Model reduction of large-scale systems An overview and some new results

Thanos Antoulas

Rice University and Jacobs University

email: aca@rice.edu URL: www.ece.rice.edu/~aca

Electrical and Computer Engineering Control Seminar The University of Michigan, Ann Arbor 29 January 2010

Outline

- Motivation
- Approximation methods
 - SVD-based methods
 - Krylov-based methods
- Choice of projection points
 - Passivity Preserving Model Reduction
 - Optimal H₂ model reduction
- Model reduction from measurements
 - S-parameters
 - The Loewner matrix
 - Tangential interpolation: \mathbb{L} & $\sigma\mathbb{L}$

Conclusions

Collaborators

- Chris Beattie
- Serkan Gugercin
- Sanda Lefteriu
- Cosmin Ionita
- Roxana Ionutiu
- Joost Rommes
- Andrew Mayo
- Dan Sorensen
- Timo Reis
- Matthias Heinkenschloss

Outline

OverviewMotivation

- Approximation methodsSVD-based methods
 - Krylov-based methods
- Choice of projection points
 Passivity Preserving Model Reduction
 Optimal VL resolution
 - Optimal H₂ model reduction
- Model reduction from measurements
 - S-parameters
 - The Loewner matrix
 - Tangential interpolation: $\mathbb{L} \& \sigma \mathbb{L}$

Conclusions

The big picture

Model Reduction via Projection

Given is
$$\mathbf{f}(\dot{\mathbf{x}}(t), \mathbf{x}(t), \mathbf{u}(t)) = \mathbf{0}$$
, $\mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))$ or
 $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$.

Common framework for (most) model reduction methods: Petrov-Galerkin projective approximation

Find $\mathbf{x}(t)$ contained in \mathbb{C}^n such that $\mathbf{E}\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{u}(t) \perp \mathbb{C}^n$ (i.e., = 0) $\Rightarrow \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$.

Choose *r*-dimensional trial and test subspaces, \mathcal{V}_r , $\mathcal{W}_r \subset \mathbb{C}^n$:

Find $\mathbf{v}(t)$ contained in \mathcal{V}_r such that $\mathbf{E}\dot{\mathbf{v}}(t) - \mathbf{A}\mathbf{v}(t) - \mathbf{B}\mathbf{u}(t) \perp \mathcal{W}_r \Rightarrow \mathbf{y}_r(t) = \mathbf{C}\mathbf{v}(t) + \mathbf{D}\mathbf{u}(t).$

Overview

Model Reduction via Projection

Let $\mathcal{V}_r = \text{Range}(\mathbf{V}_r)$ and $\mathcal{W}_r = \text{Range}(\overline{\mathbf{W}}_r)$. Then the reduced system trajectories are $\mathbf{v}(t) = \mathbf{V}_r \mathbf{x}_r(t)$ with $\mathbf{x}_r(t) \in \mathbb{C}^r$ for each *t*, and the Petrov-Galerkin approximation can be rewritten as

 $\mathbf{W}_r^* \left(\mathbf{E} \mathbf{V}_r \dot{\mathbf{x}}_r(t) - \mathbf{A} \mathbf{V}_r \mathbf{x}_r(t) - \mathbf{B} \mathbf{u}(t) \right) = \mathbf{0}$ and $\mathbf{y}_r(t) = \mathbf{C} \mathbf{V}_r \mathbf{x}_r(t) + \mathbf{D} \mathbf{u}(t)$,

leading to the reduced order state-space representation with

Reduced order system

 $\mathbf{E}_r = \mathbf{W}_r^* \mathbf{E} \mathbf{V}_r, \ \mathbf{A}_r = \mathbf{W}_r^* \mathbf{A} \mathbf{V}_r, \ \mathbf{B}_r = \mathbf{W}_r^* \mathbf{B}, \ \mathbf{C}_r = \mathbf{C} \mathbf{V}_r \ \text{and} \ \mathbf{D}_r = \mathbf{D}.$

The quality of the reduced system depends on the choice of \mathcal{V}_r and \mathcal{W}_r .

Overview

$$\left(\begin{array}{c|c} \mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array}\right) \Rightarrow \left(\begin{array}{c|c} \hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}} \end{array}\right) = \left(\begin{array}{c|c} \mathbf{W}^* \mathbf{EV}, \mathbf{W}^* \mathbf{AV} & \mathbf{W}^* \mathbf{B} \\ \hline \mathbf{CV} & \mathbf{D} \end{array}\right), \ k \ll n$$

Nonlinear systems

Consider system described by implicit equations:

$$\mathbf{f}\left(\frac{d}{dt}\mathbf{x}(t),\mathbf{x}(t),\mathbf{u}(t)\right) = \mathbf{0}, \ \mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t),\mathbf{u}(t)).$$

with: $\mathbf{u}(t) \in \mathbb{R}^{m}$, $\mathbf{x}(t) \in \mathbb{R}^{n}$, $\mathbf{y}(t) \in \mathbb{R}^{p}$.

Problem: Approximate this system with:

$$(\hat{\mathbf{f}}, \hat{\mathbf{h}}): \mathbf{u}(t) \in \mathbb{R}^m, \ \hat{\mathbf{x}}(t) \in \mathbb{R}^k, \ \hat{\mathbf{y}}(t) \in \mathbb{R}^p, \ k \ll n$$

by means of a Petrov-Galerkin projection: $\Rightarrow \Pi = VW^*, V, W \in \mathbb{R}^{n \times k}$,

$$\mathbf{W}^* \mathbf{f}\left(\frac{d}{dt}\mathbf{V}\hat{\mathbf{x}}(t), \mathbf{V}\hat{\mathbf{x}}(t), \mathbf{u}(t)\right) = \mathbf{0}, \ \hat{\mathbf{y}}(t) = \mathbf{h}(\mathbf{V}\hat{\mathbf{x}}(t), \mathbf{u}(t))$$

The approximation is "good" if $\mathbf{x} - \mathbf{\Pi}\mathbf{x}$ is "small".

Issues and requirements

Issues with large-scale systems

- Storage
- Computational speed
- Accuracy
- System theoretic properties

Requirements for model reduction

- Approximation error small global error bound
- Preservation of stability/passivity
- Procedure must be computationally efficient
- Procedure must be automatic
- In addition: many ports, parameters, nonlinearities,

Motivating Examples: Simulation/Control

1. Passive devices	VLSI circuits
	 Thermal issues
	 Power delivery networks
2. Data assimilation	 North sea forecast
	 Air quality forecast
3. Molecular systems	 MD simulations
	 Heat capacity
4. CVD reactor	 Bifurcations
5. Mechanical systems:	 Windscreen vibrations
	 Buildings
6. Optimal cooling	Steel profile
7. MEMS: Micro Electro-	
-Mechanical Systems	 Elf sensor
8. Nano-Electronics	 Plasmonics

VLSI circuits

nanometer details	10 ⁸ components
several GHz speed	several km interconnect
pprox 10 layers	

Overview

Motivation

VLSI circuits

65nm technology: gate delay < interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic fields do not significantly delay or distort circuit signals. Therefore interconnections must be modeled.

