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RECAP: Compressive Sensing  

ÅSignal recovery  via   L1  optimization   
[ Candes , Romberg, Tao; Donoho ]  
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RECAP: Compressive Sensing  

ÅSignal recovery  via iterative greedy algorithm  
 

ï(orthogonal) matching pursuit   [Gilbert, Tropp]  

ïiterated thresholding  
[Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol;  
Blumensath, Davies; é] 

ïCoSaMP   [Needell and Tropp]  

random  
measurements  

sparse  
signal  

nonzero  
entries  



The Plan for the next hour  

ÅModel Based Compressive Video 
Sensing  
ïCoded Strobing  for Periodic signals  

ïCS-Linear Dynamical Systems  

ïLinear Motion Model  

 

ÅCompressive Sensing of Generic Videos  
ïSingle Pixel Video Camera  

ïVoxel Subsampling  

ïVoxel Multiplexing  



Model Based CS Video   

ÅPeriodic or Repetitive Videos  

ïCS Strobing  

 

ÅLinear Dynamical Systems  

ïCS ï LDS 

 

ÅLinear Motion Model  

ïMulti -Exposure Video  



Coded Strobing  Camera  

 

Ashok Veeraraghavan  

Dikpal  Reddy  

Ramesh Raskar  

PAMI 2010  
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Periodic Visual Signals  
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Strobing : Applications  

-Strobo -laryngoscopy  

-Observing machine 

parts, motors etc.  
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Periodic Signals  

Periodic signal with period P and band-limited to fMax.  

The Fourier domain contains only terms that are multiples of fP=1/P. 

4fP 

 

3fP 0 fMax - fMax fP=1/P 2fP 
-fP -2fP -4fP -3fP 

t 

Periodic Signal (x(t)) with period P 

P 
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Normal Camera and Aliasing  

0 fMax - fMax 

Causes aliasing of high frequency information.  

fS/2 = Sampling Frequency/2 

Integrates out the high frequency information and this information is 

irrevocably lost. 

P = 10ms 

TFrame= Frame Duration = 40ms 
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High Speed Camera  

0 fMax - fMax 

High speed video camera is inefficient since its bandwidth is wasted on 

the periodic signal since it is sparse in the Fourier domain 

fP=1/P 
2fP -fP -2fP -4fP -3fP 4fP 3fP 

Nyquist Sampling of x(t) ï When each period of x has very fine high 

frequency variations Nyquist sampling rate is very high. 

P = 10ms Ts = 1/(2 fMax) 
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Traditional Strobing  

When sampling rate of camera is low, generate beat frequencies of 

the high speed periodic signal which now can be easily captured 

P = 10ms 

The light throughput is also very low in order to avoid blurring of the 

features during the strobe time.  

The period of the signal needs to be known a priori 

t 
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Coded Strobing   
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Coded strobing: Time Domain  

Proposed Design: In every exposure duration observe different linear 

combinations of the underlying periodic signal. 

Advantage of the design:  

Exposure coding is independent of the frequency of the underlying periodic 

signal.  

Further, light throughput is on an average 50% which is far greater than 

can be achieved via traditional strobing. 

t P = 10ms 
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Coded strobing : Frequency domain  

Measure linear combinations of the Fourier components.  

Decode by enforcing sparsity of the reconstructed signal in Fourier 

domain. 

4fP fP=1/P 2fP 
-fP -4fP 

Measure Linear Combinations 

Sparsity Enforcing Reconstruction Algorithm 

0 

Measure Linear Combinations 

Sparsity Enforcing Reconstruction Algorithm 

-3fP 3fP fMax - fMax 

Measure Linear Combinations 

Sparsity Enforcing Reconstruction Algorithm 
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Signal model  

Non-zero 

elements 

Signal Fourier Basis Basis Coeff 

x    =                B                    s 

b1 b2 bN 

t 
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Observation Model  

y 

Observed 

Intensity 
Signal 

C x = 

Coded 

Strobing 

Frame 1 

Frame M 
Frame Integration 

Period TS 

N unknowns 

t 
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Signal and Observation model  

Mixing matrix ( satisfies 

Restricted Isometry under 

certain conditions ) 

Fourier coefficients 

of the signal ( sparse 

if periodic) 

Observed  

low-frame rate 

video 

A   s y C  B  s = = 

Signal Model:  

 

                                       x = B s  

 

Observation Model:  

 

                                       y = C x  

A of size M x N,  M<<N 
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Linear Inversion?  

Å y = A s  highly underdetermined . M << N  

 

Å For example: Capture at 10 fps for 30s with 1 ms  resolution has  

     M=300, N=30000  

 

 

Å Highly unstable in noise  

 

 

Å To reconstruct can we use extra information about the signal?  
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Extra info: Periodic signal  

Very few (K) 

non-zero 

elements 

Sparse Basis Coeff 

y    =                  A                s 

3fP 0 fMax - fMax fP=1/P 2fP 
-fP -2fP -4fP -3fP 

Mixing matrix Observed low  

rate  frames 
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Compressed Sensing  

Estimate sparse s  that satisfies y = A s  
 
 
Solve  
 
 

 

 

P1 is a linear program. Fast and robust algorithms available for 
solving P1  

(P1) 
1 2

min . .s s t y As e- ¢
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Signal model and recovery  
Å Signal Model  

 

 

Å Observation Model  

 

 

Å Compressed 
sensing  

 

 

Å Sparsity  and location 
enforced recovery  

Å x = B s 

 

 

Å y = C x 

 

 

Å Solve 

 

 
1 2

min . .s s t y As e- ¢
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Periodic Signals  

Periodic signal with period P and band-limited to fMax.  

