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The big picture

’ Physical System ‘ and/or

Modeling

-

\ Model reduction \

Simulation
| reduced # of ODEs | <£ Design

Control
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Model Reduction via Projection

Given is f(x(t),x(t),u(t)) =0, y(t) = h(x(t),u(t)) or
Ex(f) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

Common framework for (most) model reduction methods: Petrov-Galerkin
projective approximation
Find x(t) contained in C" such that
Ex(t) — Ax(t) —Bu(t) L C" (i.e.,, = 0) = y(t) = Cx(t) + Du(?).
Choose r-dimensional trial and test subspaces, V,, W, c C™:
Find v(t) contained in V; such that
Ev(t) — Av(t) — Bu(t) L W, = y.(t) = Cv(t) + Du(t).
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Model Reduction via Projection

Let V, = Range(V;) and W, = Range(W,). Then the reduced system
trajectories are v(t) = V.x.(t) with x.(t) € C" for each t, and the
Petrov-Galerkin approximation can be rewritten as

W (EV X (t) — AVx () —Bu(t)) =0 and y.(t) = CV,x.(t) + Du(t),
leading to the reduced order state-space representation with

Reduced order system

E, =W;EV,, A, =W;AV,, B, =W;B, C,=CV, and D,=D. J

The quality of the reduced system depends on the choice of V, and W,.
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Nonlinear systems

Consider system described by implicit equations:
d
£ (X0 x(0.u(0)) =0, y(8) = hix(0). ().

with: u(f) € R, x(t) € R", y(t) € RP.
Problem: Approximate this system with:
(f.h): u(t) eR™, X(t) e R, Y(t) eRP, k< n

by means of a Petrov-Galerkin projection: = N = VW*, V, W ¢ Rk,

W+t (gtVf((t),V)“((t), u(z‘)> =0, y(t) = h(VX(1), u(1))

The approximation is "good” if x — Mx is "small”.
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Issues and requirements

‘ Issues with large-scale systems

Storage

Computational speed
Accuracy

System theoretic properties

0000

Requirements for model reduction

Approximation error small - global error bound
Preservation of stability/passivity

Procedure must be computationally efficient
Procedure must be automatic

In addition: many ports, parameters, nonlinearities, ... .

00000
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Motivating Examples: Simulation/Control

1. Passive devices o VLSI circuits
e Thermal issues
e Power delivery networks

2. Data assimilation ¢ North sea forecast
e Air quality forecast

3. Molecular systems o MD simulations
e Heat capacity

4. CVD reactor o Bifurcations

5. Mechanical systems: eWindscreen vibrations
e Buildings

6. Optimal cooling o Steel profile

7. MEMS: Micro Electro-
-Mechanical Systems | e Elf sensor
8. Nano-Electronics e Plasmonics
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Motivation
VLSI circuits

CMOS Chip 3D Silicon Chip
nanometer details 108 components
several GHz speed | several km interconnect
~ 10 layers
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Motivation
VLSI circuits

Typical Gate
/ Delay = 0.25 pm

1.0 7

Average Wiring

Delay

Delay (ns)

0.17

Today’s Technology:
65nm —— |
1

1.3 1.0 0.8 0.5 0.3 0.1 0.08
Technology (um)

65nm technology:

Conclusion: Simulations are required to verify that internal electromagnetic
fields do not significantly delay or distort circuit signals. Therefore
interconnections must be modeled.

= Electromagnetic modeling of packages and interconnects = resulting
models very complex: using PEEC methods (discretization of Maxwell’'s
equations): n~ 10° ... 108 = SPICE: inadequate
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Mechanical Systems: Buildings