⇒ Electromagnetic modeling of packages and interconnects ⇒ resulting models very complex: using PEEC methods (discretization of Maxwell's equations): $n \approx 10^5 \cdots 10^6 \Rightarrow$ SPICE: inadequate

Overview

Motivation

Mechanical Systems: Buildings

Earthquake prevention

Building	Height	Control mechanism	Damping frequency
	J		Damping mass
CN Tower, Toronto	533 m	Passive tuned mass damper	
Hancock building, Boston	244 m	Two passive tuned dampers	0.14Hz, 2x300t
Sydney tower	305 m	Passive tuned pendulum	0.1,0.5z, 220t
Rokko Island P&G, Kobe	117 m	Passive tuned pendulum	0.33-0.62Hz, 270t
Yokohama Landmark tower	296 m	Active tuned mass dampers (2)	0.185Hz, 340t
Shinjuku Park Tower	296 m	Active tuned mass dampers (3)	330t
TYG Building, Atsugi	159 m	Tuned liquid dampers (720)	0.53Hz, 18.2t

Thanos Antoulas (Rice University)

Neural models

How a cell distinguishes between inputs

Image from Neuromart (Rice-Baylor archive of neural morphology)

Goal: • simulation of systems containing a few million neurons • simulations currently limited to systems with ≈10K neurons

Thanos Antoulas (Rice University)

Model reduction of large-scale systems

Outline

Approximation methodsSVD-based methodsKrylov-based methods

Choice of projection points
Passivity Preserving Model Reduction

Optimal H₂ model reduction

Model reduction from measurements

- S-parameters
- The Loewner matrix
- Tangential interpolation: $\mathbb{L} \& \sigma \mathbb{L}$

Conclusions

Approximation methods: Overview

SVD Approximation methods

A prototype approximation problem – the SVD

(Singular Value Decomposition): $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$.

Singular values provide trade-off between accuracy and complexity

POD: Proper Orthogonal Decomposition

Consider: $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{u}(t)).$ Snapshots of the state:

$$\mathcal{X} = [\mathbf{x}(t_1) \ \mathbf{x}(t_2) \ \cdots \ \mathbf{x}(t_N)] \in \mathbb{R}^{n \times N}$$

SVD: $\mathcal{X} = \mathbf{U}\Sigma\mathbf{V}^* \approx \mathbf{U}_k\Sigma_k\mathbf{V}_k^*$, $k \ll n$. Approximate the state:

$$\hat{\mathbf{x}}(t) = \mathbf{U}_k^* \mathbf{x}(t) \Rightarrow \mathbf{x}(t) \approx \mathbf{U}_k \hat{\mathbf{x}}(t), \ \hat{\mathbf{x}}(t) \in \mathbb{R}^k$$

Project state and output equations. Reduced order system:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{U}_k^* \mathbf{f}(\mathbf{U}_k \hat{\mathbf{x}}(t), \mathbf{u}(t)), \ \mathbf{y}(t) = \mathbf{h}(\mathbf{U}_k \hat{\mathbf{x}}(t), \mathbf{u}(t))$

 $\Rightarrow \hat{\mathbf{x}}(t)$ evolves in a **low-dimensional** space.

Issues with POD:

(a) Choice of snapshots, (b) singular values not I/O invariants.

SVD methods: the Hankel singular values

Trade-off between accuracy and complexity for linear dynamical systems is provided by the **Hankel Singular Values**, which are computed (for stable systems) as follows:

Define the gramians

$$\mathbf{P} = \int_0^\infty e^{\mathbf{A}t} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^* t} dt, \quad \mathbf{Q} = \int_0^\infty e^{\mathbf{A}^* t} \mathbf{C}^* \mathbf{C} e^{\mathbf{A}t} dt$$

To compute the gramians we need to solve 2 Lyapunov equations:

$$\left. \begin{array}{l} \mathsf{AP} + \mathsf{PA}^* + \mathsf{BB}^* = \mathbf{0}, \ \mathsf{P} > \mathbf{0} \\ \mathsf{A}^* \mathsf{Q} + \mathsf{QA} + \mathsf{C}^* \mathsf{C} = \mathbf{0}, \ \mathsf{Q} > \mathbf{0} \end{array} \right\} \Rightarrow \boxed{\sigma_i = \sqrt{\lambda_i(\mathsf{PQ})} }$$

 σ_i : Hankel singular values of system Σ .

SVD methods: approximation by balanced truncation

There exists basis where $\mathbf{P} = \mathbf{Q} = \mathbf{S} = \text{diag}(\sigma_1, \cdots, \sigma_n)$. This is the balanced basis of the system.

In this basis partition:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \hline \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} \mathbf{B}_1 \\ \hline \mathbf{B}_2 \end{pmatrix}, \ \mathbf{C} = (\mathbf{C}_1 \mid \mathbf{C}_2), \ \mathbf{S} = \begin{pmatrix} \boldsymbol{\Sigma}_1 \mid \mathbf{0} \\ \hline \mathbf{0} \mid \boldsymbol{\Sigma}_2 \end{pmatrix}$$

The reduced system is obtained by balanced truncation

$$\hat{\boldsymbol{\Sigma}} = \left(\begin{array}{c|c} \boldsymbol{A}_{11} & \boldsymbol{B}_1 \\ \hline \boldsymbol{C}_1 & \end{array} \right).$$

 Σ_2 contains the small Hankel singular values.

