)b for ` = 0, . . . , M + N + 1.
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Coprime factorization systems

For H(s) = C(s)K(s)−1B(s), let r interpolation points {σi}r
i=1, the

left-directions {ci}r
i=1 and the right-directions {bi}r

i=1 be given. Construct,

Vr =
[
K(σ1)−1B(σ1)b1, . . . , K(σr )−1B(σr )br

]
,

Wr =
[
K(σ1)−T C(σ1)T c1, . . . , K(σr )−T C(σr )T cr

]T
.

Then, Hr (s) = Cr (s)Kr (s)−1Br (s) satisfies the bi-tangential interpolation
conditions, i.e. H(σi )bi = Hr (σi )bi , cT

i H(σi ) = cT
i Hr (σi ) and cT

i H′(σi )bi =
cT

i H′r (σi )bi for i = 1, . . . , r .

This result extends interpolatory model reduction to a more general
framework of H(s) = C(s)K(s)−1B(s) + D.
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A numerical example: driven cavity flow in two dimensions I

Consider a square domain Ω = [0, 1]2 (below) representing a volume filled with a viscoelastic material with boundary separated
into a top edge (“lid”), ∂Ω1, and the complement, ∂Ω0 (bottom, left, and right edges). The material in the cavity is excited
through shearing forces on the material caused by transverse displacement of the lid, u(t). We are interested in the displacement
response of the material, w(x̂, t), at the center of Ω, i.e. x̂ = (0.5, 0.5).

∂tt w(x, t)− η0 ∆w(x, t)− η1∂t

∫ t

0

∆w(x, τ)

(t − τ)α
dτ + ∇$(x, t) = 0 for x ∈ Ω

∇ · w(x, t) = 0
for x ∈ Ω

and
w(x, t) = 0 for x ∈ ∂Ω0
w(x, t) = u(t) for x ∈ ∂Ω1

x̂r���w(x̂, t)

� -u(t)∂Ω1

∂Ω0

Ω
which determines the output y(t) = w(x̂, t),

We take η0 = 1.05× 106, η1 = 2.44× 105, and α = 0.519, corresponding to experimentally derived values for the polymer

butyl B252. The transfer function of the discretized system is given by H(s) = C(s)K(s)−1B(s) where

K(s) =

[
s2M + ρ̂(s)K D

DT 0

]
, C(s) = [C 0], and B(s) =

[
s2m + ρ̂(s)k

0

]
.
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A numerical example: driven cavity flow in two dimensions II

C corresponds to measuring the horizontal and vertical displacement at x̂ = (0.5, 0.5), m and k are the sum of the columns of
the free-free mass and stiffness matrix associated with x-displacement degrees of freedom on the top lid boundary and
ρ̂(s) = η0 + η1sα; hence producing a frequency dependent input-state map due to the system input being a boundary
displacement as opposed to a boundary force. Note the non-linear frequency dependency in the state-input map; however our
procedure can be still applied to obtain an interpolatory reduced-order model of the same form as shown next: Given are the
interpolation point σ ∈ C and direction c ∈ Cp . Since the input is a scaler, there is no need for a right tangential direction. For
simplicity we would only force bitangential Hermite interpolating conditions, i.e.

Hr (σ) = H(σ), cT
Hr (σ) = cT

H(σ), and cT
H
′
r (σ) = cT

H
′(σ).

Following the theorem, we solve the following two linear systems of equations:

[
F(σ) D

DT 0

] [
u1
z1

]
=

[
N(σ)

0

]
and

[
F(σ) D

DT 0

] [
u2
z2

]
=

[
CT c

0

]
.

where F(σ) = σ2M + ρ̂(σ)K and N(σ) = s2m + ρ̂(σ)k. Define the matrices Ur = [u1, u2] and Zr = [z1, z2] . Then the
reduced system matrices are Vr = Wr = Ur ⊕ Zr and the bitangential interpolation conditions are satisfied.
Below, we compare three different models including the full-order model:

1 Hfine, using a fine mesh FEM discretization with 51,842 displacement degrees of freedom and 6,651 pressure degrees of

freedom (mesh size h = 1
80

);

2 Hcoarse, for a coarse mesh discretization with 29,282 displacement degrees of freedom and 3721 pressure degrees of
freedom;