Earthquake prevention

Taipei 101: 508m

Damper between 87-91 floors 730 ton damper

Building Height Control mechanism Damping frequency
Damping mass

CN Tower, Toronto 533 m Passive tuned mass damper

Hancock building, Boston 244 m Two passive tuned dampers 0.14Hz, 2x300t

Sydney tower 305m Passive tuned pendulum 0.1,0.5z, 220t

Rokko Island P&G, Kobe 117 m Passive tuned pendulum 0.33-0.62Hz, 270t

Yokohama Landmark tower 296 m Active tuned mass dampers (2) 0.185Hz, 340t

Shinjuku Park Tower 296 m Active tuned mass dampers (3) 330t

TYG Building, Atsugi 159 m Tuned liquid dampers (720) 0.53Hz, 18.2t
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Motivation
Neural models

How a cell distinguishes between inputs

Image from Neuromart (Rice-Baylor archive of neural morphology)

60um

Goal: e simulation of systems containing a few million neurons
e simulations currently limited to systems with ~10K neurons
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Outline

e Approximation methods
@ SVD-based methods
@ Krylov-based methods
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Approximation methods: Overview

/\

e Realization
e Interpolation
e Lanczos

e Arnoldi
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SVD

N

Nonlinear systems

Linear systems

e POD methods
e Empirical Gramians

e Balanced truncation
e Hankel approximation

/

| Krylov/SVD Methods |
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Approximation methods

SVD Approximation methods

A prototype approximation problem — the SVD
(Singular Value Decomposition): A = UXV*.

Supernova Clown

Singular values of Clown and Supernova Supernova: original picture

T
green: clown
Ted: supernova,
{log-log scale)

Supernova: rank 6 approximation

T R R
L S S R

Supernova: rank 20 approximation

[0}

\ Singular values provide trade-off between accuracy and complexity \
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S sz
POD: Proper Orthogonal Decomposition

Consider: x(t) = f(x(t),u(t)), y(t) = h(x(t), u(t)).
Snapshots of the state:

X =[x(t) x(&) - x(ty)] € R™N
SVD: ¥ = UXV* = UcX«V}, k < n. Approximate the state:
X(t) = Uix(t) = x(t) =~ UkX(t), X(t) € R¥

Project state and output equations. Reduced order system:

(1) = Upf(Uk(t),u(1), y(t) = h(Uik(0), u(t))

= X(t) evolves in a low-dimensional space.

Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.
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SVD methods: the Hankel singular values

Trade-off between accuracy and complexity for linear dynamical systems is

provided by the Hankel Singular Values, which are computed (for stable
systems) as follows:

Define the gramians

p— / ABB A dt. Q- / A IC CeM ot
0 0

To compute the gramians we need to solve 2 Lyapunov equations:

AP +PA*+BB*=0, P>0 =
A‘Q+QA+C'C=0, Q>0 } = |01 = VA(PQ)

o;i: Hankel singular values of system ¥.
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Approximation methods SVD-based methods

SVD methods: approximation by balanced truncation

There exists basis where P = Q = S = diag (04, --- ,0p). This is the
balanced basis of the system.

In this basis partition:
B

Ay A12) < > (Z1 0 )
A= ,B=[—5—],C=(Ci]Cy), S= )
<A21 Az B> S 0 |22
The reduced system is obtained by balanced truncation
& ( Ay | By
P (Aufe).

Y, contains the small Hankel singular values.

Projector: 1 = VW* where V=W = < '6‘ )
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SVD-based methods
Example

Velocity

10
Y Y |
02} o o
Y,
107
of Ty Q @ Ty #
v, 10
o) a
n, Ty 10
o7 i o5 @8 i e o2 o4 0g 08 ! 2
l o g i 3

We consider model reduction of a semidiscretized advection diffusion equation. The problem is motivated by the optimal control
of pollutants. The advection diffuson equation for the concentration ¢ of the pollutant. is

Bic(€, 1) — V(kVe(E, 1) + V(&) - V(€ 1)
= u(€, hxu, (€) + u(§, Dxy,(€)  InQ,

with boundary and initial conditions ¢(¢, t) = 0in I'p, and (&, 1) =0,in TN c(&,0) = 2exp(—100((&¢ — 0. 1) + 52)) in
Q. The domain Q and the boundary segments I'p, 'y, are c{%plcted below. x g is the characteristic function corresponding to the
subdomain S C Q. The inputs are u; defined on U; x (0, T), i = 1,2, where Uy, U, are he subdomains shown below. In our
numerical experiment we set uy = up = 50. The diffusivity is x = 0.005 and the advection v is the solution of a steady state
Stokes equation on Q wit inflow condition at £y = 0 and “do nothing” outflow condition at £, = 1.2.