Projector:
$$\Pi = \mathbf{V}\mathbf{W}^*$$
 where $\mathbf{V} = \mathbf{W} = \begin{pmatrix} \mathbf{I}_k \\ \mathbf{0} \end{pmatrix}$

Example

We consider model reduction of a semidiscretized advection diffusion equation. The problem is motivated by the optimal control of pollutants. The advection diffuson equation for the concentration *c* of the pollutant. is

$$\begin{split} &\frac{\partial}{\partial t} \boldsymbol{c}(\xi, t) - \nabla(\kappa \nabla \boldsymbol{c}(\xi, t)) + \boldsymbol{v}(\xi) \cdot \nabla \boldsymbol{c}(\xi, t) \\ &= \boldsymbol{u}(\xi, t) \chi_{\boldsymbol{U}_1}(\xi) + \boldsymbol{u}(\xi, t) \chi_{\boldsymbol{U}_2}(\xi) & \text{in } \Omega, \end{split}$$

with boundary and initial conditions $c(\xi, t) = 0$ in Γ_D , and $\frac{\partial}{\partial n}c(\xi, t) = 0$, in Γ_N , $c(\xi, 0) = 2 \exp(-100((\xi_1 - 0.1)^2 + \xi_2^2))$, in Ω . The domain Ω and the boundary segments Γ_D , Γ_N are depicted below. χ_S is the characteristic function corresponding to the subdomain $S \subset \Omega$. The inputs are u_i defined on $U_i \times (0, T)$, i = 1, 2, where U_1 , U_2 are he subdomains shown below. In our numerical experiment we set $u_1 = u_2 = 50$. The diffusivity is $\kappa = 0.005$ and the advection **v** is the solution of a steady state Stokes equation on Ω wit inflow condition at $\xi_1 = 0$ and "do nothing" outflow condition at $\xi_2 = 1.2$.

Original	Reduced
<i>m</i> = 16	<i>m</i> = 16
n = 2673	<i>k</i> = 10
p = 283	p = 283

Example

Thanos Antoulas (Rice University)

Model reduction of large-scale systems

Properties of balanced reduction

- Stability is preserved
- **2** Global error bound: $\sigma_{k+1} \leq || \Sigma \hat{\Sigma} ||_{\infty} \leq 2(\sigma_{k+1} + \cdots + \sigma_n)$

Drawbacks

- **Dense** computations, matrix factorizations and inversions \Rightarrow may be ill-conditioned; number of operations $\mathcal{O}(n^3)$
- Bottleneck: solution of two Lyapunov equations
- Slow decay of HSV: a transmission line

Frequency response and Hankel singular values

Approximation methods: Krylov methods

The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, let $\mathbf{v}_{1} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the k^{th} step:

 $\mathbf{AV}_k = \mathbf{V}_k \mathbf{H}_k + \mathbf{f}_k \mathbf{e}_k^*$ where

 $\begin{array}{l} \mathbf{e}_{k} \in \mathbb{R}^{k} \text{: canonical unit vector} \\ \mathbf{V}_{k} = [\mathbf{v}_{1} \cdots \mathbf{v}_{k}] \in \mathbb{R}^{k \times k}, \ \mathbf{V}_{v}^{*} \mathbf{V}_{k} = \mathbf{I}_{k} \\ \mathbf{H}_{k} = \mathbf{V}_{k}^{*} \mathbf{A} \mathbf{V}_{k} \in \mathbb{R}^{k \times k} \end{array}$

Three uses of the Krylov iteration

(1) Iterative solution of Ax = b: approximate the solution x iteratively.

(2) Iterative approximation of the eigenvalues of **A**. In this case **b** is not fixed apriori. The eigenvalues of the projected H_k approximate the dominant eigenvalues of **A**.

(3) Approximation of linear systems by moment matriching.

\Rightarrow Item (3) is of interest in the present context.

Krylov methods: Approximation by moment matching

Given $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$, expand transfer function around s_0 :

$$\mathbf{H}(s) = \frac{\eta_0}{\eta_0} + \frac{\eta_1(s-s_0)}{\eta_2(s-s_0)^2} + \frac{\eta_3(s-s_0)^3}{\eta_3(s-s_0)^3} + \cdots$$

Moments at s_0 : η_i .

Find
$$\hat{\mathbf{E}}\dot{\mathbf{x}}(t) = \hat{\mathbf{A}}\dot{\mathbf{x}}(t) + \hat{\mathbf{B}}\mathbf{u}(t)$$
, $\mathbf{y}(t) = \hat{\mathbf{C}}\dot{\mathbf{x}}(t) + \hat{\mathbf{D}}\mathbf{u}(t)$, with
 $\hat{\mathbf{H}}(s) = \hat{\eta}_0 + \hat{\eta}_1(s - s_0) + \hat{\eta}_2(s - s_0)^2 + \hat{\eta}_3(s - s_0)^3 + \cdots$

such that for appropriate s_0 and ℓ :

$$\eta_j = \hat{\eta}_j, \ j = 1, 2, \cdots, \ell$$

The general interpolation framework

• Expansion around infinity: η_j are the Markov parameters \Rightarrow partial realization.

Expansion around arbitrary $s_0 \in \mathbb{C}$: η_j moments \Rightarrow rational interpolation.

- **Goal**: produce $\mathbf{H}_r(s)$, that approximates with high fidelity a very large order transfer function, $\mathbf{H}(s)$: $\mathbf{H}_r(s) \approx \mathbf{H}(s)$, by means of interpolation at a set of points $\{\sigma_i\}_{i=1}^r \subset \mathbb{C}$: $\mathbf{H}_r(\sigma_i) = \mathbf{H}(\sigma_i)$ for i = 1, ..., r.
- This is a good starting place for SISO systems but is overly restrictive for MIMO systems, since the condition $\mathbf{H}_r(\sigma_i) = \mathbf{H}(\sigma_i)$ imposes $m \cdot p$ scalar conditions at each point. Instead consider interpolation conditions that are imposed in specified directions: tangential interpolation.
- Remark. The Krylov and rational Krylov algorithms match moments without computing them. Thus moment matching methods can be implemented in a numerically efficient way.

Problem 1: Model Reduction given state space system data Given a full-order model E, A, B, C, and D and given

left interpolation points: $\{\mu_i\}_{i=1}^q \subset \mathbb{C},$ with corresponding *left tangent directions:* $\{\ell_i\}_{i=1}^q \subset \mathbb{C}^p,$ and $\begin{aligned} \text{right interpolation points:} \\ \{\sigma_i\}_{i=1}^r \subset \mathbb{C} \\ \text{with corresponding} \\ \text{right tangent directions:} \\ \{\mathbf{r}_i\}_{i=1}^r \subset \mathbb{C}^m. \end{aligned}$

Find a reduced-order model \mathbf{E}_r , \mathbf{A}_r , \mathbf{B}_r , \mathbf{C}_r , and \mathbf{D}_r such that the associated transfer function, $\mathbf{H}_r(s)$, is a *tangential interpolant* to $\mathbf{H}(s)$:

 $\ell_i^* \mathbf{H}_r(\mu_i) = \ell_i^* \mathbf{H}(\mu_i) \quad \text{and} \quad \mathbf{H}_r(\sigma_j) \mathbf{r}_j = \mathbf{H}(\sigma_j) \mathbf{r}_j,$ for $i = 1, \cdots, q$, for $j = 1, \cdots, r$,