3 H30, a generalized interpolatory reduced order model as defined above with r = 30, corresponding to 30 reduced
displacement degrees of freedom and 30 reduced pressure degrees of freedom satisfying the bitangential interpolation
conditions.
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A numerical example: driven cavity flow in two dimensions III

The resulting frequency response plots shown in Figure 1:

Figure: Bode Plots of Hfine, Hcoarse and reduced models H20 and H30

The reduced model is also a descriptor system with the same damping structure. H30 clearly outperforms Hcoarse.
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Second-order Dynamical Systems

One important variation on the dynamical systems above arises in n
degree–of–freedom mechanical (or other) structures:

Mẍ(t) + Gẋ(t) + Kx(t) = Bu(t), y(t) = Cx(t),

with the transfer function H(s) = C(s2M + sG + K)−1B, where M, G, and
K ∈ Rn×n are positive (semi)-definite symmetric matrices describing, mass
distribution, energy dissipation, and stiffness distribution.
The goal is to generate, for some r � n, an r th order reduced second-order
system of the form

Mr ẍr (t) + Gr ẋr (t) + Kr xr (t) = Br u̇(t), yr (t) = Cr xr (t),

where Mr ,Gr ,Kr ∈ Rr×r , are positive (semi)-definite symmetric matrices,
B ∈ Rr×m, and C ∈ Rp×r . In order to preserve the symmetry and positive
definiteness of M, G and K in the course of model reduction, one-sided reduction
is applied, i.e. one usually takes Wr = Vr ; hence resulting in

Mr = VT
r MVr , Gr = VT

r GVr , Kr = VT
r KVr ,Br = VT

r B, , Cr = CVr .
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Algorithm 4.1. Second-order Tangential MIMO Order Reduction

Given interpolation points {σ1, · · · , σN}, directions {b1, · · · , bN}, and

interpolation orders {J1, · · · , JN} (with r =
∑N

i=1 Ji ).

1 For i = 1, ..., N

1 For each shift σi and tangent direction bi , define

K
(i)
0 = σ2

i M + σi G + K, K
(i)
1 = 2σi M + G, and K2 = M.

2 Solve K
(i)
0 fi1 = Bbi and set fi0 = 0.

3 For j = 2 : Ji , solve K
(i)
0 fij = −K

(i)
1 fi,j−1 −K2fi,j−2,

2 Take Vr =
[

f11, f12, . . . , f1J1
, f21, . . . , f2J2

, . . . , fN1, . . . , fNJN

]
and

then Mr = VT
r MVr , Gr = VT

r GVr , Kr = VT
r KVr , Br = VT

r B, and Cr = CVr .

Remark. The discussion above and the algorithm can be easily generalized to
higher order constant coefficient ordinary differential equations as well where the
system dynamics follow

A0
d`x

dt`
+ A1

d`−1x

dt`−1
+ · · ·+ A`x(t) = Bu(t) and y(t) = Cx(t).
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Model Reduction of Parametric Systems

In parameterized model reduction, the goal is to construct a high fidelity parametric reduced order models which recover the
response of the original full order parametric sytem throughout the range of variation of interest of the parameters.

We consider a multi-input/multi-output linear dynamical system that is parameterized with q parameters p = [p1, . . . , pq ]:

H(s, p) = C(s, p)K(s, p)−1b(s, p),

with K(s, p) ∈ Cn×n and B(s, p) ∈ Cn×m and C(s, p) ∈ Cp×n . We assume that

K(s, p) = K
[0](s) + a1(p) K

[1](s) + . . . + aν (p) K
[ν](s)

B(s, p) = B
[0](s) + b1(p) B

[1](s) + . . . + bν (p) B
[ν](s),

C(s, p) = C
[0](s) + c1(p) C

[1](s) + . . . + cν (p) C
[ν](s).

where a1(p), a2(p) . . . , b1(p), ..., cν (p) are scalar-valued parameter functions that could be linear or non-linear.

Our goal is to to generate, for some r � n, a reduced-order system with dimension r having the same parametric structure.