Original Reduced
m=16 m=16
n = 2673 k=10
p =283 p =283
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SVD-based methods
Example

t=2.0
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SVD-based methods
Properties of balanced reduction

@ Stability is preserved
@ Global error bound: oy i1 <| X = ¥ [|leo< 2(0k 1 + - + 0n)

@ Dense computations, matrix factorizations and inversions = may be
ill-conditioned; number of operations O(n®)

@ Bottleneck: solution of two Lyapunov equations

© Slow decay of HSV: a transmission line

Frequency response and Hankel singular values

Thanos Antoulas (Rice University) Model reduction of large-scale systems 24 /68



Gyl S
Approximation methods: Krylov methods

/\

e Realization
e Interpolation /\
e Lanczos

e Arnoldi Nonlinear systems | Linear systems
e POD methods e Balanced truncation
e Empirical Gramians | e Hankel approximation

/

‘ Krylov/SVD Methods‘
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Krylov-based methods
The basic Krylov iteration

Given A c R™"and b € R”, let vy = ﬁ. At the k! step:

]Avk =ViH +fe;|  where

e, € R¥: canonical unit vector
Vi=[vq - V] € REKO ViV, = I
Hk = V;';AVk S Rkxk

Three uses of the Krylov iteration

(1) lterative solution of Ax = b: approximate the solution x iteratively.

(2) lterative approximation of the eigenvalues of A. In this case b is not fixed
apriori. The eigenvalues of the projected H, approximate the dominant
eigenvalues of A.

(3) Approximation of linear systems by moment matriching.

= ‘Item (3) is of interest in the present context.
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Gyl S
Krylov methods: Approximation by moment matching

Given Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around Sg:

H(s) = 10 + 71(s — 80) + 712(5 — 80)* + 113(s — 80)° + - --

Moments at sy: 7;.

N

Find Ex(t) = AX(t) + Bu(t), y(t) = Cx(t) + Du(t), with
H(s) = o + 71 (S — S0) + 72(5 — 80)2 + M1a(5 — 80)° + - - -

such that for appropriate s and ¢:

‘77/:77/, j:1,2,~~~,é‘
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Approximation methods Krylov-based methods

The general interpolation framework

@ Expansion around infinity: n; are the Markov parameters = partial
realization.

Expansion around arbitrary sq € C: ; moments = rational
interpolation.

@ Goal: produce H,(s), that approximates with high fidelity a very large
order transfer function, H(s): H,(s) =~ H(s), by means of interpolation at
a set of points {o;}/_; € C: H/(c;) =H(o;) for i=1,...,r.

@ This is a good starting place for SISO systems but is overly restrictive for
MIMO systems, since the condition H.(o;) = H(o;) imposes m - p scalar
conditions at each point. Instead consider interpolation conditions that
are imposed in specified directions: tangential interpolation.

@ Remark. The Krylov and rational Krylov algorithms match moments
without computing them. Thus moment matching methods can be
implemented in a numerically efficient way.
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Approximation methods Krylov-based methods

Problem 1: Model Reduction given state space system data
Given a full-order model E, A, B, C, and D and given

left interpolation points: right interpolation points:
{wi}i_, CC, {oi}i_y cC
with corresponding and with corresponding
left tangent directions: right tangent directions:
{6}y ccr, {ritiy cC™.

