Short-course
Compressive Sensing of Videos

Venue
CVPR 2012, Providence, RI, USA
June 16, 2012

Organizers:
Richard G. Baraniuk
Mohit Gupta
Aswin C. Sankaranarayanan
Ashok Veeraraghavan
Part 2: Compressive sensing
Motivation, theory, recovery

• Linear inverse problems

• Sensing visual signals

• Compressive sensing
 – Theory
 – Hallmark
 – Recovery algorithms

• Model-based compressive sensing
 – Models specific to visual signals
Linear inverse problems
Linear inverse problems

• Many classic problems in computer can be posed as linear inverse problems

• Notation
 – **Signal** of interest \(x \in \mathbb{R}^N \)
 – **Observations** \(y \in \mathbb{R}^M \)
 – Measurement model \(y = \Phi x + e \)

• Problem definition: given \(y \), recover \(x \)
Linear inverse problems

\[y = \Phi x + e \]

\[x \in \mathbb{R}^N \]
\[y \in \mathbb{R}^M \]

- Problem definition: given \(y \), recover \(x \)

- **Scenario 1**
 \[M \geq N \]
 \[\hat{x} = \Phi^{-1} y \]

- We can invert the system of equations

- Focus more on **robustness** to noise via signal priors
Linear inverse problems

\[y = \Phi x + e \]

\[x \in \mathbb{R}^N \]
\[y \in \mathbb{R}^M \]

- Problem definition: given \(y \), recover \(x \)

- Scenario 2

- Measurement matrix has a \((N-M)\) dimensional null-space

- Solution is no longer unique

- Many interesting vision problem fall under this scenario

- Key quantity of concern: Under-sampling ratio \(M/N \)
Image super-resolution

Low resolution input/observation

128x128 pixels
Image super-resolution

\[y = \Phi x + e \]

\[y(1,1) = (x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2}) / 4 \]
Image super-resolution

$$y = \Phi x + e$$

$$y_{(1,1)} = (x_{1,1} + x_{1,2} + \ldots + x_{4,3} + x_{4,4}) / 16$$
Image super-resolution

\[y = \Phi x + e \]

Super-resolution factor \(D \)

Under-sampling factor \(M/N = 1/D^2 \)

General rule:
The smaller the under-sampling, the more the unknowns and hence, the harder the super-resolution problem
Many other vision problems...

- Affine rank minimization, Matrix completion, deconvolution, Robust PCA

- Image synthesis
 - Infilling, denoising, etc.

- Light transport
 - Reflectance fields, BRDFs, Direct global separation, Light transport matrices

- Sensing
Sensing visual signals
High-dimensional visual signals

- Reflection
- Refraction
- Fog: Volumetric scattering
- Human skin: Sub-surface scattering
- Electron microscopy Tomography
The plenoptic function

Collection of all variations of light in a scene

Different slices reveal different scene properties
The plenoptic function

- **space** (3D)
- **time** (1D)
- **spectrum** (1D)
- **angle** (2D)

High-speed cameras

Lytro light-field camera

Hyper-spectral imaging

Hyper-spectral imaging
Sensing the plenoptic function

• **High-dimensional**
 – 1000 samples/dim == 10^{21} dimensional signal
 – Greater than all the *storage* in the world

• Traditional theories of sensing fail us!
Resolution trade-off

- Key enabling factor: **Spatial resolution is cheap!**

- Commercial cameras have 10s of megapixels

- One idea is the we trade-off spatial resolution for resolution in some other axis
Spatio-angular tradeoff

[Ng, 2005]
Spatio-angular tradeoff

[Levoy et al. 2006]
Spatio-temporal tradeoff

Stagger pixel-shutter within each exposure

[Bub et al., 2010]
Rearrange to get high temporal resolution video at lower spatial-resolution

