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Overview

The big picture
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Overview

Model Reduction via Projection

Given is f(ẋ(t),x(t),u(t)) = 0, y(t) = h(x(t),u(t)) or
Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

Common framework for (most) model reduction methods: Petrov-Galerkin
projective approximation

Find x(t) contained in Cn such that
Eẋ(t)− Ax(t)− B u(t) ⊥ Cn (i.e., = 0)⇒ y(t) = Cx(t) + Du(t).

Choose r -dimensional trial and test subspaces, Vr ,Wr ⊂ Cn:

Find v(t) contained in Vr such that
Ev̇(t)− Av(t)− B u(t) ⊥ Wr ⇒ yr (t) = Cv(t) + Du(t).
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Overview

Model Reduction via Projection

Let Vr = Range(Vr ) andWr = Range(Wr ). Then the reduced system
trajectories are v(t) = Vr xr (t) with xr (t) ∈ Cr for each t , and the
Petrov-Galerkin approximation can be rewritten as

W∗r (EVr ẋr (t)− AVr xr (t)− B u(t)) = 0 and yr (t) = CVr xr (t) + Du(t),

leading to the reduced order state-space representation with

Reduced order system

Er = W∗r EVr , Ar = W∗r AVr , Br = W∗r B, Cr = CVr and Dr = D.

The quality of the reduced system depends on the choice of Vr andWr .
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Overview

(
E,A B
C D

)
⇒

(
Ê, Â B̂
Ĉ D̂

)
=

(
W∗EV,W∗AV W∗B

CV D

)
, k � n

Norms:
• H∞-norm:
worst output error
‖y(t)− ŷ(t)‖ for ‖u(t)‖ = 1.

• H2-norm: ‖h(t)− ĥ(t)‖
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n
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D
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Overview

Nonlinear systems

Consider system described by implicit equations:

f
(

d
dt

x(t),x(t),u(t)
)

= 0, y(t) = h(x(t),u(t)),

with: u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp.

Problem: Approximate this system with:

(f̂, ĥ) : u(t) ∈ Rm, x̂(t) ∈ Rk , ŷ(t) ∈ Rp, k � n

by means of a Petrov-Galerkin projection: ⇒ Π = VW∗, V, W ∈ Rn×k ,

W∗f
(

d
dt

Vx̂(t),Vx̂(t), u(t)
)

= 0, ŷ(t) = h(Vx̂(t), u(t))

The approximation is ”good” if x− Πx is ”small”.
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Overview

Issues and requirements

Issues with large-scale systems

1 Storage
2 Computational speed
3 Accuracy
4 System theoretic properties

Requirements for model reduction

1 Approximation error small - global error bound
2 Preservation of stability/passivity
3 Procedure must be computationally efficient
4 Procedure must be automatic
5 In addition: many ports, parameters, nonlinearities, ... .
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Overview Motivation

Motivating Examples: Simulation/Control

1. Passive devices • VLSI circuits
• Thermal issues
• Power delivery networks

2. Data assimilation • North sea forecast
• Air quality forecast

3. Molecular systems • MD simulations
• Heat capacity

4. CVD reactor • Bifurcations
5. Mechanical systems: •Windscreen vibrations

• Buildings
6. Optimal cooling • Steel profile
7. MEMS: Micro Electro-

-Mechanical Systems • Elf sensor
8. Nano-Electronics • Plasmonics
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Overview Motivation

VLSI circuits

CMOS Chip 3D Silicon Chip

nanometer details 108 components
several GHz speed several km interconnect
≈ 10 layers
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Overview Motivation

VLSI circuits

Typical Gate
Delay 

0.1

1.0

D
el

ay
 (n

s)

1.01.3 0.8 0.30.5
Technology (μm)

0.1 0.08

Average Wiring
Delay

≈ 0.25 μm

Today’s Technology: 
65 nm

65nm technology: gate delay < interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic
fields do not significantly delay or distort circuit signals. Therefore
interconnections must be modeled.

⇒ Electromagnetic modeling of packages and interconnects⇒ resulting
models very complex: using PEEC methods (discretization of Maxwell’s
equations): n ≈ 105 · · · 106 ⇒ SPICE: inadequate
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Overview Motivation

Mechanical Systems: Buildings
Earthquake prevention

Taipei 101: 508m Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper
Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t
Sydney tower 305 m Passive tuned pendulum 0.1,0.5z, 220t
Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t
Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t
Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t
TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t
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Overview Motivation

Neural models
How a cell distinguishes between inputs

Image from Neuromart (Rice-Baylor archive of neural morphology)

60µm

B

Goal: • simulation of systems containing a few million neurons
• simulations currently limited to systems with ≈10K neurons
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Approximation methods

Approximation methods: Overview
PPPPPPPPq
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Krylov
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• Arnoldi
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Approximation methods