Find a reduced-order model E,, A,, B,, C,, and D, such that the associated
transfer function, H,(s), is a tangential interpolant to H(s):

CHA (i) = G H(u) and  H (o)1, = H(o))r;,
fori=1,---,q, forj=1,---r,
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Approximation methods Krylov-based methods

Problem 2: Model reduction given input-output data
Given a set of input-output response measurements on a system specified by

left driving frequencies: right driving frequencies:
{witi, cC, {oitiy cC
using left input directions: and using right input directions:
{e}i, ccP, {ritiy cC7
producing left responses: producing right responses:
{viti, ccm, {witi, cCP

Find a system model by specifying (reduced) system matrices E,, A,, B,, C,,
D, such that H,(s), is a tangential interpolant to the given data:

CH (i) = V7 and H;(o))r; = wj,
fori=1,---.q, forj=1,---,r.

Interpolation points and tangent directions are determined (typically) by the
availability of experimental data.
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Interpolatory Projections

We seek H,(s) so that
H((T,‘)r,' = H,(a,-)r,-, for i = 1,'“ ,r,
ffH(Mj)foHdﬂjL for j=1,--~ ,

The goal is to interpolate H(s) without ever computing the quantities to be

matched since these are numerically ill-conditioned. This is achieved by the
projection framework.

Interpolatory projections

V. =[(c1E—A)'Bry, -+, (o,E — A)'Br,],
(;C(E — A)~"

A= :
(;C(uE — A)!
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Approximation methods Krylov-based methods

Properties of Krylov (interpolatory) methods

o Number of operations: O(kn?) or O(k?n) vs. O(n®) = efficiency

Q: ‘ How to choose the projection points? ‘

We will discuss two cases:

@ Passivity preserving model reduction.

@ Optimal #, model reduction.
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Outline

e Choice of projection points
@ Passivity Preserving Model Reduction
@ Optimal H> model reduction
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Choice of projection points Passivity Preserving Model Reduction

Choice of Krylov projection points: Passivity preserving model reduction

Passive systems:
Re ['_u(r)'y(r)dr >0,V t € R, VU € Lo(R).

Positive real rational functions:
(1) H(s) = D + C(sE — A)~'B, is analytic for Re(s) > 0,
(2) Re H(s) > 0 for Re(s) > 0, s nota pole of H(S).

E.A| B

Theorem: ¥~ = < c D

) is passive < H(s) is positive real.

Conclusion: Positive realness of H(s) implies the existence of a spectral
factorization H(s) + H*(—s) = ®(s)®*(—s), where the poles and (finite)
zeros of ®(s) are stable. The spectral zeros are A such that: (), loses rank.
Hence there is a right spectral zero direction, r, such that

(HA) + H*(=\)r=0=r*(H(—)\) + H*(\)) = 0.
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Choice of projection points Passivity Preserving Model Reduction

Passivity preserving model reduction: New result

@ Method: Rational Krylov
@ Solution: projection points = spectral zeros

Passivity preserving tangential interpolation

Suppose the dynamical system represented by H(s) = C(sE — A)~'B + D, is
stable and passive. Suppose that for some r > 1, A\y,--- |\, are stable
spectral zeros of H with corresponding right spectral zero directions rq, ..., t,.

If a reduced order system H,(s) tangentially interpolates H(s) with o; = A,
along rj, uj = —\;, along r* fori = 1,...,r, then H,(s) is stable and passive.

v

The computation of the spectral zeros of the system can be formulated as a
structured eigenvalue problem. Let

A 0 B E 0 O
H=| 0 —A* —C* ,E=1 0 E* 0
C B* D+D* 0O 0 O
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Choice of projection points Passivity Preserving Model Reduction

Spectral zero interpolation preserving passivity

Hamiltonian EVD & projection

e Hamiltonian eigenvalue problem

A 0 B
0 A" —cC
c B

D+ D"

I

X E 0 O X
Y|=|0 E° 0 Y | A
y4 0 0 O 4

The generalized eigenvalues A are the spectral zeros of ¥

¢ Partition eigenvectors

X X_
Y [=] Y-
y4 Z_

A_ are the stable spectral zeros

¢ Projection
OV=X__ W=Y_

A
) A= /\+
+o00

@ E-WEV,A=WAV, B=WB,C=CcV,D=D
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Choice of projection points Passivity Preserving Model Reduction

Dominant spectral zeros — SADPA

What is a good choice of k spectral zeros out of n ?