Suppose matrices Vr ∈ Cn×r and Wr ∈ Cn×r are specified and consider:

Hr (s, p) = Cr (s, p)Kr (s, p)−1
Br (s, p),

with Kr (s, p) = WT
r K(s, p)Vr , Br (s, p) = WT

r B(s, p), and Cr (s, p) = C(s, p)Vr .
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We say that the reduced model has the same parametric structure if

Kr (s, p) =
(

WT
r K

[0](s)Vr

)
+ a1(p)

(
WT

r K
[1](s)Vr

)
+ . . . + aν (p)

(
WT

r K
[ν](s)Vr

)
Br (s, p) =

(
WT

r B
[0](s)

)
+ b1(p)

(
WT

r B
[1](s)

)
+ . . . + bν (p)

(
WT

r B
[ν](s)

)
,

Cr (s, p) =
(

C
[0](s)Vr

)
+ c1(p)

(
C

[1](s)Vr

)
+ . . . + cν (p)

(
C

[ν](s)Vr

)
.

with the same parameter functions a1(p), . . . , cν (p), but with smaller coefficient matrices. The next result extends the
previous results to the parameterized dynamical system setting:

Interpolatory parametrized model reduction

Suppose K(s, p), B(s, p), and C(s, p) are analytic with respect to s at σ ∈ C and µ ∈ C, and are continuously differentiable
with respect to p in a neighborhood of p̂ = [p̂1, ..., p̂q ]. Suppose further that both K(σ, p̂) and K(µ, p̂) are nonsingular and

matrices Vr ∈ Cn×r and Wr ∈ Cn×r are given such that both Kr (σ, p̂) = WT
r K(σ, p̂)Vr and Kr (µ, p̂) = WT

r K(µ, p̂)Vr
are also nonsingular. For nontrivial tangential directions b ∈ Cm and c ∈ Cp :

(a) If K(σ, p̂))−1
B(σ, p̂))b ∈ Ran(Vr ) then H(σ, p̂))b = Hr (σ, p̂))b

(b) If
(

cT
C(µ, p̂))K(µ, p̂))−1

)T
∈ Ran(Wr ) then cT H(µ, p̂)) = cT Hr (µ, p̂))

(c) If both (a) and (b) hold and if σ = µ, then

∇pcT H(σ, p̂)b = ∇pcT Hr (σ, p̂)b and cT H′(σ, p̂)b = cT H′r (σ, p̂)b
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Model Reduction from Measurements

Consider a set of scalar points:

(si , φi ), i = 1, 2, · · · ,N, si 6= sj , i 6= j .

We seek a rational function H(s) = n(s)
d(s) , such that H(si ) = φi , i = 1, 2, · · · ,N,

and n,d are coprime polynomials.
A solution always exists, e.g. the Lagrange interpolating polynomial:

φ0(s) =
N∑

j=1

∏
i 6=j (s − φi )∏
i 6=j (sj − φi )

.

Then all solutions can be expressed as

φ(s) = φ0(s) + ρ(s)
N∏

i=1

(s − si ), ρ(si ) is finite.

Additional constraints for H may include minimality, stability, bounded realness.
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A rational Lagrange-type formula

The data is now divided in disjoint sets: (σi , yi ), i = 1, 2, · · · , r , (µj , zj ),
j = 1, 2, · · · , q, k + q = N. Consider:

r∑
i=1

γi
φ(s)− yi

s − σi
= 0.

Then as long as γi 6= 0, there holds φ(σi ) = yi , for i = 1, · · · , q. If we make use
of the freedom in satisfying the remaining interpolation conditions, we obtain the
condition

The Loewner matrix

Lc = 0 where L =


z1−y1

µ1−σ1
· · · z1−yr

µ1−σr

...
. . .

...
zq−y1

µq−σ1
· · · zq−yk

µq−σr


︸ ︷︷ ︸

Loewner matrix

∈ Cq×r , c =

 γ1

...
γr

 ∈ Cr .
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The Loewner matrix

The main result affirms that the rank of L encodes the minimal degree of
interpolants. Furthermore if an interpolant is provided in internal form:
H(s) = C(sI− A)−1B + D, the Loewner matrix can be factorized as:

L = −


C(µ1E− A)−1

C(µ2E− A)−1

...
C(µqE− A)−1


︸ ︷︷ ︸

WT
q

[
(σ1E− A)−1B · · · (σr E− A)−1B

]︸ ︷︷ ︸
Vr

,

where WT
q , Vr were introduced earlier and represent generalized observability and

reachability matrices.
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This property parallels the corresponding property of the Hankel-matrix
framework and thus indicate that the Loewner matrix is indeed the right tool.
This is further enforced by the following fact. The problem of interpolation with
multiplicities can also be solved by means of the Loewner matrix. In particular, if
the value and a number of derivatives at a single point (s0;φ0, φ1, · · · , φN−1), is
provided, it turns out that the associated Loewner matrix has Hankel structure:

L =



φ1

1!
φ2

2!
φ3

3!
φ4

4! · · ·
φ2

2!
φ3

3!
φ4

4! · · ·
φ3

3!
φ4

4!