SVD Approximation methods
A prototype approximation problem – the SVD

(Singular Value Decomposition): A = UΣV∗.
Supernova Clown

0.5 1 1.5 2 2.5

−5

−4

−3

−2

−1

Singular values of Clown and Supernova Supernova: original picture

Supernova: rank 6 approximation Supernova: rank 20 approximation

green: clown
red: supernova
(log−log scale) 

Clown: original picture Clown: rank 6 approximation

Clown: rank 12 approximation Clown: rank 20 approximation

Singular values provide trade-off between accuracy and complexity
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Approximation methods SVD-based methods

POD: Proper Orthogonal Decomposition

Consider: ẋ(t) = f(x(t),u(t)), y(t) = h(x(t),u(t)).
Snapshots of the state:

X = [x(t1) x(t2) · · · x(tN)] ∈ Rn×N

SVD: X = UΣV∗ ≈ Uk Σk V∗k , k � n. Approximate the state:

x̂(t) = U∗k x(t) ⇒ x(t) ≈ Uk x̂(t), x̂(t) ∈ Rk

Project state and output equations. Reduced order system:

˙̂x(t) = U∗k f(Uk x̂(t),u(t)), y(t) = h(Uk x̂(t),u(t))

⇒ x̂(t) evolves in a low-dimensional space.

Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.
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Approximation methods SVD-based methods

SVD methods: the Hankel singular values

Trade-off between accuracy and complexity for linear dynamical systems is
provided by the Hankel Singular Values, which are computed (for stable
systems) as follows:

Define the gramians

P =

∫ ∞
0

eAtBB∗eA∗t dt , Q =

∫ ∞
0

eA∗tC∗CeAt dt

To compute the gramians we need to solve 2 Lyapunov equations:

AP + PA∗ + BB∗ = 0, P > 0
A∗Q + QA + C∗C = 0, Q > 0

}
⇒ σi =

√
λi (PQ)

σi : Hankel singular values of system Σ.
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Approximation methods SVD-based methods

SVD methods: approximation by balanced truncation

There exists basis where P = Q = S = diag (σ1, · · · , σn). This is the
balanced basis of the system.

In this basis partition:

A =

(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, C = (C1 | C2), S =

(
Σ1 0
0 Σ2

)
.

The reduced system is obtained by balanced truncation

Σ̂ =

(
A11 B1
C1

)
.

Σ2 contains the small Hankel singular values.

Projector: Π = VW∗ where V = W =

(
Ik
0

)
.
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Approximation methods SVD-based methods

Example
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Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:






−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant
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We consider model reduction of a semidiscretized advection diffusion equation. The problem is motivated by the optimal control
of pollutants. The advection diffuson equation for the concentration c of the pollutant. is

∂
∂t c(ξ, t)−∇(κ∇c(ξ, t)) + v(ξ) · ∇c(ξ, t)

= u(ξ, t)χU1
(ξ) + u(ξ, t)χU2

(ξ) in Ω,

with boundary and initial conditions c(ξ, t) = 0 in ΓD , and ∂
∂n c(ξ, t) = 0, in ΓN , c(ξ, 0) = 2 exp(−100((ξ1 − 0.1)2 + ξ2

2)), in
Ω. The domain Ω and the boundary segments ΓD , ΓN are depicted below. χS is the characteristic function corresponding to the
subdomain S ⊂ Ω. The inputs are ui defined on Ui × (0, T ), i = 1, 2, where U1,U2 are he subdomains shown below. In our
numerical experiment we set u1 = u2 = 50. The diffusivity is κ = 0.005 and the advection v is the solution of a steady state
Stokes equation on Ω wit inflow condition at ξ1 = 0 and “do nothing” outflow condition at ξ2 = 1.2.

Original Reduced
m = 16 m = 16

n = 2673 k = 10
p = 283 p = 283
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Approximation methods SVD-based methods

Example

t = 0.0

t = 0.4

t = 0.8

t = 2.0
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Approximation methods SVD-based methods

Properties of balanced reduction

1 Stability is preserved
2 Global error bound: σk+1 ≤‖ Σ− Σ̂ ‖∞≤ 2(σk+1 + · · ·+ σn)

Drawbacks

1 Dense computations, matrix factorizations and inversions⇒ may be
ill-conditioned; number of operations O(n3)

2 Bottleneck: solution of two Lyapunov equations
3 Slow decay of HSV: a transmission line
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Approximation methods Krylov-based methods

Approximation methods: Krylov methods
PPPPPPPPq
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Krylov

• Realization
• Interpolation
• Lanczos
• Arnoldi

SVD

@
@@R

�
��	

Nonlinear systems Linear systems
• POD methods • Balanced truncation
• Empirical Gramians • Hankel approximation