. o . . . R;
@ Dominance criterion: Spectral zero s; is dominant if: mé(él-)
: )

large.

@ Efficient computation for large scale systems: we compute the
k < n most dominant eigenmodes of the Hamiltonian pencil.

@ SADPA (Subspace Accelerated Dominant Pole Algorithm ) solves
this iteratively.

, is

Conclusion:

Passivity preserving model reduction becomes a
structured eigenvalue problem
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Choice of projection points Passivity Preserving Model Reduction

An example

Consider the following RLC circuit:

Using the voltages across Cy, Co, and the currents through Ly, Ly, as state variables, x;, = 1, 2, 3, 4, respectively, we end up
with equations of the form Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), where

Cy 0 —Gily Golp 0 0 1 -1
0 G 0 —Gplp 0 0 0 1
E= , A= >
0 0 Ly 0 —1 0 0 0
0 0 0 Ly 1 —1 0 0
0
B=| ¢ | c=16,0 10 Dp=ay
0
G = Ril_, i =1, 2, are the corresponding conductances.
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Choice of projection points Passivity Preserving Model Reduction

This system has a double spectral zero at s = 0. The Hamiltonian pair is:

0 0 1 - 0 0 o0 0 0
0 0 0 1 0 0 o0 0 0
—1 0 0 0 0 0 o0 0 1
1 —1 0 0 0 0 o0 0 0
H = 0 [] 0 0 0 1 -1 Gy s
0 0o 0 0 0 0 o0 1 0
0 0 0 0o -1 0 0 0o -1
0 0 0 0 1 -1 0 0 0
—Gy 0 1 0 0 0 1 0 2G;
and
Cq 0 —Gy L4 Golp 0 0 0 0 0
0 Co 0 —Gaolyp 0 0 0 0 0
0 0 Ly 0 0 0 0 0 0
0 0 0 Lo 0 0 0 0 0
£ = 0 0 0 0 Cq 0 0 0 0
0 0 0 0 0 Co 0 0 0
0 0 0 0 —Gyly 0 Ly 0 0
0 0 0 0 Goly —Gaolp 0 L, O
0 0 0 0 0 0 0 0 0
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Choice of projection points °'ﬁ%sé%?ﬂﬁ}’ﬁé%é’r?ﬁﬁ§ Model Reduction

1 0
4
0
0

[x1, xo] = —1 0
—1 0

—G -1

0 —%

1 0

- oo

G2
C1+Cy 0

I
<
3
|
o o=

The reduced quantities are:
Ci+Co 0 G 1
% A =WAV, = 1
L. 2 . [als r r ( 1 0 s
0 1 G 2

B,:W,*B:( Gi

E = W/EV, = (

. o u
From these matrices we can read-off an RLC realization:

2

P P 1 Co B_
where C=Cy + Cp, L= - =Ly + (©11Go2 Lp,and R = Ry.
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Choice of projection points Optimal H, model reduction

Choice of Krylov projection points:
Optimal H, model reduction

Recall: the H, norm of a stable (SISO) system is:
+oo 1/2
=l = (| wecoer)
where h(t) = Ce*'B, t > 0, is the impulse response of ¥.
Goal: construct a Krylov projector such that

+o0 R
Yk = arg min HZ - i‘ = </ (h— h)2(t)dt)
deg(X) =r ke —o0

2 : stable

1/2

The optimization problem is nonconvex. The common approach is to find
reduced order models that satisfy first-order necessary optimality conditions.
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Choice of projection points Optimal H, model reduction

First-order necessary optimality conditions

Let (A, B, é) solve the optimal H, problem and let }; denote the eigenvalues
of A (we assume for simplicity that E = 1 and m = p = 1). The necessary
conditions are: R .

