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Abstract— Progress in machine vision algorithms has led to
widespread adoption of these techniques to automate several
industrial assembly tasks. Nevertheless, shiny or specular ob-
jects which are common in industrial environments still present
a great challenge for vision systems. In this paper, we take a
step towards this problem under the context of vision-aided
robotic assembly. We show that when the illumination source
moves, the specular highlights remain in a region whose radius
is inversely proportional to the surface curvature. This allows us
to extract regions of the object that have high surface curvature.
These points of high curvature can be used as features for
specular objects. Further, an inexpensive multi-flash camera
(MFC) design can be used to reliably extract these features.
We show that one can use multiple views of the object using
the MFC in order to triangulate and obtain the 3D location and
pose of the shiny objects. Finally, we show a system consisting
of a robot arm with an MFC that can perform automated
detection and pose estimation of shiny screws within a cluttered
bin, achieving position and orientation errors less than 0.5 mm
and 0.8◦ respectively.

I. INTRODUCTION

Steady advances in machine vision algorithms have resulted

in the adoption of these techniques in industrial automation

and assembly. Nevertheless, several challenges still persist

in tackling objects that do not have a near-Lambertian

reflectance. Objects with mirror-like, transparent or translu-

cent surfaces possess material properties that are currently

viewed as noise sources and traditional techniques attempt

to suppress the impact of these effects. This means that

objects which are either highly specular or have significant

translucency cannot be handled by such methods since these

material effects cannot be completely suppressed.

In this paper, we show that the effect of specularities need not

be treated as a source of noise but rather as a feature that

can and does enhance our ability to detect, recognize and

interact with specular objects. We show that regions of high

curvature on a specular object lead to a very consistent and

robust feature that can be used to reliably perform machine

vision tasks. The basic idea is very simple. Since high

curvature regions in an object have normals that span a wide

angular extent, these regions almost always produce specular

reflections irrespective of the lighting position. The detection

of these specular reflections serves to indicate regions of

very high curvature on the surface of the object. The use of

a multi-flash camera (MFC) [20] aids in the detection and

extraction of these specular features. These high curvature

regions provide a distinct signature for several industrial

objects, which can be used for object detection, recognition

and pose estimation.

(a)

(b)

(c) (d)

Fig. 1: The robotic grasping platform. (a) Our system enables the
grasping of screws from a cluttered bin using a multi-flash camera
(MFC). (b) System overview. MFC is mounted on the robotic arm.
Screws are placed in a part container. (c) Close up of MFC,
employing 8 LEDs uniformly placed on its circumference. (d) Close
up of the gripper.

In this paper, we primarily focus on demonstrating our

approach to grasp screws from a cluttered bin, as shown in

Figure 1. Arguably, screws form the most fundamental class

of objects used in manufacturing systems. More threaded

screws are produced each year than any other machine

elements [6]. In conventional assembly lines, the screws have

to be placed into a part holder with known position and

orientation before the robot grasps and manipulates them.

This operation requires either a specially designed hardware

for each screw type such as a part feeder or performed using

manual labor, which can be avoided by our bin picking

system.

Majority of screws are made from shiny materials; therefore

they cannot be handled easily by traditional machine vision

algorithms. In addition, pose estimation of a screw in a bin is

a very challenging problem because of clutter and occlusion.

We show that the specular features can be robustly extracted

even in the cluttered bin. We estimate the pose of screws

by matching these features from the same screw in multiple

views. This matching is particularly difficult because the

entire bin contains many instances of the same screw in

a wide variety of poses. To solve this, we employ three-

plane rank two constraint for establishing correspondences

and two/three-view triangulation for pose estimation.



A. Prior Work

Vision-based bin picking has attracted a lot of interest in

the last decade [13], [19], [1] where the main problem is to

localize an object and estimate its pose. Development of such

systems have been challenging mainly because of (a) the

specular reflections from the metallic surfaces of industrial

parts and (b) occlusions in a cluttered bin.

Model-based pose estimation algorithms using 3D model

to 2D image correspondences can be found in [15], [16],

[7]. Unfortunately, 3D-2D point correspondences are hard to

obtain for industrial parts due to their textureless surfaces.

The situation is particularly severe when multiple identical

objects are placed together and overlap each other.