[Bub et al., 2010]
Resolution trade-off

• Very powerful and **simple idea**

• **Drawbacks**
 – Does not extend to **non-visible** spectrum
 • 1 Megapixel SWIR camera costs 50-100k
 – Linear and global tradeoffs
 – With today’s technology, cannot obtain more than 10x for video without sacrificing spatial resolution completely
Compressive sensing
Sense by Sampling

\[x \rightarrow \text{sample} \rightarrow N \]
Sense by *Sampling*

\[x \rightarrow \text{sample} \rightarrow N \]

too much data!
Sense then *Compress*

\[x \rightarrow \text{sample} \rightarrow N \rightarrow \text{compress} \rightarrow K \rightarrow \text{decompress} \rightarrow N \rightarrow \hat{x} \]

JPEG
JPEG2000

...
Sparsity

\(N \) pixels

\(K \ll N \)

large wavelet coefficients

(bleu = 0)
Sparsity

N pixels

$K \ll N$
large wavelet coefficients
(blue = 0)

N wideband
signal samples

$K \ll N$
large Gabor (TF) coefficients

N pixels

$K \ll N$
large wavelet coefficients
(blue = 0)

N wideband
signal samples

$K \ll N$
large Gabor (TF) coefficients
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces aligned w/ coordinate axes
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly with power-law
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly with power-law
 - model: ℓ_p ball: $\|x\|_p^p = \sum_i |x_i|^p \leq 1, \ p \leq 1$
What’s Wrong with this Picture?

- Why go to all the work to acquire N samples only to discard all but K pieces of data?
What’s Wrong with this Picture?

linear processing

linear signal model (bandlimited subspace)

nonlinear processing

nonlinear signal model (union of subspaces)
Compressive Sensing

- Directly acquire “compressed” data via dimensionality reduction
- Replace samples by more general “measurements”

\[K \approx M \ll N \]
Sampling

- Signal x is K-sparse in basis/dictionary Ψ
 - WLOG assume sparse in space domain $\Psi = I$
• Signal x is K-sparse in basis/dictionary Ψ
 – WLOG assume sparse in space domain $\Psi = I$

• Sampling

\[
\begin{align*}
N \times 1 \quad &\text{measurements} \\
\begin{array}{c}
\text{y} \\
\Phi = I \\
\text{x}
\end{array} \\
\begin{array}{c}
N \times 1 \\
\text{sparse} \\
\text{signal}
\end{array}
\end{align*}
\]

\[K \quad \text{nonzero entries}\]
Compressive Sampling

• When data is sparse/compressible, can directly acquire a **condensed representation** with no/little information loss through linear **dimensionality reduction**

\[y = \Phi x \]

\[M \times 1 \quad \text{measurements} \]
\[\Phi \]
\[M \times N \]
\[x \]
\[N \times 1 \quad \text{sparse signal} \]
\[K \quad \text{nonzero entries} \]

\[K < M \ll N \]
How Can It Work?

- Projection Φ **not full rank**...

$M < N$

... and so **loses information** in general

- Ex: Infinitely many x’s map to the same y (null space)
How Can It Work?

• Projection Φ not full rank...

$$M < N$$

... and so loses information in general

• But we are only interested in **sparse** vectors
How Can It Work?

• Projection Φ not full rank...

\[M < N \]

... and so loses information in general

• But we are only interested in \textit{sparse} vectors

• Φ is effectively $M\times K$
How Can It Work?

- Projection Φ not full rank...

$M < N$

... and so loses information in general

- But we are only interested in \textit{sparse} vectors

- \textbf{Design} Φ so that each of its $M \times K$ submatrices are full rank (ideally close to orthobasis)

 - Restricted Isometry Property (RIP)
Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
Restricted Isometry Property (RIP)

- “Stable embedding”
- RIP of order $2K$ implies: for all K-sparse x_1 and x_2

\[
(1 - \delta_{2K}) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})
\]
RIP = Stable Embedding

- An information preserving projection Φ preserves the geometry of the set of sparse signals.

- RIP ensures that

$$\| x_1 - x_2 \|_2 \approx \| \Phi x_1 - \Phi x_2 \|_2$$
How Can It Work?

- Projection Φ not full rank...

 $M < N$

 ... and so loses information in general

- **Design** Φ so that each of its $M \times K$ submatrices are full rank (RIP)

- Unfortunately, a combinatorial, **NP-complete design problem**
Insight from the 70’s [Kashin, Gluskin]

- Draw Φ at **random**
 - iid Gaussian
 - iid Bernoulli ± 1
 ...