@
@
@
@R

�
��	

Krylov/SVD Methods

Thanos Antoulas (Rice University) Model reduction of large-scale systems 25 / 68



Approximation methods Krylov-based methods

The basic Krylov iteration
Given A ∈ Rn×n and b ∈ Rn, let v1 = b

‖b‖ . At the k th step:

AVk = Vk Hk + fk e∗k where

ek ∈ Rk : canonical unit vector
Vk = [v1 · · · vk ] ∈ Rk×k , V∗v Vk = Ik
Hk = V∗k AVk ∈ Rk×k

Three uses of the Krylov iteration

(1) Iterative solution of Ax = b: approximate the solution x iteratively.
(2) Iterative approximation of the eigenvalues of A. In this case b is not fixed
apriori. The eigenvalues of the projected Hk approximate the dominant
eigenvalues of A.
(3) Approximation of linear systems by moment matriching.

⇒ Item (3) is of interest in the present context.
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Approximation methods Krylov-based methods

Krylov methods: Approximation by moment matching

Given Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around s0:

H(s) = η0 + η1(s − s0) + η2(s − s0)2 + η3(s − s0)3 + · · ·

Moments at s0: ηj .

Find Ê ˙̂x(t) = Âx̂(t) + B̂u(t), y(t) = Ĉx̂(t) + D̂u(t), with

Ĥ(s) = η̂0 + η̂1(s − s0) + η̂2(s − s0)2 + η̂3(s − s0)3 + · · ·

such that for appropriate s0 and `:

ηj = η̂j , j = 1,2, · · · , `
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Approximation methods Krylov-based methods

The general interpolation framework

Expansion around infinity: ηj are the Markov parameters⇒ partial
realization.
Expansion around arbitrary s0 ∈ C: ηj moments⇒ rational
interpolation.

Goal: produce Hr (s), that approximates with high fidelity a very large
order transfer function, H(s): Hr (s) ≈ H(s), by means of interpolation at
a set of points {σi}r

i=1 ⊂ C: Hr (σi ) = H(σi ) for i = 1, . . . , r .

This is a good starting place for SISO systems but is overly restrictive for
MIMO systems, since the condition Hr (σi ) = H(σi ) imposes m · p scalar
conditions at each point. Instead consider interpolation conditions that
are imposed in specified directions: tangential interpolation.

Remark. The Krylov and rational Krylov algorithms match moments
without computing them. Thus moment matching methods can be
implemented in a numerically efficient way.
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Approximation methods Krylov-based methods

Problem 1: Model Reduction given state space system data

Given a full-order model E, A, B, C, and D and given

left interpolation points: right interpolation points:
{µi}q

i=1 ⊂ C, {σi}r
i=1 ⊂ C

with corresponding and with corresponding
left tangent directions: right tangent directions:

{`i}q
i=1 ⊂ Cp, {ri}r

i=1 ⊂ Cm.

Find a reduced-order model Er , Ar , Br , Cr , and Dr such that the associated
transfer function, Hr (s), is a tangential interpolant to H(s):

`∗i Hr (µi ) = `∗i H(µi ) and Hr (σj )rj = H(σj )rj ,
for i = 1, · · · ,q, for j = 1, · · · , r ,
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Approximation methods Krylov-based methods

Problem 2: Model reduction given input-output data

Given a set of input-output response measurements on a system specified by

left driving frequencies: right driving frequencies:
{µi}q

i=1 ⊂ C, {σi}r
i=1 ⊂ C

using left input directions: and using right input directions:
{`i}q

i=1 ⊂ Cp, {ri}r
i=1 ⊂ Cm

producing left responses: producing right responses:
{vi}q

i=1 ⊂ Cm, {wi}r
i=1 ⊂ Cp

Find a system model by specifying (reduced) system matrices Er , Ar , Br , Cr ,
Dr such that Hr (s), is a tangential interpolant to the given data:

`∗i Hr (µi ) = v∗i and Hr (σj )rj = wj ,
for i = 1, · · · ,q, for j = 1, · · · , r .

Interpolation points and tangent directions are determined (typically) by the
availability of experimental data.

Thanos Antoulas (Rice University) Model reduction of large-scale systems 30 / 68



Approximation methods Krylov-based methods

Interpolatory Projections

We seek Hr (s) so that

H(σi )ri = Hr (σi )ri , for i = 1, · · · , r ,
`∗j H(µj ) = `∗j Hr (µj ), for j = 1, · · · , r ,

}
The goal is to interpolate H(s) without ever computing the quantities to be
matched since these are numerically ill-conditioned. This is achieved by the
projection framework.