Problem 2: Model reduction given input-output data

Given a set of input-output response measurements on a system specified by

left driving frequencies: $\{\mu_i\}_{i=1}^q \subset \mathbb{C},$ using left input directions: $\{\ell_i\}_{i=1}^q \subset \mathbb{C}^p,$ producing left responses: $\{\mathbf{v}_i\}_{i=1}^q \subset \mathbb{C}^m,$

right driving frequencies: $\{\sigma_i\}_{i=1}^r \subset \mathbb{C}$ and using right input directions: $\{\mathbf{r}_i\}_{i=1}^r \subset \mathbb{C}^m$ producing right responses: $\{\mathbf{w}_i\}_{i=1}^r \subset \mathbb{C}^p$

Find a system model by specifying (reduced) system matrices \mathbf{E}_r , \mathbf{A}_r , \mathbf{B}_r , \mathbf{C}_r , \mathbf{D}_r such that $\mathbf{H}_r(s)$, is a *tangential interpolant* to the given data:

 $\ell_i^* \mathbf{H}_r(\mu_i) = \mathbf{v}_i^* \quad \text{and} \quad \mathbf{H}_r(\sigma_j) \mathbf{r}_j = \mathbf{w}_j,$ for $i = 1, \dots, q$, for $j = 1, \dots, r$.

Interpolation points and tangent directions are determined (typically) by the availability of experimental data.

Interpolatory Projections

We seek $H_r(s)$ so that

$$\mathbf{H}(\sigma_i)\mathbf{r}_i = \mathbf{H}_r(\sigma_i)\mathbf{r}_i, \quad \text{for } i = 1, \cdots, r, \\ \ell_j^* \mathbf{H}(\mu_j) = \ell_j^* \mathbf{H}_r(\mu_j), \quad \text{for } j = 1, \cdots, r,$$

The goal is to interpolate H(s) without ever computing the quantities to be matched since these are numerically ill-conditioned. This is achieved by the projection framework.

Interpolatory projections

$$\mathbf{V}_{r} = \left[(\sigma_{1}\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}\mathbf{r}_{1}, \cdots, (\sigma_{r}\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}\mathbf{r}_{r} \right]$$
$$\mathbf{W}_{r}^{*} = \left[\begin{array}{c} \ell_{1}^{*}\mathbf{C}(\mu_{1}\mathbf{E} - \mathbf{A})^{-1} \\ \vdots \\ \ell_{r}^{*}\mathbf{C}(\mu_{r}\mathbf{E} - \mathbf{A})^{-1} \end{array} \right].$$

Properties of Krylov (interpolatory) methods

• Number of operations: $\mathcal{O}(kn^2)$ or $\mathcal{O}(k^2n)$ vs. $\mathcal{O}(n^3) \Rightarrow$ efficiency

Q: How to choose the projection points?

We will discuss two cases:

- Passivity preserving model reduction.
- **2** Optimal \mathcal{H}_2 model reduction.

Outline

- OverviewMotivation
- Approximation methods
 SVD-based methods
 Krylov-based methods
 - Choice of projection points
 Passivity Preserving Model Reduction
 Optimal H₂ model reduction
 - Model reduction from measurements
 - S-parameters
 - The Loewner matrix
 - Tangential interpolation: $\mathbb{L} \& \sigma \mathbb{L}$
 - Conclusions

Choice of Krylov projection points: Passivity preserving model reduction

Passive systems:

$$\mathcal{R}e\int_{-\infty}^t \mathbf{u}(au)^*\mathbf{y}(au)\mathrm{d} au\geq \mathbf{0},\,orall\,t\in\mathbb{R},\,orall\,\mathbf{u}\in\mathcal{L}_2(\mathbb{R}).$$

Positive real rational functions:

(1) $\mathbf{H}(s) = \mathbf{D} + \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$, is analytic for $\mathcal{R}e(s) > 0$, (2) $\mathcal{R}e \mathbf{H}(s) \ge 0$ for $\mathcal{R}e(s) \ge 0$, s not a pole of H(s).

Theorem:
$$\Sigma = \begin{pmatrix} \mathbf{E}, \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$$
 is passive $\Leftrightarrow \mathbf{H}(s)$ is positive real.

Conclusion: Positive realness of $\mathbf{H}(s)$ implies the existence of a **spectral** factorization $\mathbf{H}(s) + \mathbf{H}^*(-s) = \Phi(s)\Phi^*(-s)$, where the poles and (finite) zeros of $\Phi(s)$ are stable. The *spectral zeros* are λ such that: $\Phi(\lambda)$, loses rank. Hence there is a right spectral zero direction, **r**, such that $(\mathbf{H}(\lambda) + \mathbf{H}^*(-\lambda))\mathbf{r} = \mathbf{0} \Rightarrow \mathbf{r}^*(\mathbf{H}(-\overline{\lambda}) + \mathbf{H}^*(\overline{\lambda})) = \mathbf{0}$.

Passivity preserving model reduction: New result

- Method: Rational Krylov
- Solution: projection points = spectral zeros

Passivity preserving tangential interpolation

Suppose the dynamical system represented by $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$, is stable and passive. Suppose that for some $r \ge 1$, $\lambda_1, \dots, \lambda_r$ are stable spectral zeros of \mathbf{H} with corresponding right spectral zero directions $\mathbf{r}_1, \dots, \mathbf{r}_r$.

If a reduced order system $\mathbf{H}_r(s)$ tangentially interpolates $\mathbf{H}(s)$ with $\sigma_i = \lambda_i$, along \mathbf{r}_i , $\mu_i = -\overline{\lambda_i}$, along \mathbf{r}^* for i = 1, ..., r, then $\mathbf{H}_r(s)$ is stable and passive.