Object contours provide rich information about object iden-

tities and their poses. Various contour matching algorithms

have been proposed in [8], [3], [14]. However, for specular

objects the contour information is difficult to obtain in a

cluttered bin since these objects do not have appearance of

their own but reflect the surrounding environment.

Range sensors have been widely used for the pose estima-

tion problem. Bolles and Horaud [2] use range data to group

the surface features which is then used to generate and verify

the hypotheses of object location. Wang et al. [22] use 3D

range data to compute shape of flexible industrial parts such

as cables. However in the presence of specularities, range

sensors fail to produce accurate depth maps and they are

comparably more expensive than camera-based solutions.

Active illumination patterns can greatly assist vision algo-

rithms for extracting robust features. Horn et al. [13] use

brightness of patches observed with varying illumination

condition to estimate orientation of surface patches and

then match them with the 3D model. In our approach, we

exploit MFC [20] to extract specular features in the regions

of high curvature. MFC has 8 LEDs that are uniformly

placed on its circumference and flash one by one. As the

illumination sources move, the specular reflections also move

by a distance that is inversely proportional to the surface

curvature.

Specularities have generally been treated as sources of noise

in machine vision algorithms. Most vision algorithms iden-

tify specularities and remove them before inference. Brelstaff

and Blake [4] identify regions with specular highlights which

deviate from Lambertian reflectance. Nayar et al. [18] use

polarization filters to identify and discard specular highlights.

Mallick et al. [17] transform the color space such that it

becomes invariant to changes due to specular highlights.

Robust feature extraction in the presence of strong specular-

ities has always been a challenging task. Specular highlights

have been used in vision and robotics for object detection and

pose estimation [5]. Healey and Binford [12] use specular

highlights to reconstruct the local orientation and principal

curvatures of a surface. Similarly, Gremban and Ikeuchi [10]

use specular highlights for object recognition, and plan novel
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Fig. 2: Overview of our algorithm.

views that are discriminative between objects with similar

highlights.

Sankaranarayanan et al. [21] propose a novel image invariant

for highly specular and mirror-like surfaces exploiting the

fact that the image gradients exhibit degeneracy at regions

where at least one principal curvature is zero. This property

is used to detect points with parabolic curvature on the

object surface. However, this is not a very practical feature

for industrial objects, since parabolic curvature points rarely

exist on the surface of such objects. In this paper, we

consider the exact opposite: i.e., the regions on the surface

of the object that have very high curvature. Such regions

have a large variety of normals present within a small area

and therefore produce specular reflections irrespective of the

illumination position.

B. Contributions

The main technical contributions of this paper are

• We show that regions of high curvature in highly

specular objects produce specular reflections largely

independent of the location of the illumination sources,

which can be used as a distinct features for object

detection and pose estimation.

• We show that an inexpensive multi-flash camera can be

used to reliably detect such specular features.

• We use screws as an example part and develop two view

and three view based algorithms for 3D pose estimation

using triangulation.

• Finally, we implement the algorithm on an industrial

robot and show very high location and angular accuracy

for 3D pose estimation.

II. SYSTEM OVERVIEW

Figure 1 shows our system performing bin picking of screws.

We use a 6-axis industrial robot arm, on which an MFC

is mounted. The MFC was calibrated both internally and

externally using a checker board. Hand-eye (gripper-camera)

calibration was also performed so that the robot arm can

interact and grasp objects using the gripper.

Figure 2 shows the overview of our algorithm. We employ

a multi-view approach to compute the pose of screws in a

bin. We first capture a set of images using the MFC and

extract specular features, as we describe in Section III. We

repeat these processes for two or three capture positions.

We then identify the lines corresponding to the same screw

across the multiple views and estimate the pose of a screw

by reconstructing the 3D axis of the screw, as described in

Section IV. Our system finally grasps the screw using the

estimated pose and performs the subsequent assembly task.
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Fig. 3: Analysis of the relation between curvature and the cone
of rays. Point P has curvature κ . If the illumination direction
is within the cone (shown by blue dotted curve) of [−2θ 2θ ],
then the specular highlight is captured by the camera within the ε

neighborhood (shown in green).

III. SPECULAR FEATURE EXTRACTION

In this section, we analyze the reflection of light rays from

the surface of a specular object and derive a feature extraction

algorithm for detecting high curvature regions.