Interpolatory projections

Vr =
[
(σ1E− A)−1Br1, · · · , (σr E− A)−1Brr

]
,

W∗r =

 `∗1C(µ1E− A)−1

...
`∗r C(µr E− A)−1

 .
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Approximation methods Krylov-based methods

Properties of Krylov (interpolatory) methods

• Number of operations: O(kn2) or O(k2n) vs. O(n3)⇒ efficiency

Q: How to choose the projection points?

We will discuss two cases:

1 Passivity preserving model reduction.

2 Optimal H2 model reduction.
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Choice of projection points
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Choice of projection points Passivity Preserving Model Reduction

Choice of Krylov projection points: Passivity preserving model reduction

Passive systems:
Re

∫ t
−∞ u(τ)∗y(τ)dτ ≥ 0, ∀ t ∈ R, ∀ u ∈ L2(R).

Positive real rational functions:
(1) H(s) = D + C(sE− A)−1B, is analytic for Re(s) > 0,
(2) Re H(s) ≥ 0 for Re(s) ≥ 0, s not a pole of H(s).

Theorem: Σ =

(
E,A B
C D

)
is passive ⇔ H(s) is positive real.

Conclusion: Positive realness of H(s) implies the existence of a spectral
factorization H(s) + H∗(−s) = Φ(s)Φ∗(−s), where the poles and (finite)
zeros of Φ(s) are stable. The spectral zeros are λ such that: Φ(λ), loses rank.
Hence there is a right spectral zero direction, r, such that
(H(λ) + H∗(−λ))r = 0⇒ r∗(H(−λ) + H∗(λ)) = 0.
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Choice of projection points Passivity Preserving Model Reduction

Passivity preserving model reduction: New result

Method: Rational Krylov
Solution: projection points = spectral zeros

Passivity preserving tangential interpolation

Suppose the dynamical system represented by H(s) = C(sE− A)−1B + D, is
stable and passive. Suppose that for some r ≥ 1, λ1, · · · , λr are stable
spectral zeros of H with corresponding right spectral zero directions r1, . . . , rr .

If a reduced order system Hr (s) tangentially interpolates H(s) with σi = λi ,
along ri , µi = −λi , along r∗ for i = 1, . . . , r , then Hr (s) is stable and passive.

The computation of the spectral zeros of the system can be formulated as a
structured eigenvalue problem. Let

H =

 A 0 B
0 −A∗ −C∗
C B∗ D + D∗

 , E =

 E 0 0
0 E∗ 0
0 0 0

 .
Thanos Antoulas (Rice University) Model reduction of large-scale systems 35 / 68



Choice of projection points Passivity Preserving Model Reduction

Spectral zero interpolation preserving passivity
Hamiltonian EVD & projection

• Hamiltonian eigenvalue problem A 0 B
0 −A∗ −C∗

C B∗ D + D∗

 X
Y
Z

 =

 E 0 0
0 E∗ 0
0 0 0

 X
Y
Z

Λ

The generalized eigenvalues Λ are the spectral zeros of Σ

• Partition eigenvectors X
Y
Z

 =

 X− X+

Y− Y+

Z− Z+

 , Λ =

 Λ−
Λ+

±∞


Λ− are the stable spectral zeros

• Projection
V = X−, W = Y−

Ê = W∗EV, Â = W∗AV, B̂ = W∗B, Ĉ = CV, D̂ = D
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Choice of projection points Passivity Preserving Model Reduction

Dominant spectral zeros – SADPA

What is a good choice of k spectral zeros out of n ?

Dominance criterion: Spectral zero sj is dominant if: |Rj |
|<(sj )|

, is
large.
Efficient computation for large scale systems: we compute the
k � n most dominant eigenmodes of the Hamiltonian pencil.
SADPA (Subspace Accelerated Dominant Pole Algorithm ) solves
this iteratively.

Conclusion:

Passivity preserving model reduction becomes a
structured eigenvalue problem
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Choice of projection points Passivity Preserving Model Reduction

An example

Consider the following RLC circuit:

L1

R1

C1

L2

R2

C2

-

?

?

-
- -

y

u

Using the voltages across C1, C2, and the currents through L1, L2, as state variables, xi , = 1, 2, 3, 4, respectively, we end up
with equations of the form Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), where

E =



C1 0 −G1L1 G2L2

0 C2 0 −G2L2

0 0 L1 0

0 0 0 L2

 , A =



0 0 1 −1

0 0 0 1

−1 0 0 0

1 −1 0 0

 ,

B =


0
0
1
0

 , C = [−G1, 0, 1, 0], D = G1,

Gi = 1
Ri

, i = 1, 2, are the corresponding conductances.
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Choice of projection points Passivity Preserving Model Reduction

This system has a double spectral zero at s = 0. The Hamiltonian pair is:

H =



0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0 1
1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 G1
0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 −1
0 0 0 0 1 −1 0 0 0
−G1 0 1 0 0 0 1 0 2G1