The computation of the spectral zeros of the system can be formulated as a structured eigenvalue problem. Let

$$\mathcal{H} = \left[\begin{array}{ccc} A & 0 & B \\ 0 & -A^* & -C^* \\ C & B^* & D + D^* \end{array} \right], \ \mathcal{E} = \left[\begin{array}{ccc} E & 0 & 0 \\ 0 & E^* & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Spectral zero interpolation preserving passivity Hamiltonian EVD & projection

Hamiltonian eigenvalue problem

$$\begin{bmatrix} \mathbf{A} & \mathbf{0} & \mathbf{B} \\ \mathbf{0} & -\mathbf{A}^* & -\mathbf{C}^* \\ \mathbf{C} & \mathbf{B}^* & \mathbf{D} + \mathbf{D}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}^* & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} \wedge$$

The generalized eigenvalues Λ are the spectral zeros of Σ

Partition eigenvectors

$$\left[\begin{array}{c} \textbf{X} \\ \textbf{Y} \\ \textbf{Z} \end{array} \right] = \left[\begin{array}{c} \textbf{X}_{-} & \textbf{X}_{+} \\ \textbf{Y}_{-} & \textbf{Y}_{+} \\ \textbf{Z}_{-} & \textbf{Z}_{+} \end{array} \right], \ \Lambda = \left[\begin{array}{c} \Lambda_{-} & & \\ & \Lambda_{+} & \\ & & \pm \infty \end{array} \right]$$

 Λ_{-} are the stable spectral zeros

- Projection
 - $\mathbf{V} = \mathbf{X}_{-}, \ \mathbf{W} = \mathbf{Y}_{-}$
 - $\hat{\mathbf{E}} = \mathbf{W}^* \mathbf{EV}, \ \hat{\mathbf{A}} = \mathbf{W}^* \mathbf{AV}, \ \hat{\mathbf{B}} = \mathbf{W}^* \mathbf{B}, \ \hat{\mathbf{C}} = \mathbf{CV}, \ \hat{\mathbf{D}} = \mathbf{D}$

Dominant spectral zeros - SADPA

What is a good choice of k spectral zeros out of n?

- **Dominance criterion**: Spectral zero s_j is **dominant** if: $\frac{|R_j|}{|\Re(s_j)|}$, is large.
- Efficient computation for large scale systems: we compute the k « n most dominant eigenmodes of the Hamiltonian pencil.
- **SADPA** (Subspace Accelerated Dominant Pole Algorithm) solves this **iteratively**.

Conclusion:

Passivity preserving model reduction becomes a

structured eigenvalue problem

An example

Consider the following RLC circuit:

Using the voltages across C_1 , C_2 , and the currents through L_1 , L_2 , as state variables, \mathbf{x}_i , = 1, 2, 3, 4, respectively, we end up with equations of the form $\mathbf{E}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$, where

$$\mathbf{E} = \begin{pmatrix} C_1 & 0 & -G_1 L_1 & G_2 L_2 \\ 0 & C_2 & 0 & -G_2 L_2 \\ 0 & 0 & L_1 & 0 \\ 0 & 0 & 0 & L_2 \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{C} = [-G_1, \ 0, \ 1, \ 0], \ \mathbf{D} = G_1,$$

 $G_i = \frac{1}{R_i}$, i = 1, 2, are the corresponding conductances.

This system has a double spectral zero at s = 0. The Hamiltonian pair is:

and

$$[\mathbf{x}_{1}, \ \mathbf{x}_{2}] = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & \frac{C_{2}}{C_{1}+C_{2}} \\ \hline -1 & 0 \\ -G_{1} & -1 \\ 0 & \frac{-C_{2}}{C_{1}+C_{2}} \\ \hline 1 & 0 \end{pmatrix} \Rightarrow \mathbf{V}_{r} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & \frac{C_{2}}{C_{1}+C_{2}} \end{pmatrix}, \ \mathbf{W}_{r} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ G_{1} & 1 \\ 0 & \frac{C_{2}}{C_{1}+C_{2}} \end{pmatrix}$$

The reduced quantities are:

$$\mathbf{E}_{r} = \mathbf{W}_{r}^{*} \mathbf{E} \mathbf{V}_{r} = \begin{pmatrix} C_{1} + C_{2} & 0 \\ 0 & L_{1} + \frac{C_{2}^{2}}{(C_{1} + C_{2})^{2}} L_{2} \end{pmatrix}, \mathbf{A}_{r} = \mathbf{W}_{r}^{*} \mathbf{A} \mathbf{V}_{r} = \begin{pmatrix} -G_{1} & 1 \\ -1 & 0 \end{pmatrix},$$
$$\mathbf{B}_{r} = \mathbf{W}_{r}^{*} \mathbf{B} = \begin{pmatrix} G_{1} \\ 1 \end{pmatrix}, \mathbf{C}_{r} = \mathbf{C} \mathbf{V}_{r} = \begin{pmatrix} -G_{1} & 1 \end{pmatrix}, \mathbf{D}_{r} = \mathbf{D}.$$

From these matrices we can read-off an RLC realization:

where
$$\hat{C} = C_1 + C_2$$
, $\hat{L} = \frac{1}{\kappa} = L_1 + \frac{C_2^2}{(C_1 + C_2)^2}L_2$, and $\hat{R} = R_1$.

Choice of Krylov projection points: Optimal *H*₂ model reduction

Recall: the H_2 norm of a stable (SISO) system is:

$$\|\Sigma\|_{H_2} = \left(\int_{-\infty}^{+\infty} \mathbf{h}^2(t) dt\right)^{1/2}$$

where $\mathbf{h}(t) = \mathbf{C} e^{\mathbf{A}t} \mathbf{B}$, $t \ge 0$, is the impulse response of Σ .

Goal: construct a Krylov projector such that

$$\Sigma_{k} = \arg \min_{\substack{\mathsf{deg}(\hat{\Sigma}) = r \\ \hat{\Sigma} : \text{ stable}}} \left\| \Sigma - \hat{\Sigma} \right\|_{H_{2}} = \left(\int_{-\infty}^{+\infty} (\mathbf{h} - \hat{\mathbf{h}})^{2}(t) dt \right)^{1/2}$$

The optimization problem is **nonconvex**. The common approach is to find reduced order models that satisfy first-order necessary optimality conditions.

First-order necessary optimality conditions

Let $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}})$ solve the optimal H_2 problem and let $\hat{\lambda}_i$ denote the eigenvalues of $\hat{\mathbf{A}}$ (we assume for simplicity that $\mathbf{E} = \mathbf{I}$ and m = p = 1). The necessary conditions are:

$$\mathbf{H}(-\hat{\lambda}_i^*) = \hat{\mathbf{H}}(-\hat{\lambda}_i^*) \text{ and } \left. \frac{d}{ds} \mathbf{H}(s) \right|_{s=-\hat{\lambda}_i^*} = \left. \frac{d}{ds} \hat{\mathbf{H}}(s) \right|_{s=-\hat{\lambda}_i}$$

Thus the reduced system has to match the first two moments of the original system at the *mirror images* of the eigenvalues of \hat{A} .

A numerical algorithm for optimal H_2 model reduction

• Global minimizers are difficult to obtain with certainty; current approaches favor seeking reduced order models that satisfy a local (first-order) necessary condition for optimality. Even though such strategies do not guarantee global minimizers, they often produce effective reduced order models.