H(=A7) = H(=A}) and  ZH(s)[,__5. = GH(s) s
Thus the reduced system has to match the first two moments of the original
system at the mirror images of the eigenvalues of A.

o Make an initial selection of o, fori = 1,. ..,k
Q@ W1 -A")TCr, -, (o4l — AT)TCY]
Q Vv=ii1-A""B, -, (okl - A) B

0 while (not converged)
@ A= (w*v)'w*av,

@ o, — —X;(A) 4 Newton correction, i =1,..., k
@ W=[(oql—A*)"TC*, ..., (o4l — A¥)~1C*]
@ V=[(ol—A)"'B, ---, (oxl —A)"'B]

@ A=wv)"'WrAV,B = (W*V)~'W*B, € = CV
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Choice of projection points Optimal H, model reduction

A numerical algorithm for optimal H> model reduction

e Global minimizers are difficult to obtain with certainty; current approaches
favor seeking reduced order models that satisfy a local (first-order) necessary
condition for optimality. Even though such strategies do not guarantee global
minimizers, they often produce effective reduced order models.

e The main computational cost of this algorithm involves solving 2r linear
systems to generate V, and W,. Computing the eigenvectors Y and X, and
the eigenvalues of the reduced pencil AE, — A, are cheap since the
dimension r is small.

¢ IRKA has been successfully applied to finding H»-optimal reduced models
for systems of order n > 160, 000.
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Choice of projection points Optimal H, model reduction

Moderate-dimensional example

@ total system variables n = 902, independent variables dim = 599, reduced
dimension k = 21
@ reduced model captures dominant modes

Frequency response
Spectral zero method with SADPA
=002 dim=599 k=21

TR e

—— original
- = Reduced(sZM)|

singular values (db)
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Choice of projection points Optimal H, model reduction

Hso and Ho error norms

Relative norms of the error systems

Reduction Method

n = 902, dim — 599, k — 21 Hoo | T2
PRIMA 1.477 -
Spectral Zero Method with SADPA | 0.962 | 0.841
Optimal H> 0.594 | 0.462
Balanced truncation (BT) 0.939 | 0.646
Riccati Balanced Truncation (PRBT) | 0.961 | 0.816
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Choice of projection points Optimal H, model reduction

Choice of points: summary

e | Passive model reduction mirror image of spectral zeros
e | Optimal H> model reduction mirror image of reduced system poles
e | Hankel norm model reduction mirror image of system poles

e | Systems with proportional damping| mirror image of ’focal’ point

Question: What is the deeper meaning of mirror image points?
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Optimal H; model reduction
Approximation methods: Summary

/\

o Realization
e Interpolation /\
e Lanczos

* Arnoldi Nonlinear systems | Linear systems
e POD methods e Balanced truncation

/ e Empirical Gramians | e Hankel approximation
a

Kronv/SVD Methods‘

o Stability

e numerical efficiency

on > 10%

e Error bound

on =~ 10°
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Outline

e Model reduction from measurements
@ S-parameters
@ The Loewner matrix
@ Tangential interpolation: L & oL
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Recall: the big picture

’ Physical System ‘ and/or

Modeling

-

\ Model reduction \

Simulation
| reduced # of ODEs | <£ Design

Control
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S-parameters
A motivation: electronic systems

e Growth in communications and networking and demand for high data
bandwidth requires streamlining of the simulation of entire complex systems
from chips to packages to boards, etc.

e Thus in circuit simulation, signal intergrity (lack of signal distortion) of high
speed electronic designs require that interconnect models be valid over a
wide bandwidth.

An important tool: = S-parameters
e They represent a component as a black box. Accurate simulations require
accurate component models.

e In high frequencies S-parameters are important because wave phenomena
become dominant.

e Advantages: 0 < |S| < 1 and can be measured using VNAs (Vector
Network Analyzers).
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_____________Modelreduction from measurements [REEEEE
Scattering or S-parameters

Given a system in I/O representation: y(s) = H(s)u(s),

the associated S-paremeter representation is

¥(s) = S(s)i(s) = [H(s) + NH(s) — 1" (s),

S(s)
where
y = 5 (y +u) are the transmitted waves and,
U = } (y — u) are the reflected waves.

S-parameter measurements.