φ4

4!

...
. . .

...


.

Thus the Loewner matrix generalizes the Hankel matrix when general
interpolation replaces realization.
Remark. In this framework strict properness of interpolants is not required. Thus
rational functions with polynomial part can be recovered from input-output data.
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Model Reduction from Measurements

In many instances, input/output measurements replace an explicit model of a to-be-simulated system. In such cases it is of
great interest to be able to efficiently construct models and reduced models from the available data.
An important tool is the S- or scattering-parameter system representation. The S-parameters represent a system as a black box.
An advantage is that these parameters can be measured using VNAs (Vector Network Analyzers).

Figure: VNA (Vector Network Analyzer) and VNA screen showing the magnitude of the S-parameters for a 2 port.

Given a system in input/output representation: ŷ(s) = H(s)û(s), the associated S-parameter representation is ŷs = S(s)u(s),

where S(s) = [H(s) + I][H(s)− I]−1. Thereby ŷs = 1
2

(ŷ + û) are the transmitted waves and, ûs = 1
2

(ŷ − û) are the

reflected waves. Thus the S-parameter measurements S(jωk ), are samples of the frequency response of the S-parameter system
representation.
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The Loewner matrix pair and the construction of interpolants

Suppose we have observed response data as described in Problem 2. We are given r (right) driving frequencies: {σi}r
i=1 ⊂ C

that use input directions {b̃i}r
i=1 ⊂ Cm, to produce system responses, {ỹi}r

i=1 ⊂ Cp and q (left) driving frequencies:

{µi}
q
i=1 ⊂ C that use dual (left) input directions {c̃i}

q
i=1 ⊂ Cp , to produce dual (left) responses, {z̃i}

q
i=1 ⊂ Cm . We

assume that there is an underlying dynamical system as defined in (1) so that

c̃T
i H(µi ) = z̃T

i and H(σj )b̃j = ỹj ,
for i = 1, · · · , q, for j = 1, · · · , r.

yet we are given access only to the r + q response observations listed above and have no other information about the underlying
system H(s). Here we will sketch the solution of Problem 2. Towards this goal we will introduce the Loewner matrix pair in the
tangential interpolation case:

L =



z̃T
1 b̃1 − c̃T

1 ỹ1

µ1 − σ1

· · ·
z̃T

1 b̃r − c̃T
1 ỹr

µ1 − σr

.

.

.
. . .

.

.

.

z̃T
q b̃1 − c̃T

q ỹ1

µq − σ1

· · ·
z̃T

q b̃r − c̃T
q ỹr

µq − σr


∈ Cq×r

.
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The Loewner matrix pair and the construction of interpolants

If we define matrices associated with the system observations as:

B̃ =


.
.
.

.

.

.

.

.

.

b̃1 b̃2 . . . b̃r

.

.

.

.

.

.

.

.

.

 Ỹ =


.
.
.

.

.

.

.

.

.
ỹ1 ỹ2 . . . ỹr

.

.

.

.

.

.

.

.

.



Z̃T =


. . . z̃T

1 . . .

. . . z̃T
2 . . .

.

.

.

. . . z̃T
q . . .

 C̃T =


. . . c̃T

1 . . .

. . . c̃T
2 . . .

.

.

.

. . . c̃T
q . . .


L satisfies the Sylvester equation

LΣ− ML = Z̃T B̃− C̃T Ỹ,

where Σ = diag(σ1, σ2, . . . , σr ) ∈ Cr×r and M = diag(µ1, µ2, . . . , µq ) ∈ Cq×q Suppose that state space data

(E,A,B, C,D), of minimal degree n are given such that H(s) = C(sE− A)−1B+D. If the generalized eigenvalues of (A, E) are

distinct from σi and µj , we define Vr , so that its jth column is: (σj E− A)−1Bb̃j , and WT
q so that its ith row is

c̃T
i C(µi E− A)−1. It follows that

L = −WT
q EVr ,

and we call Vr , WT
q generalized tangential reachability, observability matrices, respectively.
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The Loewner matrix pair and the construction of interpolants

Next we introduce a new object which is pivotal in our approach. This is the shifted Loewner matrix, defined as follows:

M =



µ1 z̃T
1 b̃1 − σ1 c̃T

1 ỹ1

µ1 − σ1

· · ·
µ1 z̃T

1 b̃r − σr c̃T
1 ỹr

µ1 − σr

.