• The main computational cost of this algorithm involves solving 2*r* linear systems to generate V_r and W_r . Computing the eigenvectors Y and X, and the eigenvalues of the reduced pencil $\lambda E_r - A_r$ are cheap since the dimension *r* is small.

• **IRKA** has been successfully applied to finding H_2 -optimal reduced models for systems of order n > 160,000.

Moderate-dimensional example

- total system variables n = 902, independent variables dim = 599, reduced dimension k = 21
- reduced model captures dominant modes

\mathcal{H}_∞ and \mathcal{H}_2 error norms

Relative norms of the error systems

Reduction Method $n = 902$, $dim = 599$, $k = 21$	\mathcal{H}_∞	\mathcal{H}_2
PRIMA	1.477	-
Spectral Zero Method with SADPA	0.962	0.841
Optimal \mathcal{H}_2	0.594	0.462
Balanced truncation (BT)	0.939	0.646
Riccati Balanced Truncation (PRBT)	0.961	0.816

Choice of points: summary

•	Passive model reduction	mirror image of spectral zeros
•	Optimal <i>H</i> ₂ model reduction	mirror image of reduced system poles
•	Hankel norm model reduction	mirror image of system poles
•	Systems with proportional damping	mirror image of 'focal' point

Question: What is the deeper meaning of mirror image points?

Approximation methods: Summary

Outline

- OverviewMotivation
- Approximation methods
 SVD-based methods
 Krylov-based methods
- Choice of projection points
 Passivity Preserving Model Reduction
 Optimal H₂ model reduction
- Model reduction from measurements
 - S-parameters
 - The Loewner matrix
 - Tangential interpolation: \mathbb{L} & $\sigma\mathbb{L}$

Conclusions

Recall: the big picture

A motivation: electronic systems

• Growth in communications and networking and demand for high data bandwidth requires streamlining of the simulation of entire complex systems from chips to packages to boards, etc.

• Thus in circuit simulation, signal intergrity (lack of signal distortion) of high speed electronic designs require that interconnect models be valid over a wide bandwidth.

An important tool: S-parameters

• They represent a component as a black box. Accurate simulations require accurate component models.

• In high frequencies S-parameters are important because wave phenomena become dominant.

 \bullet Advantages: $0 \leq |\textbf{S}| \leq 1$ and can be measured using VNAs (Vector Network Analyzers).

S-parameters

Scattering or S-parameters

Given a system in I/O representation: $\mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s)$,

the associated S-paremeter representation is

$$\bar{\mathbf{y}}(s) = \frac{\mathbf{S}(s)\bar{\mathbf{u}}(s)}{\sum_{\mathbf{S}(s)} |\mathbf{u}(s)|} = \underbrace{[\mathbf{H}(s) + \mathbf{I}][\mathbf{H}(s) - \mathbf{I}]^{-1}}_{\mathbf{S}(s)} \bar{\mathbf{u}}(s),$$

where

$$\bar{\mathbf{y}} = \frac{1}{2} (\mathbf{y} + \mathbf{u})$$
 are the *transmitted waves* and,
 $\bar{\mathbf{u}} = \frac{1}{2} (\mathbf{y} - \mathbf{u})$ are the *reflected waves*.

S-parameter measurements.

 $S(j\omega_k)$: samples of the frequency response of the **S**-parameter system representation.

Measurement of S-parameters

VNA (Vector Network Analyzer) - Magnitude of S-parameters for 2 ports

Model construction from data: Interpolation

Assume for simplicity that the given data are scalar:

$$(\mathbf{s}_i, \phi_i), \ i = 1, 2, \cdots, N, \ \mathbf{s}_i \neq \mathbf{s}_j, \ i \neq j$$

Find $\mathbf{H}(s) = \frac{\mathbf{n}(s)}{\mathbf{d}(s)}$ such that $\mathbf{H}(s_i) = \phi_i$, $i = 1, 2, \dots, N$, and \mathbf{n}, \mathbf{d} : coprime polynomials.

Main tool: Loewner matrix. Divide the data in disjoint sets: $(\lambda_i, w_i), i = 1, 2, \dots, k, (\mu_j, v_j), j = 1, 2, \dots, q, k + q = N$:

$$\mathbb{L} = \begin{bmatrix} \frac{v_1 - w_1}{\mu_1 - \lambda_1} & \cdots & \frac{v_1 - w_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{v_q - w_1}{\mu_q - \lambda_1} & \cdots & \frac{v_q - w_k}{\mu_q - \lambda_k} \end{bmatrix} \in \mathbb{C}^{q \times k}$$

Model construction from data:

Interpolation

Main results (1986). • The rank of \mathbb{L} encodes the information about the minimal degree interpolants: rank \mathbb{L} or $N - \operatorname{rank} \mathbb{L}$.

• If $H(s) = C(sI - A)^{-1}B + D$, then

$$\mathbb{L} = -\underbrace{\begin{bmatrix} \mathbf{C}(\lambda_1\mathbf{I} - \mathbf{A})^{-1} \\ \mathbf{C}(\lambda_2\mathbf{I} - \mathbf{A})^{-1} \\ \vdots \\ \mathbf{C}(\lambda_k\mathbf{I} - \mathbf{A})^{-1} \end{bmatrix}}_{\mathcal{O}} \underbrace{\begin{bmatrix} (\mu_1\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} & \cdots & (\mu_q\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} \end{bmatrix}}_{\mathcal{R}}$$

• Special case. single point with multiplicity: $(s_0; \phi_0, \phi_1, \cdots, \phi_{N-1})$. Then

$$\mathbb{L} = \begin{bmatrix} \frac{1}{11} & \frac{2}{21} & \frac{3}{31} & \frac{4}{41} & \cdots \\ \frac{\phi_2}{21} & \frac{\phi_3}{31} & \frac{\phi_4}{41} & \cdots \\ \frac{\phi_3}{31} & \frac{\phi_4}{41} & \cdots \\ \vdots & & \vdots & \ddots \\ \vdots & & \vdots & \ddots \end{bmatrix}$$

⇒ Hankel structure

Thus the **Loewner matrix generalizes** the **Hankel matrix** when general interpolation replaces realization.

Thanos Antoulas (Rice University)

General framework - tangential interpolation

Given: • right data: $(\lambda_i; \mathbf{r}_i, \mathbf{w}_i), i = 1, \cdots, k$

• left data: $(\mu_j; \ell_j, \mathbf{v}_j), j = 1, \cdots, q$.

We assume for simplicity that all points are distinct.