S(jwk): samples of the frequency response of the S-parameter system
representation.
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Model reduction from measurements S-parameters

Measurement of S-parameters

VNA (Vector Network Analyzer) — Magnitude of S-parameters for 2 ports
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The Loewner matrix
Model construction from data:

Interpolation

Assume for simplicity that the given data are scalar:

(siv(ybl')a ’:1727 7Na S/#Sj, 17&/

Find H(s) = 5 such that H(s;) = ¢;, i = 1,2,--- N,
and n,d: coprime polynomials.

Main tool: Loewner matrix. Divide the data in disjoint sets:
(Aian)! = 1a27"' ak! (:u]’V/)!./: 172a"' 4, k+q: N:

Vi—Wj L Vi — W
1=\ 11—k
L= : . : e Caxk
Vg—W, . Vg — Wk
Jg—M g — Ak
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Model reduction from measurements The Loewner matrix

Model construction from data:

Interpolation

Main results (1986). e The rank of IL encodes the information about the
minimal degree interpolants: rankIL o N — rankL.
e If H(s) = C(sl — A)~'B + D, then

c(xql—A)~!
C(Xxol —A)~!
L=- : [l =A)"'B - (ugl—A)'B |
C(AkléA)*‘ R
- 7 -
o
e Special case. single pomt with mult|pI|C|ty (S0; ¢0, D1, ,dn—1). Then
a+ ® * -
g @ N
2! 3! 41
93 da
L=| % * = Hankel structure
b4 .
T

Thus the Loewner matrix generalizes the Hankel matrix when general
interpolation replaces realization.
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Tangential interpolation: I & ol
General framework — tangential interpolation
Given: e right data: (\;;rj,w;),i=1,--- |k

o left data: (u; ¢;,v)), j=1,---,q.
We assume for simplicity that all points are distinct.

Problem: Find rational p x m matrices H(s), such that

H\)r = w; GH(p)) = v;
Right data:
A R=1[r ry, --- 1] € C™k
A= .. c (Cka,
by WZ[W1 Wy --- Wk]E(CpXk

Left data:

Iz £ A

M= . cCI*L=|: |eCI*V= : e caxm
Hq lq Vg
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Tangential interpolation: L. & oL
General framework — tangential interpolation

Input-output data: H(A;)r; = w;, £;H(p;) = v;. The Loewner matrix is:

Vi —£41Wy .. Vil —l1Wg
IEEY 11— Ak
L= : . : c Caxk
Vgl —ZqW1 . Vqu_[qwk
Hg— A Hg—Ak

Therefore I satisfies the Sylvester equation
LA — ML = VR — LW

Given a realization E, A, B, C: H(s) = C(sE — A)~'B, let X, Y be the
generalized reachability/obervability matrices:

x; = (ME — A)~'Br; = X: generalized reachability matrix

y; = {;C(1;E — A)~" = Y: generalized observability matrix.

- [L=vex
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Tangential interpolation: L. & oL
The shifted Loewner matrix

@ The shifted Loewner matrix, oL, is the Loewner matrix associated

to sH(s).
PAVA =W AL Vg — L WA
H1—A H1— Ak
oL = : : € CI<k
qVql1 7@qW1 A L MqVqI’kffqu)\k
Hg—M Bg—Ak

@ oL satisfies the Sylvester equation

oA — MolL = VRA — MLW |

@ oL can be factored as

- [ VAX]
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Tangential interpolation: L & oL
Construction of Interpolants (Models)
Assume that kK = /¢, and let

det (xL — o) #0, x € {\}U{u}
Then
E=-L A=-oL, B=V, C=W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(oL — sL)~'V

interpolates the data.