A. Reflection Analysis

Consider a point P on an arbitrary one dimensional curve C

as shown in Figure 3. Let r be the radius of the osculating

circle at P. Then the curvature κ at P is given by

κ =
1

r
. (1)

Consider an ε neighborhood at point P as shown in Figure

3. As ε is small enough, we assume the curvature in this

neighborhood to be constant for our analysis. Without loss

of generality, we consider the two-dimensional coordinate

axes with origin as the center of the osculating circle O, Y -

axis passing through P and X-axis orthogonal to it. This ε

ball meets the curve C at A and B with θ given by

θ = 2sin−1
(εκ

2

)
. (2)

Now, consider the ray towards A from a camera placed on

Y -axis. The camera center is assumed to be at (0,y0) such

that y0 ≫ ε . This implies that the ray coming from camera

center can be considered parallel to the Y -axis as shown in

the figure. This ray subtends an angle θ with the normal at A

and gets reflected at angle θ from the normal. Symmetrical

analysis holds true for point B. This shows that if the light

source is placed anywhere within this cone (shown by blue

dotted curve) of [−2θ 2θ ], then the camera will receive

specular reflection from this ε neighborhood.

For a fixed cone [−2θ 2θ ], the size of the ε neighborhood

is inversely proportional to the curvature of the point, ε =
2
κ

sin θ

2
, by using the distant camera assumption. As the

curvature increases, the reflections are visible within a small

neighborhood of the point. In contrast, when the curve is

almost flat (curvature is close to zero), the reflection is

not visible within the neighborhood of the point. In the

next section we illustrate methods that exploit this fact to

� �

(a) (b)

Fig. 4: (a) High curvature region. The specular highlights shift by
a small amount with the changing light location. (b) Low curvature
region. The specular highlights shift by a large amount.

detect features points on the high curvature regions of the

object. This analysis assumed mirror-like reflection. When

the specular lobe is considered, this cone of rays can be

increased by an additional 2σ where σ is the width of

specular lobe.

The analysis can be extended for a two dimensional surface

S. The principal curvatures are defined as the minimum and

maximum values of the curvature measured along various

directions at a given point. The Gaussian curvature K of a

surface is given by the product of principal curvatures κ1

and κ2 of the point

K = κ1κ2. (3)

Similarly for a two dimensional surface, the reflections are

visible within a smaller neighborhood of the point as the

Gaussian curvature of the point increases. Note that both

principle curvatures have to be large to observe the reflection

within a small neighborhood. For example, a sphere (with

small radius) is a surface with both its principal curvatures

large (κ1 = κ2 = 1/r for all the points on the sphere), there-

fore the reflection is visible within a small neighborhood. In

contrast, the Gaussian curvature of a point on a cylindrical

object is zero since the surface has bending only in one

direction. Hence the reflection may not be visible within an

immediate neighborhood.

B. MFC-Based Feature Extraction Algorithm

Our feature detection algorithm finds points on the specular

surface which have large Gaussian curvature (which has

bending in both directions) and normals towards the camera.

Although the second requirement seems like a restriction, in

fact the high curvature regions span a large set of surface

normals. These features provide sufficient information for

3D reconstruction and pose estimation which are explained

in the Section IV.

An MFC is an active illumination based camera that contains

8 point light sources (LEDs) arranged in a circle around the

camera as shown in Figure 1. As the different LEDs around

the camera flash, the specular highlights on the surface

move depending upon the local curvature. From the analysis

presented in the previous section, it is clear that the specular

highlights remain in a very local neighborhood for all points

that have high surface curvature. We exploit this cue to detect
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Fig. 5: Motion of specular reflections for different sizes of
spheres. The centers of specular highlights corresponding to 4
different light positions are superimposed as red dots on the
maximum image. Close-ups of 4 spheres are shown in bottom
right. The diameter of sphere and the diameter of the motion of
specular highlight are respectively (a) 1.2 mm–2 pixels, (b) 3.2
mm–4 pixels, (c) 8 mm–7 pixels, and (d) 19 mm–18 pixels. The
smaller the diameter (the larger the curvature), the smaller the
motion of specular highlight.

pixels that correspond to the high curvature regions on the

object having normals towards the camera. These pixels serve

as a feature that is both characteristic of the object’s 3D shape

and its relative pose with respect to the camera.