,

and

E =



C1 0 −G1L1 G2L2 0 0 0 0 0
0 C2 0 −G2L2 0 0 0 0 0
0 0 L1 0 0 0 0 0 0
0 0 0 L2 0 0 0 0 0
0 0 0 0 C1 0 0 0 0
0 0 0 0 0 C2 0 0 0
0 0 0 0 −G1L1 0 L1 0 0
0 0 0 0 G2L2 −G2L2 0 L2 0
0 0 0 0 0 0 0 0 0


.
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Choice of projection points Passivity Preserving Model Reduction
It follows that the desired (Jordan chain of) eigenvectors x1, x2, corresponding to 0are:

[x1, x2] =



1 0
1 0
0 1

0
C2

C1+C2
−1 0
−1 0
−G1 −1

0
−C2

C1+C2
1 0


⇒ Vr =


1 0
1 0
0 1

0
C2

C1+C2

 , Wr =


1 0
1 0
G1 1

0
C2

C1+C2

 .

The reduced quantities are:

Er = W∗r EVr =

 C1 +C2 0

0 L1 +
C2

2

(C1+C2)2 L2

 ,Ar = W∗r AVr =

(
−G1 1
−1 0

)
,

Br = W∗r B =

(
G1
1

)
, Cr = CVr =

(
−G1 1

)
, Dr = D.

From these matrices we can read-off an RLC realization:

L̂

R̂

Ĉ

?

-
-

ŷ

u

where Ĉ = C1 + C2, L̂ = 1
κ

= L1 +
C2

2

(C1+C2)2 L2, and R̂ = R1.
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Choice of projection points Optimal H2 model reduction

Choice of Krylov projection points:
Optimal H2 model reduction

Recall: the H2 norm of a stable (SISO) system is:

‖Σ‖H2 =

(∫ +∞

−∞
h2(t)dt

)1/2

where h(t) = CeAtB, t ≥ 0, is the impulse response of Σ.

Goal: construct a Krylov projector such that

Σk = arg min
deg(Σ̂) = r

Σ̂ : stable

∥∥∥Σ− Σ̂
∥∥∥

H2

=

(∫ +∞

−∞
(h− ĥ)2(t)dt

)1/2

The optimization problem is nonconvex. The common approach is to find
reduced order models that satisfy first-order necessary optimality conditions.
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Choice of projection points Optimal H2 model reduction

First-order necessary optimality conditions

Let (Â, B̂, Ĉ) solve the optimal H2 problem and let λ̂i denote the eigenvalues
of Â (we assume for simplicity that E = I and m = p = 1). The necessary
conditions are:

H(−λ̂∗i ) = Ĥ(−λ̂∗i ) and d
ds H(s)

∣∣
s=−λ̂∗i

= d
ds Ĥ(s)

∣∣∣
s=−λ̂∗i

Thus the reduced system has to match the first two moments of the original
system at the mirror images of the eigenvalues of Â.

1 Make an initial selection of σi , for i = 1, . . . , k

2 W = [(σ1I− A∗)−1C∗, · · · , (σk I− A∗)−1C∗]

3 V = [(σ1I− A)−1B, · · · , (σk I− A)−1B]

4 while (not converged)

Â = (W∗V)−1W∗AV,
σi ←− −λi (Â) + Newton correction, i = 1, . . . , k
W = [(σ1I− A∗)−1C∗, · · · , (σk I− A∗)−1C∗]

V = [(σ1I− A)−1B, · · · , (σk I− A)−1B]

5 Â = (W∗V)−1W∗AV, B̂ = (W∗V)−1W∗B, Ĉ = CV
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Choice of projection points Optimal H2 model reduction

A numerical algorithm for optimal H2 model reduction

• Global minimizers are difficult to obtain with certainty; current approaches
favor seeking reduced order models that satisfy a local (first-order) necessary
condition for optimality. Even though such strategies do not guarantee global
minimizers, they often produce effective reduced order models.

• The main computational cost of this algorithm involves solving 2r linear
systems to generate Vr and Wr . Computing the eigenvectors Y and X, and
the eigenvalues of the reduced pencil λEr − Ar are cheap since the
dimension r is small.