.

.
. . .

.

.

.

µq z̃T
q b̃1 − σ1 c̃T

q ỹ1

µq − σ1

· · ·
µq z̃T

q b̃r − σr c̃T
q ỹr

µq − σr


∈ Cq×r

M satisfies the Sylvester equation

MΣ− MM = MZ̃T B̃− C̃T ỸΣ.

If an interpolant H(s) is associated with the interpolation data, the shifted Loewner matrix is the Loewner matrix associated to
sH(s). If a state space representation is available, then like for the Loewner matrix, the shifted Loewner matrix can be factored
as

M = −WT
q AVr .

It therefore becomes apparent that L contains information about E while M contains information about A. These observations
are formalized in one of the main results of this section which shows how straightforward the solution of the interpolation
problem becomes, in the Loewner matrix framework.
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Main result

Construction of interpolants in state space form

Assume that r = q and that µi 6= σj for all i , j = 1, . . . , r . Suppose that
M− s L is invertible for all s ∈ {σi} ∪ {µj}. Then, with

Er = −L, Ar = −M, Br = Z̃T , Cr = Ỹ, Dr = 0,

Hr (s) = Cr (sEr − Ar )−1Br = Ỹ(M− s L)−1Z̃T

interpolates the data and furthermore is a minimal realization.
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Next we will outline the proof of this important result which is straightforward and hence reveals the main attributes of this
approach.

Proof 5.1 Multiplying equation (??) by s and subtracting it from (??) we get

(M− sL)Σ− M(M− sL) = C̃T Ỹ(Σ− sI)− (M − sI)Z̃T B̃.

Multiplying this equation by ei (the ith unit vector) on the right and setting s = σi , we obtain

(σi I− M)(M− σi L)ei = (σi I− M)Z̃T b̃i ⇒

(σi L− M)ei = Z̃T b̃i ⇒ Ỹei = Ỹ(σi L− M)−1Z̃T bi

Therefore H(σi )b̃i = ỹi . This proves the right tangential interpolation property. To prove the left tangential interpolation

property, we multiply the above equation by e∗j (the transpose of the jth unit vector) on the left and set s = µj :

e∗j (M− µj L)(Σ− µj I) = e∗j C̃T Ỹ(µj I− Σ) ⇒

e∗j (M− µj L) = c̃T
j Ỹ ⇒ e∗j Z̃T = c̃T

j Ỹ(M− µj L)−1Z̃T .

Therefore c̃T
j H(µj ) = z̃T

j , which completes the proof.

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 66 / 79



Model Reduction from Measurements The Loewner matrix pair and the construction of interpolants

The general case

If the assumption of the above theorem is not satisfied, one needs to project onto the column span and onto the row span of a
linear combination of the two Loewner matrices. More precisely, let the following assumption be satisfied:

rank (sL− M) = rank
(

L M
)

= rank

(
L
M

)
= ρ, for all s ∈ {σi} ∪ {µj}.

ρ ≤ q, r and can be either the exact or the numerical rank. The best tool for determining the rank of sL−M, is the SVD. Let

sL− M = YΣX∗,

for some choice of s ∈ {σi} ∪ {µj} and consider a truncated SVD as Yρ ∈ Cq×ρ, Xρ ∈ Cr×ρ.

Approximate tangetial interpolation

A realization [Eρ,Aρ,Bρ, Cρ], of a minimal solution is given as follows:

Eρ = −Y∗ρLXρ, Aρ = −Y∗ρMXρ, Bρ = Y∗ρ Ỹ, Cρ = Z̃T Xρ.

Depending on whether ρ is the exact or approximate rank, we obtain either an interpolant or an approximate interpolant of the
data, respectively.
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Loewner and Pick matrices

The positive real interpolation problem can be formulated as follows. Given triples (σi , b̃i , ỹi ), i = 1, · · · , q, where σi are

distinct complex numbers in the right-half of the complex plane, b̃i and ỹi are in Cr , we seek a rational matrix function H(s) of

size r × r , such that H(σi )b̃i = ỹi , i = 1, · · · , q, and in addition H is positive real. This problem does not always have a
solution. It is well known that the necessary and sufficient condition for its solution is that the associated Pick matrix

Π =



ỹ∗1 b̃1 + b̃∗1 ỹ1

σ1 + σ1

· · ·
ỹ∗1 b̃q + b̃∗1 ỹq

σ1 + σq

.