Our specular feature detection algorithm consists of the

following steps. We first take 8 images corresponding to 8

flashes, along with a 9th image with no flash. This image with

no flash (ambient image) is then subtracted from each image

to remove effects of ambient illumination. Let us denote

the image captured (after ambient subtraction) during the

flashing time of the ith LED as Ii. The minimum intensity

values at each pixel location among these ambient sub-

tracted images are found and used to construct the minimum

illumination image Imin(x,y) = mini Ii(x,y). The minimum

illumination image will be similar to the surface albedo.

Since the surfaces we are considering are highly specular

and the specular highlights move across the images, the

minimum illumination image appears to be dark for all the

specular regions. We compute the ratio images of the ambient

subtracted images to the minimum illumination image, RIi =
Ii

Imin
. Ideally, the ratio values in the non-highlight regions

remain close to one while the ratio values in regions seeing a

specular highlight are much greater than 1. This information

is utilized to detect the highlight regions at each flash image.

As discussed above, with the changing flash position specular

highlights at high curvature regions stay within the small

neighborhood (Figure 4(a)) whereas they shift by a large

amount in low curvature regions (Figure 4(b)). This effect is

explained in Figure 5.

We choose a neighborhood ε (set to 1 pixel in our experi-

ments) and compute the number of flash images in which a

specular highlight was observed within this ε neighborhood.

(a) View 1 (b) View 2

Fig. 6: Specular feature detection using MFC. The high curvature
regions facing towards the camera are robustly identified across two
views whereas low curvature regions and Lambertian surfaces are
filtered out.

For pixels corresponding to high curvature regions, the

specular highlight remains within this ε neighborhood and

therefore a specular highlight is observed in all 8 MFC

images within this ε neighborhood. For pixels correspond-

ing to low curvature regions, the specular highlight moves

outside the ε neighborhood and therefore the number of

images in which the specular highlight is observed within

the ε neighborhood is less than 8. Pixels that correspond to

Lambertian surfaces are filtered out automatically because

of normalization with respect to the minimum image. An

example of specular feature detection using MFC is shown

in Figure 6. The algorithm robustly identifies high curvature

specular regions facing towards camera across two views

while filtering out Lambertian surfaces and low curvature

specular regions.

IV. POSE ESTIMATION OF SCREWS

This section presents a practical application of the specular

features described in Section III, in conjunction with a novel

pose estimation algorithm for bin picking of screws.

A. Specular Features on Screws

Screws are cylindrical in shape. As discussed in Section III,

curvature of cylinder in direction perpendicular to the axis of

the cylinder is high but in the direction parallel to the axis is

small. This renders the Gaussian curvature of cylinder to be

small. Let us now consider the effect of adding threads on

the surface of screws. The threads (typically approximated as

a helix or a conical spiral) provide high curvature to all the

points on the screw body even in the direction parallel to the

axis of the cylinder. This, in turn, ensures that the specular

highlights are visible in an ε neighborhood independent of

the illumination direction.

The specular features are extracted using the algorithm de-

scribed in Section III. It is important to analyze the location

of the features detected on the screw. The specular features

are detected on high curvature regions having normals to-

wards the camera. Approximating the screw shape with a

helix, the points on the helix facing towards the camera lie

on a line. In addition, this line lies on the plane joining the

camera center and the axis of the screw as shown in Figure 7.



Fig. 7: Central axis reconstruction. For simplicity the screw shape
is shown as a cylinder. Blue lines shown on the surface of the
cylinder represent the specular features detected. πi represents the
planes formed by these lines with the respective camera centers. π1

and π2 intersect at the axis of the cylinder (shown in red).

(a) (b)

Fig. 8: (a) Detected specular features on screws. (b) Fitted lines.

We therefore represent the specular features on the screws

with line segments. For line fitting we use a variant of

RANSAC [9] algorithm. The algorithm initially hypothesizes

a variety of lines by selecting a small subset of points and

their directions. The support of a line is given by the set of

points which satisfy the line equation within a small residual

and form a continuous structure. The line segment with the

largest support is retained and the procedure is iterated with

the reduced set until the support becomes smaller than a few

points. The RANSAC algorithm provides inlier points for

each line segment. We then refine each line segment using

least square estimation on the inlier points. In Figure 8, we

show detected specular points from a bin of screws and their

line segment representation.