Proof. Multiplying the first equation by s and subtracting it from the second we get
(oL — SL)A — M(coLL — sL) = LW(A — sl) — (M — sl)VR.
Multiplying this equation by e; on the right and setting s = X;, we obtain
(Ml = M)(oL — AjL)e; = (Al — M)Vr; = (AL — oL)e; = Vr; = We; = WAL — oL) "'V

Therefore w; = H(\;)r;. This proves the right tangential interpolation property. To prove the left tangential interpolation property,
we multiply the above equation by ejf‘ on the left and set s = eyt

* * * —1
e; (oL — pL)(A — pil) = el-* LW(ul = A) = e; (oL — pjL) = {W = e V= LW(oL — L)~ 'V
Therefore v; = £;H(p)).
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Tangential interpolation: L. & oL
Construction of interpolants:

New procedure

Main assumption:

rank (XL — oL) = rank ( L. oL ) = rank ( aﬂi, ) =k, x € {\}U{y}

Then for some x € {\;} U {y;}, we compute the SVD
XL — ol = YXX

with rank (xIL — olL) = rank (X) = size (¥) =: k, Y € C**k, X € Ck*».

Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

[E-—Y'LX* [ B=YV |
[A=—YoLX* | C=WX"|

Remark. The system [E, A, B, C] can now be further reduced using any of
the usual reduction methods.
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Tangential interpolation: L. & oL
Example: mechanical system

Mechanical example: Stykel, Mehrmann

The vibration of this system is described in generalized state space form as:
p(t) = V(1)
Mv(t) Kp(t) + Dv(t) — G*A(t) + Bau(t)
0 = Gp()
y(t) = Cip(t)
Measurements: 500 frequency response data between [-2/, +2i].
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Tangential interpolation: L. & oL
Mechanical system: plots

Frequency responses of original n=97 and identified systems k=2,6,10,14,18 Error plots identified systems k=2,6,10,14,18
T T T T T T T T T

Left: Frequency responses of original system and
approximants (orders 2, 6, 10, 14, 18)

Right: Frequecy responses of error systems
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Tangential interpolation: L. & oL
Example: Four-pole band-pass filter

1000 measurements between 40 and 120 GHz; S-parameters 2 x 2,
MIMO (approximate) interpolation = L, oL € R2000x2000,

‘Singular values of 2 x 2 system vs 1 x 1 systems Magnitude of S(1,1),S(1.2) and 21st order approximants

The singular values of L, oL The S(1, 1) and S(1, 2) parameter data
17-th order model
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Model reduction from measurements Tangential interpolation: L. & oL

Example: delay system

EX(t) = Aox(1) + Arx(t — ) + Bu(1), y(t) = Cx(1),
where E, Ag, Ay are 500 x 500 and B, C* are 500-vectors.

e Procedure: compute 1000 frequency response samples.

e Left figure: Singular values of L.

e Then apply recursive/adaptive Loewner-framework procedure.
o Right figure: (Blue: original, red: 35th order approximant.)

10 o Adaptive/Recursive approximant N = 35; Hinf-error = .008
[}
'|
10° \
w0
Ve
\/
107"
0
1078
N
107 ) \\
0 200 400 600 800 1000 *© o T 2 3
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Outline

e Conclusions
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Conclusions

Summary

We discussed SVD and Krylov or Interpolatory methods. The latter
amount to the choice of interpolation data.

o

2]

Passivity preserving reduction
Key quantities: spectral zeros
Problem reduced to a Hamiltonian eigenvalues problem

Optimal H, reduction

Key quantities: mirror image of reduced system poles
Algorithm: lterative Krylov

Only model reduction algorithm with error optimization

Reduction from data (e.g. S-parameters)

Key tool tangential interpolation

Can deal with many input/output ports

Key tool: Loewner matrix pair

Natural way to construct full and reduced models
= does not force inversion of E
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Conclusions

(Some) Challenges in model reduction

Uncertain systems, i.e. systems depending on parameters
Non-linear systems (POD, TPWL, EIM, etc.)

Non-linear differential-algebraic (DAE) systems

Sparsity and parallelization

Domain decomposition methods

MEMS and multi-physics problems (micro-fluidic bio-chips)
CAD tools for VLSI/nanoelectronics

Molecular Dynamics (MD) simulations

Model reduction and data assimilation (weather prediction)

Active control of high-rise buildings
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