.

.
. . .

.

.

.

ỹ∗q b̃1 + b̃∗q ỹ1

σq + σ1

· · ·
ỹ∗q b̃q + b̃∗q ỹq

σq + σq


∈ Cq×q

,

be positive semi-definite, that is Π = Π∗ ≥ 0.

By comparing Π with the Loewner matrix L, we conclude that if the right (column) array for the former is taken as (σi , b̃i , ỹi ),

i = 1, · · · , q, and the left (row) array as (−σi , b̃∗i ,−ỹ∗i ), i = 1, · · · , q, then

Π = L.

The left is then called the mirror-image array. Thus for this choice of interpolation data the Pick matrix is the same as the
Loewner matrix. This shows the importance of the Loewner matrix as a tool for studying rational interpolation.
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Remark. (a) The above considerations provide an algebraization of the positive
real interpolation problem. If namely, Π ≥ 0, the minimal-degree rational
functions which interpolate simultaneously the original array and its mirror image
array, are automatically positive real and hence stable as well. The data in the
model reduction problem, automatically satisfy this positive definiteness
constraint, and therefore the reduced system is positive real.

(b) It readily follows that interpolants of the original and the mirror-image arrays
constructed by means of the Loewner matrix, satisfy

[H(σi ) + H∗(−σi )] b̃i = 0.

In general the zeros σi of H(s) + H∗(−s) are called spectral zeros, and b̃i are the
corresponding (right) zero directions. Thus the construction of positive real
interpolants by means of the Loewner (Pick) matrix, forces these interpolants to
have the given interpolation points as spectral zeros.
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Examples I

A simple low-order example. First we will illustrate the above results by means of a simple example. Consider a 2× 2 rational
function with minimal realization:

A =

 1 0 0
0 1 0
0 0 0

 , E =

 0 −1 0
0 0 0
0 0 1

 , B =

 0 1
1 0
0 1

 , C =

[
1 0 0
0 1 1

]
.

Thus the transfer function is

H(s) = C(sE− A)−1B =

 s 1

1 1
s

 .
Since rank E = 2, the McMillan degree of H is 2. Our goal is to recover this function through interpolation. The data will be
chosen in two different ways.
First, we will choose matrix data, that is the values of the whole matrix are available at each interpolation point:

σ1 = 1, σ2 = 1, σ3 = 2, σ4 = 2,

b̃1 =

(
1
0

)
, b̃2 =

(
0
1

)
, b̃3 =

(
1
0

)
, b̃4 =

(
0
1

)

ỹ1 =

(
1
1

)
, ỹ2 =

(
1
1

)
, ỹ3 =

(
2
1

)
, ỹ4 =

(
1
1
2

)

µ1 = 1, µ2 = 1, µ3 = 2, µ4 = 2,

c̃T
1 =

(
1, 0

)
, c̃T

2 =
(

0, 1
)
, c̃T

3 =
(

1, 0
)
, c̃T

4 =
(

0, 1
)

z̃T
1 =

(
−1, 1

)
, z̃T

2 =
(

1, −1
)
, z̃T

3 =
(
−2, 1

)
, z̃T

4 =
(

1, − 1
2

)
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Examples II

The associated (block) Loewner and shifted Loewner matrices turn out to be:

L =


1 0 1 0

0 1 0 1
2

1 0 1 0

0 1
2

0 1
4

 , M =


0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0


Notice that the rank of both Loewner matrices is 2 while the rank of xi L− M is 3, for all x equal to a σi or µi . It can be
readily verified that the column span of σ1L− M = L− M is the same as that of Π, where

Π =


1 1 −2
1 0 0
0 1 0
0 0 1

 .

Furthermore the row span of L− M is the same as that of Π∗ Thus

Â = −Π∗MΠ =

 −2 −3 1
−1 0 −4

1 0 4

 , Ê = −Π∗LΠ =

 −2 −2 3
2

−2 −4 4
3
2

4 − 17
4

 ,

B̂ = Π∗Z̃T =

 0 0
−3 2

3 − 5
2

 , Ĉ = ỸΠ =

(
2 3 −1

2 2 − 3
2

)
,
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Examples III

satisfy H(s) = Ĉ(sÊ− Â)B̂, which shows that a (second) minimal realization of H has been obtained.