- Then Φ has the RIP with high probability provided

$$M = O(K \log(N/K)) \ll N$$
Randomized Sensing

- Measurements = random linear combinations of the entries of the signal

\[y = \Phi x \]

- No information loss for sparse vectors whp

\[M \times 1 \text{ measurements} = \begin{bmatrix} M \times N \end{bmatrix} \]

\[N \times 1 \text{ sparse signal} \]

\[M = O(K \log(N/K)) \]
CS Signal Recovery

- **Goal**: Recover signal x from measurements y

- **Problem**: Random projection Φ not full rank (ill-posed inverse problem)

- **Solution**: Exploit the sparse/compressible geometry of acquired signal x
CS Signal Recovery

• Random projection Φ not full rank

• Recovery problem:
given $y = \Phi x$
find x

• Null space

• Search in null space for the “best” x
according to some criterion
 – ex: least squares

$(N-M)$-dim hyperplane at random angle
\[\ell_2 \text{ Signal Recovery} \]

- **Recovery:**

 \[
 \text{given } y = \Phi x \]

 \[
 \text{find } x \text{ (sparse)}
 \]

- **Optimization:**

 \[
 \hat{x} = \arg \min_{y=\Phi x} \|x\|_2
 \]

- **Closed-form solution:**

 \[
 \hat{x} = (\Phi^T \Phi)^{-1} \Phi^T y
 \]
L₂ Signal Recovery

Recovery:
given \(y = \Phi x \)
find \(x \) (sparse)

Optimization:
\[
\hat{x} = \arg \min_{y=\Phi x} \|x\|_2
\]

Closed-form solution:
\[
\hat{x} = (\Phi^T \Phi)^{-1} \Phi^T y
\]

Wrong answer!
\(l_2 \) Signal Recovery

- **Recovery:**
 (ill-posed inverse problem)

- **Optimization:**

- **Closed-form solution:**

- **Wrong answer!**

\[
given \quad y = \Phi x \\
find \quad x \text{ (sparse)}
\]

\[
\hat{x} = \arg \min_{y = \Phi x} ||x||_2
\]

\[
\hat{x} = (\Phi^T \Phi)^{-1} \Phi^T y
\]
\(\ell_0 \) Signal Recovery

- **Recovery:**
 (ill-posed inverse problem)

 \[
 \text{given} \quad y = \Phi x \\
 \text{find} \quad \hat{x} \quad \text{(sparse)}
 \]

- **Optimization:**

 \[
 \hat{x} = \arg \min_{y=\Phi x} \|x\|_0
 \]

 “find \textbf{sparsest} vector in translated nullspace”

\[\mathbb{R}^N \]
\(l_0 \) Signal Recovery

- **Recovery:**
 (ill-posed inverse problem)

 \[
 \text{given } \ y = \Phi x \\
 \text{find } \ x \text{ (sparse)}
 \]

- **Optimization:**
 \[
 \hat{x} = \arg \min_{y=\Phi x} \| x \|_0
 \]
 “find sparsest vector in translated nullspace”

- **Correct!**

- **But NP-Complete alg**
\(\ell_1 \) Signal Recovery

- Recovery: given \(y = \Phi x \) find \(x \) (sparse)
- Optimization: \(\hat{x} = \operatorname{arg\,min}_{y = \Phi x} \|x\|_1 \)
- **Convexify** the \(\ell_0 \) optimization

- Candes
- Romberg
- Tao
- Donoho
ℓ_1 Signal Recovery

- **Recovery:**
 (ill-posed inverse problem)
 given $y = \Phi x$
 find x (sparse)

- **Optimization:**
 $\hat{x} = \arg \min_{y=\Phi x} \|x\|_1$

- **Convexify** the ℓ_0 optimization

- **Correct!**

- **Polynomial time** alg
 (linear programming)
Compressive Sensing

$\begin{align*}
M \times 1 & \quad \Phi \\
\text{random measurements} & \quad N \times 1 \\
M \times N & \\
K & \quad \text{nonzero entries}
\end{align*}$