• IRKA has been successfully applied to finding H2-optimal reduced models
for systems of order n > 160,000.
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Choice of projection points Optimal H2 model reduction

Moderate-dimensional example

total system variables n = 902, independent variables dim = 599, reduced
dimension k = 21
reduced model captures dominant modes
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Choice of projection points Optimal H2 model reduction

H∞ and H2 error norms

Relative norms of the error systems

Reduction Method
n = 902,dim = 599, k = 21 H∞ H2

PRIMA 1.477 -
Spectral Zero Method with SADPA 0.962 0.841

Optimal H2 0.594 0.462
Balanced truncation (BT) 0.939 0.646

Riccati Balanced Truncation (PRBT) 0.961 0.816
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Choice of projection points Optimal H2 model reduction

Choice of points: summary

• Passive model reduction mirror image of spectral zeros

• Optimal H2 model reduction mirror image of reduced system poles

• Hankel norm model reduction mirror image of system poles

• Systems with proportional damping mirror image of ’focal’ point

Question: What is the deeper meaning of mirror image points?
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Choice of projection points Optimal H2 model reduction

Approximation methods: Summary
PPPPPPPPq

������

Krylov

• Realization
• Interpolation
• Lanczos
• Arnoldi

SVD

@
@@R

�
��	

Nonlinear systems Linear systems
• POD methods • Balanced truncation
• Empirical Gramians • Hankel approximation@

@
@
@R

�
��	

Krylov/SVD Methods

�
�	

r
@
@R

r
Properties

• numerical efficiency

• n� 103

Properties

• Stability

• Error bound

• n ≈ 103
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Model reduction from measurements

Outline

1 Overview
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Model reduction from measurements

Recall: the big picture
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Model reduction from measurements S-parameters

A motivation: electronic systems

• Growth in communications and networking and demand for high data
bandwidth requires streamlining of the simulation of entire complex systems
from chips to packages to boards, etc.
• Thus in circuit simulation, signal intergrity (lack of signal distortion) of high
speed electronic designs require that interconnect models be valid over a
wide bandwidth.

An important tool: S-parameters

• They represent a component as a black box. Accurate simulations require
accurate component models.

• In high frequencies S-parameters are important because wave phenomena
become dominant.

• Advantages: 0 ≤ |S| ≤ 1 and can be measured using VNAs (Vector
Network Analyzers).
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Model reduction from measurements S-parameters

Scattering or S-parameters

Given a system in I/O representation: y(s) = H(s)u(s),

the associated S-paremeter representation is

ȳ(s) = S(s)ū(s) = [H(s) + I][H(s)− I]−1︸ ︷︷ ︸
S(s)

ū(s),

where

ȳ = 1
2 (y + u) are the transmitted waves and,

ū = 1
2 (y− u) are the reflected waves.

S-parameter measurements.

S(jωk ): samples of the frequency response of the S-parameter system
representation.
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Model reduction from measurements S-parameters

Measurement of S-parameters

VNA (Vector Network Analyzer) – Magnitude of S-parameters for 2 ports
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Model reduction from measurements The Loewner matrix

Model construction from data:
Interpolation

Assume for simplicity that the given data are scalar:

(si , φi ), i = 1,2, · · · ,N, si 6= sj , i 6= j

Find H(s) = n(s)
d(s) such that H(si ) = φi , i = 1,2, · · · ,N,

and n,d: coprime polynomials.

Main tool: Loewner matrix. Divide the data in disjoint sets:
(λi ,wi ), i = 1,2, · · · , k , (µj , vj ), j = 1,2, · · · ,q, k + q = N:

L =


v1−w1
µ1−λ1

· · · v1−wk
µ1−λk

...
. . .

...
vq−w1
µq−λ1

· · · vq−wk
µq−λk

 ∈ Cq×k
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Model reduction from measurements The Loewner matrix

Model construction from data:
Interpolation
Main results (1986). • The rank of L encodes the information about the
minimal degree interpolants: rank L or N − rank L.
• If H(s) = C(sI− A)−1B + D, then

L = −


C(λ1I− A)−1

C(λ2I− A)−1

.

.

.
C(λk I− A)−1


︸ ︷︷ ︸

O

[
(µ1I− A)−1B · · · (µq I− A)−1B

]
︸ ︷︷ ︸

R

• Special case. single point with multiplicity: (s0;φ0, φ1, · · · , φN−1). Then

L =



φ1
1!

φ2
2!

φ3
3!

φ4
4!

· · ·
φ2
2!

φ3
3!

φ4
4!

· · ·
φ3
3!

φ4
4!

φ4
4!

.

.

.
. . .

.

.

.

 ⇒ Hankel structure

Thus the Loewner matrix generalizes the Hankel matrix when general
interpolation replaces realization.
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Model reduction from measurements Tangential interpolation: L & σL

General framework – tangential interpolation
Given: • right data: (λi ; ri ,wi ), i = 1, · · · , k

• left data: (µj ; `j ,vj ), j = 1, · · · ,q.

We assume for simplicity that all points are distinct.

Problem: Find rational p ×m matrices H(s), such that

H(λi )ri = wi `jH(µj ) = vj

Right data:

Λ =

 λ1
. . .

λk

 ∈ Ck×k ,
R = [r1 r2, · · · rk ] ∈ Cm×k ,

W = [w1 w2 · · · wk ] ∈ Cp×k

Left data:

M =

 µ1
. . .