The second experiment involves tangential data, that is, at each interpolation point only values along certain directions are
available.

σ1 = 1, σ2 = 2, σ3 = 3,

b̃1 =

(
1
0

)
, b̃2 =

(
0
1

)
, b̃3 =

(
1
1

)

ỹ1 =

(
1
1

)
, ỹ2 =

(
1
1
2

)
, ỹ3 =

(
4
4
3

)
µ1 = −1, µ2 = −2, µ3 = −3,

c̃T
1 =

(
1, 0

)
, c̃T

2 =
(

0, 1
)
, c̃T

3 =
(

1, 1
)

z̃T
1 =

(
−1, 1

)
, z̃T

2 =
(

1, − 1
2

)
, z̃T

3 =
(
−2, 2

3

)
.

Thus the associated Loewner and shifted Loewner matrices are:

L =


1 0 1

0 1
4

1
6

1 1
6

10
9

 , M =


0 1 3

1 0 1

−1 1 2



It readily follows that the conditions of theorem ?? are satified and hence the quadruple (−M,−L, Z̃T , Ỹ), provides a (third)

minimal realization of the original rational function: H(s) = −Ỹ [sL− M]−1 Z̃T .
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Coupled mechanical system

106 Volker Mehrmann and Tatjana Stykel

see [Sty04a]. System (3.33) has only one non-zero improper Hankel singular
value θ1 = 0.0049743.

We approximate the semidiscretized Stokes equation (3.33) by two mo-
dels of order ` = 11 (`f = 10, `∞ = 1) computed by the approximate
GSR and GSRBF methods. The absolute values of the frequency responses
of the full order and the reduced-order systems are not presented, since they
were impossible to distinguish. In Figure 3.3 we display the absolute errors
‖G(iω)−G̃(iω)‖2 and ‖G(iω)−Ĝ(iω)‖2 for a frequency range ω ∈ [ 10−2, 106 ]
as well as the approximate error bound computed as twice the sum of the trun-
cated approximate Hankel singular values ς̃11, . . . ς̃39. One can see that over
the displayed frequency range the absolute errors are smaller than 2 × 10−10

which is much smaller than the discretization error which is of order 10−4.

Constrained damped mass-spring system

Consider the holonomically constrained damped mass-spring system illus-
trated in Figure 3.4.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Fig. 3.4. A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring
and a damper with constants ki and di, respectively, and also to the ground by
a spring and a damper with constants κi and δi, respectively. Additionally, the
first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system
is described by a descriptor system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT λ(t) + B2u(t),

0 = G p(t),
y(t) = C1p(t),

(3.34)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vec-
tor, λ(t) ∈ R is the Lagrange multiplier, M = diag(m1, . . . , mg) is the

Figure: Constrained mechanical system

There are g masses in total; the ith mass of weight mi , is connected to the (i + 1)st mass by a spring and a damper with
constants ki and di , respectively, and also to the ground by a spring and a damper with constants κi and δi , respectively.
Additionally, the first mass is connected to the last one by a rigid bar (holonomic constraint) and it is influenced by the control
u(t).

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 73 / 79



Model Reduction from Measurements The Loewner matrix pair and the construction of interpolants

The vibration of this constrained system is described in generalized state space form as:

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),

where x contains the positions and velocities of the masses,

E =

 I 0 0
0 M 0
0 0 0

 , A =

 0 I 0
K D −G∗

G 0 0

 , B =

 0
B2
0

 , C = [C1, C2, C3];

furthermore M is the mass matrix (g × g , diagonal, positive definite), K is the stiffness matrix (g × g , tri-diagonal), D is the
damping matrix (g × g , tri-diagonal), G = [1, 0, · · · , 0, −1], is the 1× g constraint matrix.

Figure: The singular values of the Loewner matrix
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In this case balanced truncation methods for descriptor systems can be used to reduce this system. Here we will reduce this
system by means of the Loewner framework.

Towards this goal, we compute 200 frequency response data, that is H(iωi ), where ωi ∈ [−2,+2]. Figure 4 shows the singular

values of the Loewner matrix pair, which indicate that a system of order 20 will have an approximate error 10−3 (−60dB).