• Signal recovery via ℓ_1 optimization

$\hat{x} = \arg\min_{y=\Phi x} \|x\|_1$
Compressive Sensing

\[y = \Phi x \]

- Signal **recovery** via iterative greedy algorithm
 - (orthogonal) matching pursuit \[\text{[Gilbert, Tropp]}\]
 - iterated thresholding
 \[\text{[Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; …]}\]
 - CoSaMP \[\text{[Needell and Tropp]}\]
Greedy recovery algorithm #1

- Consider the following problem

\[
\min \|y - \Phi x\|_2 \\
\text{s.t} \\
\|x\|_0 \leq K
\]

- Suppose we wanted to minimize just the cost, then steepest gradient descent works as

\[
\hat{x}_k = \hat{x}_{k-1} + \eta\Phi^T (y - \Phi \hat{x}_{k-1})
\]

- But, the new estimate is no longer K-sparse

\[
\hat{x}_k = \text{thresh} \left(\hat{x}_{k-1} + \eta\Phi^T (y - \Phi \hat{x}_{k-1}), K \right)
\]
Iterated Hard Thresholding

goal: given $y = \Phi x$, recover a sparse x
initialize: $\hat{x}_0 = 0$, $r = y$, $i = 0$
iteration:

- $i \leftarrow i + 1$
- $b \leftarrow \hat{x}_{i-1} + \Phi^T r$ \hspace{1cm} \textbf{update signal estimate}$\$
- $\hat{x}_i \leftarrow \text{thresh}(b, K)$ \hspace{1cm} \textbf{prune signal estimate (best } K \text{-term approx)}$
- $r \leftarrow y - \Phi \hat{x}_i$ \hspace{1cm} \textbf{update residual}$\$

return: $\hat{x} \leftarrow \hat{x}_i$
Greedy recovery algorithm #2

• Consider the following problem

\[y = \Phi x \]

\[M \times N \]

\[N \times 1 \]

sparse signal

• Can we recover the support?
Greedy recovery algorithm #2

• Consider the following problem

\[
\begin{align*}
y &= \Phi x \\
M \times N &\quad \text{sparse signal} \\
N \times 1 &\quad 1 \text{ sparse signal}
\end{align*}
\]

• If \(\Phi = [\phi_1, \phi_2, \ldots, \phi_N] \)

then \(\arg \max |\langle \phi_i, y \rangle| \) gives the support of \(x \)

• How to extend to \(K \)-sparse signals?
Greedy recovery algorithm #2

\[y = \Phi x \]

\(N \times 1 \) sparse signal

\(M \times N \) sparse

residue:

\[r = y - \Phi \hat{x}_{k-1} \]

find atom:

\[k = \arg \max | \langle \phi_i, r \rangle | \]

Add atom to support:

\[S = S \cup \{k\} \]

Signal estimate (Least squares over support)

\[x_k = (\Phi_S)\dagger y \]
Orthogonal matching pursuit

goal:
given \(y = \Phi x \), recover a sparse \(x \)
columns of \(\Phi \) are unit-norm

initialize: \(\hat{x}_0 = 0, r = y, \Lambda = \{\}, i = 0 \)

iteration:
\(i = i + 1 \)
\(b = \Phi^T r \)
\(k = \arg \max \{|b(1)|, |b(2)|, \ldots, |b(N)|\} \)
\(\Lambda = \Lambda \cup k \)
\((\hat{x}_i)|_{\Lambda} = (\Phi|_{\Lambda})^\dagger y, (\hat{x}_i)|_{\Lambda^c} = 0 \)
\(r = y - \Phi \hat{x}_i \)

Find atom with largest support
Update signal estimate
update residual
Specialized solvers

- **CoSAMP** [Needell and Tropp, 2009]

- **SPG_l1** [Friedlander, van der Berg, 2008]

- **FPC** [Hale, Yin, and Zhang, 2007]
 http://www.caam.rice.edu/~optimization/L1/fpc/