µq

∈Cq×q,L =

 `1
...
`q

∈Cq×p,V =

 v1
...

vq

 ∈ Cq×m
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Model reduction from measurements Tangential interpolation: L & σL

General framework – tangential interpolation

Input-output data: H(λi )ri = wi , `jH(µj ) = vj . The Loewner matrix is:

L =


v1r1−`1w1
µ1−λ1

· · · v1rk−`1wk
µ1−λk

...
. . .

...
vqr1−`qw1
µq−λ1

· · · vqrk−`qwk
µq−λk

 ∈ Cq×k

Therefore L satisfies the Sylvester equation

LΛ−ML = VR− LW

Given a realization E,A,B,C: H(s) = C(sE− A)−1B, let X,Y be the
generalized reachability/obervability matrices:
xi = (λiE− A)−1Bri ⇒ X: generalized reachability matrix
yj = `jC(µjE− A)−1 ⇒ Y: generalized observability matrix.

⇒ L = −YEX
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Model reduction from measurements Tangential interpolation: L & σL

The shifted Loewner matrix

The shifted Loewner matrix, σL, is the Loewner matrix associated
to sH(s).

σL =


µ1v1r1−`1w1λ1

µ1−λ1
· · · µ1v1rk−`1wkλk

µ1−λk
...

. . .
...

µqvqr1−`qw1λ1
µq−λ1

· · · µqvqrk−`qwkλk
µq−λk

 ∈ Cq×k

σL satisfies the Sylvester equation

σLΛ−MσL = VRΛ−MLW

σL can be factored as

⇒ σL = −YAX
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Model reduction from measurements Tangential interpolation: L & σL

Construction of Interpolants (Models)
Assume that k = `, and let

det (xL− σL) 6= 0, x ∈ {λi} ∪ {µj}

Then

E = −L, A = −σL, B = V, C = W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(σL− sL)−1V

interpolates the data.
Proof. Multiplying the first equation by s and subtracting it from the second we get

(σL− sL)Λ− M(σL− sL) = LW(Λ− sI)− (M − sI)VR.
Multiplying this equation by ei on the right and setting s = λi , we obtain

(λi I− M)(σL− λi L)ei = (λi I− M)Vri ⇒ (λi L− σL)ei = Vri ⇒ Wei = W(λi L− σL)−1V

Therefore wi = H(λi )ri . This proves the right tangential interpolation property. To prove the left tangential interpolation property,
we multiply the above equation by e∗j on the left and set s = µj :

e∗j (σL− µj L)(Λ− µj I) = e∗j LW(µj I− Λ) ⇒ e∗j (σL− µj L) = `j W ⇒ e∗j V = `j W(σL− µj L)−1V

Therefore vj = `j H(µj ).
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Model reduction from measurements Tangential interpolation: L & σL

Construction of interpolants:
New procedure

Main assumption:

rank (xL− σL) = rank
(

L σL
)

= rank
(

L
σL

)
=: k , x ∈ {λi} ∪ {µj}

Then for some x ∈ {λi} ∪ {µj}, we compute the SVD

xL− σL = YΣX

with rank (xL− σL) = rank (Σ) = size (Σ) =: k , Y ∈ Cν×k , X ∈ Ck×ρ.

Theorem. A realization [E,A,B,C], of an interpolant is given as follows:

E = −Y∗LX∗ B = Y∗V
A = −Y∗σLX∗ C = WX∗

Remark. The system [E,A,B,C] can now be further reduced using any of
the usual reduction methods.
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Model reduction from measurements Tangential interpolation: L & σL

Example: mechanical system
Mechanical example: Stykel, Mehrmann

106 Volker Mehrmann and Tatjana Stykel

see [Sty04a]. System (3.33) has only one non-zero improper Hankel singular
value θ1 = 0.0049743.

We approximate the semidiscretized Stokes equation (3.33) by two mo-
dels of order ` = 11 (`f = 10, `∞ = 1) computed by the approximate
GSR and GSRBF methods. The absolute values of the frequency responses
of the full order and the reduced-order systems are not presented, since they
were impossible to distinguish. In Figure 3.3 we display the absolute errors
‖G(iω)−G̃(iω)‖2 and ‖G(iω)−Ĝ(iω)‖2 for a frequency range ω ∈ [ 10−2, 106 ]
as well as the approximate error bound computed as twice the sum of the trun-
cated approximate Hankel singular values ς̃11, . . . ς̃39. One can see that over
the displayed frequency range the absolute errors are smaller than 2 × 10−10

which is much smaller than the discretization error which is of order 10−4.