Problem: Find rational $p \times m$ matrices **H**(*s*), such that

 $\mathbf{H}(\lambda_i)\mathbf{r}_i = \mathbf{w}_i$ $\ell_i \mathbf{H}(\mu_i) = \mathbf{V}_i$ Right data: $\Lambda = \begin{bmatrix} \Lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix} \in \mathbb{C}^{k \times k}, \quad \mathbf{R} = [\mathbf{r}_1 \ \mathbf{r}_2, \ \cdots \ \mathbf{r}_k] \in \mathbb{C}^{m \times k}, \\ \mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_k] \in \mathbb{C}^{p \times k}$ Left data: $M = \begin{bmatrix} \mu_1 \\ \vdots \\ \vdots \\ \mu_n \end{bmatrix} \in \mathbb{C}^{q \times q}, \mathbf{L} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix} \in \mathbb{C}^{q \times p}, \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \vdots \\ \mathbf{v}_n \end{bmatrix} \in \mathbb{C}^{q \times m}$

Model reduction of large-scale systems

General framework – tangential interpolation

Input-output data: $\mathbf{H}(\lambda_i)\mathbf{r}_i = \mathbf{w}_i, \ell_j \mathbf{H}(\mu_j) = \mathbf{v}_j$. The Loewner matrix is:

$$\mathbb{L} = \begin{bmatrix} \frac{\mathbf{v}_1 \mathbf{r}_1 - \ell_1 \mathbf{w}_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{v}_1 \mathbf{r}_k - \ell_1 \mathbf{w}_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_q \mathbf{r}_1 - \ell_q \mathbf{w}_1}{\mu_q - \lambda_1} & \cdots & \frac{\mathbf{v}_q \mathbf{r}_k - \ell_q \mathbf{w}_k}{\mu_q - \lambda_k} \end{bmatrix} \in \mathbb{C}^{q \times k}$$

Therefore ${\mathbb L}$ satisfies the Sylvester equation

 $\mathbb{L}\Lambda - M\mathbb{L} = \mathbf{VR} - \mathbf{LW}$

Given a realization **E**, **A**, **B**, **C**: $H(s) = C(sE - A)^{-1}B$, let **X**, **Y** be the generalized reachability/obervability matrices:

 $\mathbf{x}_i = (\lambda_i \mathbf{E} - \mathbf{A})^{-1} \mathbf{Br}_i \Rightarrow \mathbf{X}$: generalized reachability matrix $\mathbf{y}_j = \ell_j \mathbf{C}(\mu_j \mathbf{E} - \mathbf{A})^{-1} \Rightarrow \mathbf{Y}$: generalized observability matrix.

$$\Rightarrow | \mathbb{L} = - \mathsf{YEX} |$$

The shifted Loewner matrix

 The shifted Loewner matrix, σL, is the Loewner matrix associated to sH(s).

$$\sigma \mathbb{L} = \begin{bmatrix} \frac{\mu_1 \mathbf{v}_1 \mathbf{r}_1 - \ell_1 \mathbf{w}_1 \lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{v}_1 \mathbf{r}_k - \ell_1 \mathbf{w}_k \lambda_k}{\mu_1 - \lambda_k} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \mathbf{v}_q \mathbf{r}_1 - \ell_q \mathbf{w}_1 \lambda_1}{\mu_q - \lambda_1} & \cdots & \frac{\mu_q \mathbf{v}_q \mathbf{r}_k - \ell_q \mathbf{w}_k \lambda_k}{\mu_q - \lambda_k} \end{bmatrix} \in \mathbb{C}^{q \times k}$$

• $\sigma \mathbb{L}$ satisfies the Sylvester equation

$$\sigma \mathbb{L} \Lambda - M \sigma \mathbb{L} = \mathbf{VR} \Lambda - M \mathbf{LW}$$

• $\sigma \mathbb{L}$ can be factored as

$$\Rightarrow \sigma \mathbb{L} = -\mathbf{YAX}$$

Construction of Interpolants (Models)

Assume that $k = \ell$, and let

$$\det (\mathbf{x} \mathbb{L} - \sigma \mathbb{L}) \neq \mathbf{0}, \quad \mathbf{x} \in \{\lambda_i\} \cup \{\mu_j\}$$

Then

$$\mathbf{E} = -\mathbb{L}, \ \mathbf{A} = -\sigma \mathbb{L}, \ \mathbf{B} = \mathbf{V}, \ \mathbf{C} = \mathbf{W}$$

is a minimal realization of an interpolant of the data, i.e., the function

$$\mathbf{H}(\boldsymbol{s}) = \mathbf{W}(\sigma \mathbb{L} - \boldsymbol{s} \mathbb{L})^{-1} \mathbf{V}$$

interpolates the data.

Proof. Multiplying the first equation by *s* and subtracting it from the second we get $(\sigma \mathbb{L} - s\mathbb{L}) \Lambda - M(\sigma \mathbb{L} - s\mathbb{L}) = \mathsf{LW}(\Lambda - s\mathbf{I}) - (M - s\mathbf{I})\mathsf{VR}.$ Multiplying this equation by \mathbf{e}_i on the right and setting $s = \lambda_i$, we obtain

 $(\lambda_{i}\mathbf{I} - M)(\sigma \mathbb{L} - \lambda_{i}\mathbb{L})\mathbf{e}_{i} = (\lambda_{i}\mathbf{I} - M)\mathbf{V}\mathbf{r}_{i} \Rightarrow (\lambda_{i}\mathbb{L} - \sigma \mathbb{L})\mathbf{e}_{i} = \mathbf{V}\mathbf{r}_{i} \Rightarrow \mathbf{W}\mathbf{e}_{i} = \mathbf{W}(\lambda_{i}\mathbb{L} - \sigma \mathbb{L})^{-1}\mathbf{V}$

Therefore $\mathbf{w}_i = \mathbf{H}(\lambda_i)\mathbf{r}_i$. This proves the right tangential interpolation property. To prove the left tangential interpolation property, we multiply the above equation by \mathbf{e}_i^* on the left and set $s = \mu_i$:

$$\mathbf{p}_{j}^{*}(\sigma\mathbb{L}-\mu_{j}\mathbb{L})(\Lambda-\mu_{j}\mathbf{I}) = \mathbf{e}_{j}^{*}\mathbf{LW}(\mu_{j}\mathbf{I}-\Lambda) \implies \mathbf{e}_{j}^{*}(\sigma\mathbb{L}-\mu_{j}\mathbb{L}) = \ell_{j}\mathbf{W} \implies \mathbf{e}_{j}^{*}\mathbf{V} = \ell_{j}\mathbf{W}(\sigma\mathbb{L}-\mu_{j}\mathbb{L})^{-1}\mathbf{V}$$

Therefore $\mathbf{v}_j = \ell_j \mathbf{H}(\mu_j)$.