- **AMP** [Donoho, Montanari and Maleki, 2010]

many many others, see dsp.rice.edu/cs and https://sites.google.com/site/igorcarron2/cscodes
CS Hallmarks

- **Stable**
 - acquisition/recovery process is numerically stable

- **Asymmetrical** (most processing at decoder)
 - conventional: smart encoder, dumb decoder
 - CS: dumb encoder, smart decoder

- **Democratic**
 - each measurement carries the same amount of information
 - robust to measurement loss and quantization
 - “digital fountain” property

- Random measurements **encrypted**

- **Universal**
 - same random projections / hardware can be used for *any* sparse signal class (generic)
Universality

- Random measurements can be used for signals sparse in any basis

\[x = \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in any basis

\[y = \Phi x = \Phi \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in any basis

\[y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha \]
Summary: CS

- **Compressive sensing**
 - randomized dimensionality reduction
 - exploits signal **sparsity** information
 - integrates sensing, compression, processing

- Why it works: with high probability, random projections preserve information in signals with concise geometric structures
 - sparse signals
 - compressible signals
Summary: CS

- **Encoding:** \(y = \text{random linear combinations of the entries of } x \)
 \[M \times 1 \text{ measurements} = \Phi \]
 \[M \times N \]
 \[M = O(K \log(N/K)) \]

- **Decoding:** Recover \(x \) from \(y \) via optimization
 \[N \times 1 \text{ sparse signal} \]
 \[K \text{ nonzero entries} \]
Image/Video specific signal models and recovery algorithms
Transform basis

- Recall Universality: Random measurements can be used for signals sparse in *any* basis

$$x \Psi \alpha$$

- DCT/FFT/Wavelets ...
 - Fast transforms; very useful in large scale problems
Dictionary learning

• For many signal classes (ex: videos, light-fields), there are **no** obvious sparsifying transform basis

• Can we *learn* a sparsifying transform instead?

• **GOAL:** Given training data \(x_1, x_2, \ldots, x_T \)

 learn a “dictionary” \(D \), such that

 \[
 x_i = D s_i
 \]

 \(s_i \) are **sparse**.
Dictionary learning

- GOAL: Given training data x_1, x_2, \ldots, x_T

 learn a "dictionary" D, such that

 $$x_i = D s_i$$

 s_i are sparse.

$$\min_{D,S} \|X - DS\|_F$$

s.t.

$$\forall i, \|s_i\|_0 \leq K$$
Dictionary learning

\[
\min_{D,S} \|X - DS\|_F \quad \text{s.t.} \quad \forall i, \|s_i\|_0 \leq K
\]

- Non-convex constraint
- Bilinear in \(D\) and \(S\)
Dictionary learning

\[
\min_{D,S} \| X - DS \|_F + \lambda \sum_k \| s_k \|_1
\]

- Biconvex in \(D\) and \(S\)
 - Given \(D\), the optimization problem is convex in \(s_k\)
 - Given \(S\), the optimization problem is a least squares problem

- **K-SVD**: Solve using alternate minimization techniques
 - Start with \(D = \) wavelet or DCT bases
 - Additional pruning steps to control size of the dictionary

Aharon et al., TSP 2006
Dictionary learning

\[\min_{D,S} \| X - DS \|_F + \lambda \sum_k \| s_k \|_1 \]

- **Pros**
 - Ability to handle arbitrary domains

- **Cons**
 - Learning dictionaries can be computationally intensive for high-dimensional problems; need for very large amount of data
 - Recovery algorithms may suffer due to lack of fast transforms
Models on image gradients

- Piecewise constant images
 - Sparse image gradients

- Natural image statistics
 - Heavy tailed distributions
Total variation prior

\[TV(I) = \sum_{u,v} \| \nabla I(u, v) \|_2 = \sum_{u,v} \sqrt{I_x^2(u, v) + I_y^2(u, v)} \]

- TV norm
 - Sparse-gradient promoting norm

- Formulation of recovery problem

\[
\begin{align*}
\min & \quad TV(x) \\
\text{s.t} & \quad y = \Phi x
\end{align*}
\]
Total variation prior