Constrained damped mass-spring system

Consider the holonomically constrained damped mass-spring system illus-
trated in Figure 3.4.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Fig. 3.4. A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring
and a damper with constants ki and di, respectively, and also to the ground by
a spring and a damper with constants κi and δi, respectively. Additionally, the
first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system
is described by a descriptor system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT λ(t) + B2u(t),

0 = G p(t),
y(t) = C1p(t),

(3.34)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vec-
tor, λ(t) ∈ R is the Lagrange multiplier, M = diag(m1, . . . , mg) is the

The vibration of this system is described in generalized state space form as:

ṗ(t) = v(t)
Mv̇(t) = Kp(t) + Dv(t)−G∗λ(t) + B2u(t)

0 = Gp(t)
y(t) = C1p(t)

Measurements: 500 frequency response data between [−2i ,+2i].
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Model reduction from measurements Tangential interpolation: L & σL

Mechanical system: plots
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Model reduction from measurements Tangential interpolation: L & σL

Example: Four-pole band-pass filter

•1000 measurements between 40 and 120 GHz; S-parameters 2× 2,
MIMO (approximate) interpolation ⇒ L, σL ∈ R2000×2000.
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Model reduction from measurements Tangential interpolation: L & σL

Example: delay system

Eẋ(t) = A0x(t) + A1x(t − τ) + Bu(t), y(t) = Cx(t),

where E,A0,A1 are 500× 500 and B,C∗ are 500-vectors.

• Procedure: compute 1000 frequency response samples.
• Left figure: Singular values of L.
• Then apply recursive/adaptive Loewner-framework procedure.
• Right figure: (Blue: original, red: 35th order approximant.)
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Conclusions

Summary

We discussed SVD and Krylov or Interpolatory methods. The latter
amount to the choice of interpolation data.

1 Passivity preserving reduction
Key quantities: spectral zeros
Problem reduced to a Hamiltonian eigenvalues problem

2 Optimal H2 reduction
Key quantities: mirror image of reduced system poles
Algorithm: Iterative Krylov
Only model reduction algorithm with error optimization

3 Reduction from data (e.g. S-parameters)
Key tool tangential interpolation
Can deal with many input/output ports
Key tool: Loewner matrix pair
Natural way to construct full and reduced models

⇒ does not force inversion of E
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Conclusions

(Some) Challenges in model reduction

Uncertain systems, i.e. systems depending on parameters

Non-linear systems (POD, TPWL, EIM, etc.)

Non-linear differential-algebraic (DAE) systems

Sparsity and parallelization

Domain decomposition methods

MEMS and multi-physics problems (micro-fluidic bio-chips)

CAD tools for VLSI/nanoelectronics

Molecular Dynamics (MD) simulations

Model reduction and data assimilation (weather prediction)

Active control of high-rise buildings

· · ·

Thanos Antoulas (Rice University) Model reduction of large-scale systems 66 / 68



Conclusions

References

Balanced truncation with non-zero initial conditions

Reis, Heinkenschloss, Antoulas, CAAM TR 09-29, Rice University
(2009)

Passivity preserving model reduction

Antoulas: Systems and Control Letters (2005)
Sorensen: Systems and Control Letters (2005)
Ionutiu, Rommes, Antoulas: Passivity-Preserving Model Reduction
Using Dominant Spectral-Zero Interpolation, IEEE Trans. CAD
(Computer-Aided Design of Integrated Circuits and Systems), vol
27, pages: 2250 - 2263 (2008).

OptimalH2 model reduction

Gugercin, Antoulas, Beattie: SIAM J. Matrix Anal. Appl. (2008)
Kellems, Roos, Xiao, Cox: Low-dimensional, morphologically
accurate models of subthreshold membrane potential, J. Comput.
Neuroscience, 27:161-176 (2009).

Thanos Antoulas (Rice University) Model reduction of large-scale systems 67 / 68



Conclusions

References

Model reduction from data

A.J. Mayo and A.C. Antoulas, A framework for the solution of the
generalized realization problem, Linear Algebra and Its
Applications, vol. 425, pages 634-662 (2007).
Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems
from Frequency-Domain Data, IEEE Trans. CAD, vol. 29, pages
14-27 (2010).

Interpolatory model reduction

A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model
reduction of large-scale systems, Report, September 2009.
C.A. Beattie and S. Gugercin, Interpolatory projection methods for
structure preserving model reduction, Systems and Control Letters,
vol. 58, 2009.

General reference: Antoulas, SIAM (2005)

Thanos Antoulas (Rice University) Model reduction of large-scale systems 68 / 68


	Overview
	Motivation

	Approximation methods
	SVD-based methods
	Krylov-based methods

	Choice of projection points
	Passivity Preserving Model Reduction
	Optimal H2 model reduction

	Model reduction from measurements
	S-parameters
	The Loewner matrix
	Tangential interpolation: L  &  L

	Conclusions