The Fourier domain contains only terms that are multiples of fP=1/P. 

4fP 

 

3fP 0 fMax - fMax fP=1/P 2fP 
-fP -2fP -4fP -3fP 

t 

Periodic Signal (x(t)) with period P 

P 



Structure of Sparsity  

Sparse Basis Coeff 

y    =                  A                s 
Mixing matrix Observed low  

rate  frames 

Fundamental frequency and its harmonics  
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Sparsity and location  

(P1t) 
1 2

min . .s s t y As e- ¢

Å In addition to sparsity , use the location of the non -zero coefficients 
as constraint  

 

 

Å All the non -zero coefficients equally spaced at fP  

 

 

Å Solve  

 

 

 

 with truncated mixing matrix and basis coefficients  
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Signal model and recovery  
Å Signal Model  

 

 

Å Observation Model  

 

 

Å Compressed 
sensing  

 

 

Å Sparsity and 
location enforced 
recovery  

Å x = B s 

 

 

Å y = C x 

 

 

Å Solve 

 

 

Å Solve 

 

1 2
min . .s s t y As e- ¢

1 2
min . .s s t y As e- ¢



32  

Implementation  
Captured at 10fps using PGR Dragonfly2  

FLC Shutter  

Can be strobed at 1ms resolution 

Can flutter at 250us 



33  

Example: Fractal simulation  
Original Video: Period 25ms  Recovered Video  

Captured by 10fps camera  Captured by 10fps coded strobing  

camera  
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Rotating Mill Tool (Dragonfly2)  

Normal Video: 10fps  

Reconstructed Video  

 3000 RPM  

Reconstructed Video  

6000 RPM  

Reconstructed Video  

12000 RPM  

Reconstructed Video  

4500 RPM  



Compressive Sensing:  
Linear Dynamical Systems  

Aswin  Sankaranarayanan  

Pavan  Turaga  

Richard Baraniuk  

Rama Chellappa  



CSLDS: Video CS under LDS model  

Å Motivation  

ï Extensive use in dynamic textures , sequence of LDS 

for activity analysis , etcé 

ï  LDS == Frames of the video lie on a low dimensional 
subspace.  Linearity applicable over short durations  

 

Å Benefits  

ï LDS is a parametric model. Video CS is equivalent to 

parameter estimation  

ï Majority of the LDS parameters are static . This is 

extremely helpful in achieving high compression at sensing  

 



Linear dynamical system example  

Video 
sequence  

Few frames  

Six key 
images  

All frames can be estimated using linear combinations of SIX 
images  



Observation model  
Data lies on a low dimensional subspace  

 

C is a basis for the subspace. For 
uncompressed data, C is usually learnt 

using PCA on training examples.  
 
 
 
 
 

Terminology  
x t are the frames  of the video (high dim)  
v t are the subspace coeffficients  (low 

dim)  

LDS model  

NdRvRx

Cvx

d

t

N

t

tt

<<ÍÍ

=

,,



 
 
 
 
 

Can we recover C and v t  from y t  ? 
 

Very hard since the unknowns are bilinear  

Compressive LDS  

NMRy

vCAxAy

NdRvRx

Cvx

M

t

ttt

d

t

N

t

tt

<<Í

==
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,

,,

Digital  
m icro -mirror 

device  

Photo -detector  



Challenges and solution  

ÅKey challenge: Unknown variables appear as 
bilinear relationships  
ïCS theory handles unknowns in a linear relationship  

ÅSolution : A novel measurement model that reduces 
the bilinear problem to a sequence of linear/convex 
problems  

ïStable reconstruction at a measurement rate proportional to 
the state space dimension.  

Common 
measurements  

Innovations 
measurements  

Estimate state 
sequence  
using SVD  

Model based CoSaMP for 
recovery of observation 

matrix  

Scene  CS camera  

Tx :1 F
$

tF
~

Ty :1

$

Ty :1
~

Tv :1
Ĕ

CĔ

tt vCx
%ĔĔ= Tx :1
Ĕ



Re sults                    

Ground truth   Comp 20x    Comp 50x  
                  SNR: 24.9 dB    SNR: 20.4 dB  

Ground truth Comp20x   Comp50x  
                 SNR: 25.3 dB   SNR:23.8 dB  



Amit Agrawal       

Yi Xu 

Ramesh Raskar 

Linear Motion Model:  

Invertible Motion Blur in Video  



Traditional Exposure Video  

Fourier 

Transform 

Motion PSF 

(Box Filter) 

  Information is lost 

Exposure Time 

Slide courtesy Agrawal   



Varying Exposure Video  

Exposure Time Fourier 

Transform 

Slide courtesy Agrawal   



Varying Exposure Video  

Exposure Time 

Exposure Time Fourier 

Transform 

No common nulls 

Slide courtesy Agrawal   



Varying Exposure Video  

Exposure Time 

Exposure Time 

Exposure Time 

Fourier 

Transform 

No common nulls 

Slide courtesy Agrawal   



Varying Exposure Video = PSF Null -Filling  

Joint Frequency 

Spectrum 

Preserves All 

Frequencies 

Fourier 

Transform 

Slide courtesy Agrawal   



Varying Exposure Video  

Slide courtesy Agrawal   