Figure: Left pane: Frequency responses of original system and approximants (orders 2, 10, 18). Right pane: Frequecy
responses of error systems (orders 2,10,18)

This figure shows that (for the chosen values of the parameters) the frequency response has about 7 peaks. A second order
approximant reproduces (approximately) the highest peak, a tenth order system reproduces (approximately) five peaks, while a
system of order 18 provides a good approximation of the whole frequency response.
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Four-pole band-pass filter I

In this case 1000 frequency response measurements are given, of the 2× 2 S-parameters of a semi-conductor device which is
meant to be a band-pass filter. There is no a priori model available. The range of frequencies is between 40 and 120 GHz; We

will use the Loenwer matrix procedure applied to the S-parameters. This yields L, M ∈ C2000×2000.

0 10 20 30 40 50 60 70 80
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
Singular values of 2 × 2 system vs 1 × 1 systems

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
−35

−30

−25

−20

−15

−10

−5

0
 Magnitude of  S(1,1), S(1,2)  and  21st  order approximants

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
−35

−30

−25

−20

−15

−10

−5

0
 Magnitude of  S(1,1), S(1,2)  and  15st  order approximants

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
−35

−30

−25

−20

−15

−10

−5

0
Fitting of  S(1,1)  and  S(1,2)  separately with order  14  systems

Figure: Upper row, left pane: The singular values of xL−M, for the 2-port and for two one-ports. Upper row, right pane:
The S(1, 1) and S(1, 2) parameter data for a 17-th order model. Lower row: left pane: Fitting S(1, 1), S(1, 2) jointly with a
15th order approximant. Lower row, right pane: Fitting S(1, 1), S(1, 2) separately with 14th order approximants.
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Four-pole band-pass filter II

In the upper left-hand plot of figure 6, the singular values of the Loewner matrix corresponing to the 2-port system (upper
curve) is compared with the singular values of two one-port subsystems (lower curves). As the decay of all curves is fast, an

approximant of order around 20, is expected to provide a good fit. Indeed, as the upper right-hand plot shows, a 21st order

approximant provides fits with error less than −60dB. For comparison the fit of a 15th order model is shown in the lower
left-hand plot. Sometimes in practical applications, the entries of the 2-port S-parameters are modeled separately. In our case

14th order models are sufficient, but the McMillan degree os the 2-port is 28 or higher (depending on the symmetries involved,
e.g. S11 = S22, S12 = S21).

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 77 / 79



References

Outline

1 Problem Setting
Interpolatory Projections
Measures of Performance

2 Interpolatory Optimal H2 Approximation

3 Interpolatory Passivity Preserving Model Reduction

4 Linear systems in generalized form
Coprime factorization models
Linear Parametric Systems

5 Model Reduction from Measurements
The Loewner matrix pair and the construction of interpolants

6 References

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 78 / 79



References

References

A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model reduction
od large-scale systems, Report, September 2009.

S. Lefteriu and A.C. Antoulas, A new approach in modeling multip-port
systems from frequency response data, IEEE Trans. CAD (in press), 2009.

R. Ionutiu, J. Rommes, and A.C. Antoulas, Passivity preserving model
reduction using spectral zero interpolation, IEEE Trans. CAD, vol. 27, 2008.

A. Bunse-Gerstner, D. Kubalinska, and D. Wilczek, H2 optimal model
reduction for large-scale discrete dynamical systems, J. Computational and
Applied Math, 2009.

P. van Dooren, K. Gallivan, and P.-A. Absil, H2 optimal model reduction of
MIMO systems, Applied Math. Letters, vol. 21, 2008.

A.J. Mayo and A.C. Antoulas, A framework for the solution of the
generalized realization problem, Linear Algebra and Its Applications, vol.
425, 2007.

C.A. Beattie and S. Gugercin, Interpolatory projection methods for structure
preserving model reduction, Systems and Control Letters, vol. 58, 2009.

Thanos Antoulas (Rice U. & Jacobs U.) Interpolatory model reduction 79 / 79


	Problem Setting
	Interpolatory Projections
	Measures of Performance

	Interpolatory Optimal H2 Approximation
	Interpolatory Passivity Preserving Model Reduction
	Linear systems in generalized form
	Coprime factorization models
	Linear Parametric Systems

	Model Reduction from Measurements
	The Loewner matrix pair and the construction of interpolants

	References