Construction of interpolants:

New procedure

Main assumption:

$$\operatorname{rank} (\mathbf{x}\mathbb{L} - \sigma\mathbb{L}) = \operatorname{rank} \left(\begin{array}{c} \mathbb{L} \\ \sigma\mathbb{L} \end{array} \right) = \operatorname{rank} \left(\begin{array}{c} \mathbb{L} \\ \sigma\mathbb{L} \end{array} \right) =: \mathbf{k}, \ \mathbf{x} \in \{\lambda_i\} \cup \{\mu_j\}$$

Then for some $x \in \{\lambda_i\} \cup \{\mu_j\}$, we compute the *SVD*

$$\boldsymbol{x}\mathbb{L} - \boldsymbol{\sigma}\mathbb{L} = \boldsymbol{Y}\boldsymbol{\Sigma}\boldsymbol{X}$$

with rank $(x\mathbb{L} - \sigma\mathbb{L}) = \operatorname{rank}(\Sigma) = \operatorname{size}(\Sigma) =: k, \mathbf{Y} \in \mathbb{C}^{\nu \times k}, \mathbf{X} \in \mathbb{C}^{k \times \rho}.$

Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

$\mathbf{E} = -\mathbf{Y}^* \mathbb{L} \mathbf{X}^*$	$\mathbf{B}=\mathbf{Y}^*\mathbf{V}$
$\mathbf{A} = -\mathbf{Y}^* \sigma \mathbb{L} \mathbf{X}^*$	$\mathbf{C} = \mathbf{W}\mathbf{X}^*$

Remark. The system [**E**, **A**, **B**, **C**] can now be further reduced using any of the usual reduction methods.

Thanos Antoulas (Rice University)

Example: mechanical system

Mechanical example: Stykel, Mehrmann

The vibration of this system is described in generalized state space form as:

$$\dot{\mathbf{p}}(t) = \mathbf{v}(t)$$

$$\mathbf{M}\dot{\mathbf{v}}(t) = \mathbf{K}\mathbf{p}(t) + \mathbf{D}\mathbf{v}(t) - \mathbf{G}^*\lambda(t) + \mathbf{B}_2\mathbf{u}(t)$$

$$\mathbf{0} = \mathbf{G}\mathbf{p}(t)$$

$$\mathbf{y}(t) = \mathbf{C}_1\mathbf{p}(t)$$

Measurements: 500 frequency response data between [-2i, +2i].

Mechanical system: plots

Left: Frequency responses of original system and approximants (orders 2, 6, 10, 14, 18)

Right: Frequecy responses of error systems

Example: Four-pole band-pass filter

•1000 measurements between 40 and 120 GHz; S-parameters 2×2 , MIMO (approximate) interpolation $\Rightarrow \mathbb{L}, \sigma \mathbb{L} \in \mathbb{R}^{2000 \times 2000}$.

The singular values of \mathbb{L} , $\sigma\mathbb{L}$

The S(1, 1) and S(1, 2) parameter data 17-th order model

Example: delay system

 $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_0\mathbf{x}(t) + \mathbf{A}_1\mathbf{x}(t-\tau) + \mathbf{B}\mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t),$

where $\textbf{E}, \textbf{A}_0, \textbf{A}_1$ are 500 \times 500 and \textbf{B}, \textbf{C}^* are 500-vectors.

- Procedure: compute 1000 frequency response samples.
- Left figure: Singular values of L.
- Then apply recursive/adaptive Loewner-framework procedure.
- Right figure: (Blue: original, red: 35th order approximant.)

Outline

- OverviewMotivation
- Approximation methods
 SVD-based methods
 Krylov-based methods
- Choice of projection points
 Passivity Preserving Model Reduction
 Optimal // model reduction
 - Optimal H₂ model reduction
- Model reduction from measurements
 - S-parameters
 - The Loewner matrix
 - Tangential interpolation: $\mathbb{L} \& \sigma \mathbb{L}$

Conclusions

Summary

We discussed **SVD** and **Krylov** or **Interpolatory** methods. The latter amount to the choice of interpolation data.

- Passivity preserving reduction
 Key quantities: spectral zeros
 Problem reduced to a Hamiltonian eigenvalues problem
- Optimal H₂ reduction Key quantities: mirror image of reduced system poles Algorithm: Iterative Krylov Only model reduction algorithm with error optimization
- Reduction from data (e.g. S-parameters) Key tool tangential interpolation Can deal with many input/output ports Key tool: Loewner matrix pair Natural way to construct full and reduced models
 does not force inversion of E

(Some) Challenges in model reduction

- Uncertain systems, i.e. systems depending on parameters
- Non-linear systems (POD, TPWL, EIM, etc.)
- Non-linear differential-algebraic (DAE) systems
- Sparsity and parallelization
- Domain decomposition methods
- MEMS and multi-physics problems (micro-fluidic bio-chips)
- CAD tools for VLSI/nanoelectronics
- Molecular Dynamics (MD) simulations
- Model reduction and data assimilation (weather prediction)
- Active control of high-rise buildings
- ...

References

Balanced truncation with non-zero initial conditions

 Reis, Heinkenschloss, Antoulas, CAAM TR 09-29, Rice University (2009)

Passivity preserving model reduction

- Antoulas: Systems and Control Letters (2005)
- Sorensen: Systems and Control Letters (2005)
- Ionutiu, Rommes, Antoulas: Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation, IEEE Trans. CAD (Computer-Aided Design of Integrated Circuits and Systems), vol 27, pages: 2250 - 2263 (2008).

• Optimal \mathcal{H}_2 model reduction

- Gugercin, Antoulas, Beattie: SIAM J. Matrix Anal. Appl. (2008)
- Kellems, Roos, Xiao, Cox: Low-dimensional, morphologically accurate models of subthreshold membrane potential, J. Comput. Neuroscience, 27:161-176 (2009).

References

- Model reduction from data
 - A.J. Mayo and A.C. Antoulas, *A framework for the solution of the generalized realization problem*, Linear Algebra and Its Applications, vol. 425, pages 634-662 (2007).
 - Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems from Frequency-Domain Data, IEEE Trans. CAD, vol. 29, pages 14-27 (2010).

Interpolatory model reduction

- A.C. Antoulas, C.A. Beattie, and S. Gugercin, *Interpolatory model reduction of large-scale systems*, Report, September 2009.
- C.A. Beattie and S. Gugercin, *Interpolatory projection methods for structure preserving model reduction*, Systems and Control Letters, vol. 58, 2009.

General reference: Antoulas, SIAM (2005)