- Optimization problem
 - **Convex**
 - Often, works “better” than transform basis methods

- Variants
 - 3D (video)
 - Anisotropic TV

- Code
 - TVAL3
 - Many many others (see dsp.rice/cs)

\[
\begin{align*}
\min & \ TV(x) \\
\text{s.t} & \ y = \Phi x
\end{align*}
\]
Beyond sparsity

Model-based CS
Beyond Sparse Models

• Sparse signal model captures _simplistic primary structure_

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images
Beyond Sparse Models

• Sparse signal model captures *simplistic primary structure*

• Modern compression/processing algorithms capture *richer secondary coefficient structure*

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images
Sparse Signals

- **K-sparse signals** comprise a particular set of K-dim subspaces
Structured-Sparse Signals

- A **K-sparse signal model** comprises a particular *(reduced)* set of *K*-dim subspaces
 [Blumensath and Davies]

- Fewer subspaces
 <> relaxed RIP
 <> stable recovery using fewer measurements M
Wavelet Sparse

- Typical of wavelet transforms of natural signals and images (piecewise smooth)
Tree-Sparse

- **Model:** K-sparse coefficients + significant coefficients lie on a **rooted subtree**

- Typical of wavelet transforms of natural signals and images (piecewise smooth)
Wavelet Sparse

- **RIP:** stable embedding

\[M = O(K \log(N/K)) \]
Tree-Sparse

- **Model:** K-sparse coefficients + significant coefficients lie on a rooted subtree

- **Tree-RIP:** stable embedding
 [Blumensath and Davies]

\begin{align*}
M &= O(K) < O(K \log(N/K))
\end{align*}
Tree-Sparse

• **Model:** K-sparse coefficients
 + significant coefficients
 lie on a rooted subtree

• **Tree-RIP:** stable embedding
 [Blumensath and Davies]

• **Recovery:** inject tree-sparse approx into IHT/CoSaMP
Recall: Iterated Thresholding

goal: given $y = \Phi x$, recover a sparse x
initialize: $\hat{x}_0 = 0$, $r = y$, $i = 0$
iteration:

- $i \leftarrow i + 1$
- $b \leftarrow \hat{x}_{i-1} + \Phi^T r$ \textbf{update signal estimate}
- $\hat{x}_i \leftarrow \text{thresh}(b, K)$ \textbf{prune signal estimate}
 \hspace{1cm} (best K-term approx)
- $r \leftarrow y - \Phi \hat{x}_i$ \textbf{update residual}

return: $\hat{x} \leftarrow \hat{x}_i$
Iterated Model Thresholding

goal: given $y = \Phi x$, recover a sparse x
initialize: $\hat{x}_0 = 0$, $r = y$, $i = 0$
iteration:

- $i \leftarrow i + 1$
- $b \leftarrow \hat{x}_{i-1} + \Phi^T r$ \hspace{1cm} update signal estimate
- $\hat{x}_i \leftarrow M(b, K)$ \hspace{1cm} prune signal estimate
 (best K-term model approx)
- $r \leftarrow y - \Phi \hat{x}_i$ \hspace{1cm} update residual

return: $\hat{x} \leftarrow \hat{x}_i$
Tree-Sparse Signal Recovery

- Target signal
 - Tree-sparse CoSaMP (RMSE=0.037)
 - L1-minimization (RMSE=0.751)

Signal length
\(N=1024\)

Random measurements
\(M=80\)
Clustered Signals

- Probabilistic approach via **graphical model**

- Model **clustering of significant pixels** in space domain using Ising Markov Random Field

- Ising model approximation performed efficiently using **graph cuts**
 \[\text{[Cevher, Duarte, Hegde, Baraniuk’08]}\]

![target](image1)
![Ising-model recovery](image2)
![CoSaMP recovery](image3)
![LP (FPC) recovery](image4)
Part 2: Compressive sensing
Motivation, theory, recovery

• Linear inverse problems

• Sensing visual signals

• Compressive sensing
 – Theory
 – Hallmark
 – Recovery algorithms

• Model-based compressive sensing
 – Models specific to visual signals