B. Pose Estimation

In order to estimate the pose of a screw, we reconstruct

the 3D line corresponding to the axis of the screw which

uniquely determines the orientation and the position of the

screw. We compute the specular features from multiple cam-

era positions. As described before, the detected specular line

segments lie on the plane πi joining the center of projection

of the ith camera and the axis of the screw as shown in Figure

7. The reconstruction of the 3D line corresponding to the axis

of the screw is given by the intersection of these planes.

In the remainder of this section, we present algorithms for

reconstruction of the central axis for three view and two view

configurations.

1) 3D Line Reconstruction using Three Views: We first look

into the well studied relation between a 3D line and its

corresponding projections in multiple views. We then use

a geometric constraint to find the lines corresponding to the
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Fig. 9: (a) Intersection of three planes becomes a line only if the
correspondence is correct. (b) Two viewing planes and Z = Z0 plane
can be used for the two view case.

same screw across three views and reconstruct the 3D line.

Geometry of Line Projection: Consider a line L in 3-space

which is imaged in three views. Let li be the projection of

L in view i and Pi be the projection matrix of view i. Using

the projection matrix, an image point can be back-projected

to a ray (passing through the camera center) in the world

coordinate system. Both end-points of the line in the image

plane can be back-projected as individual rays. Alternatively,

the back projection of an image line li corresponds to a plane

in view i as πi

πi ≡ AiX +BiY +CiZ +Di = 0 (4)

Finding Correspondences: Since there are multiple screws

in the bin, we need to identify the lines corresponding

to the same screw from different views. In order to find

correspondences, planes (formed by back projecting the

lines) from all three views are transformed to a common

coordinate system. This transformation is easily obtained

as the camera poses are known. The common coordinate

system is chosen as the camera coordinate system of the first

view. We then use the property that three arbitrary planes

do not meet at a single line to obtain our correspondences.

This intersection constraint is expressed algebraically by the

requirement that the 4×3 matrix defined by the coefficients

of three planes [11]




Ai Bi Ci

A j B j C j

Ak Bk Ck
︸ ︷︷ ︸

A

Di

D j

Dk
︸︷︷︸

b



 (5)

should have rank two. This constraint is satisfied if the

determinants of four 3 × 3 sub-matrices of (5) are zero.

In practice, due to noise in image measurements, even

for lines in correspondence the determinants of these sub-

matrices are not zero but small. We therefore compute as

the correspondence cost the sum of four determinant values

for each triplet of lines, and select the triplets that have the

cost smaller than a threshold.

Reconstruction of the 3D Line: After finding the three lines

corresponding to the same screw, we compute the 3D line

passing through the axis of the screw. The line equation in



3D can be written as

X = X0 +λX1, (6)

where X0 is a point on the line and X1 is the direction of

the line. The direction of the line should be computed as

perpendicular to the all the plane normals as possible. This

can be obtained by solving AX1 = 0. The optimum solution

(in least squares sense) is given by the right singular vector

corresponding to the smallest singular value of matrix A. We

select X0 as the point which is closest to the three planes.

This point can be found via the least squares solution of

AX0 = −b.

Degenerate Configurations: If two planes are close to

being parallel, the rank of the matrix (5) becomes close

to two regardless of the other plane, leading to difficulty

in finding correspondence. We therefore ignore such pairs

of planes by checking the angle between the normals of

the two planes. This primarily happens when the axis of

screw is aligned with the translation between two camera

positions. If we randomly choose three camera positions, all

three translational directions between camera pairs become

degenerate directions. To avoid this, we move the camera

on a straight line so that there is only a single degenerate

direction. In addition, we change this direction of motion to

handle screws with varying poses during subsequent pickups.

2) 3D Line Reconstruction using Two Views: Since two

non-degenerate planes from two views always intersect on

a line, finding correspondences using two views is typically

difficult. However, the correspondence can be computed if

we assume that the 3D lines are located around some plane

in the world coordinate system. As shown in Figure 9 (b),

we use Z = Z0 plane together with the two viewing planes

and compute the correspondence cost in the same way as the

three view case. This Z0 value is obtained by approximately

measuring the physical distance between the camera and the

bin with screws. The proposed cost favors screw (a) whose

Z position is close to Z0 and (b) whose angle is close to

horizontal. After finding the correspondence, we reconstruct

a 3D line as the intersection of two viewing planes (without

using Z = Z0 plane).

3) Position Estimation: After reconstructing the 3D line (6),

we compute the segment of the line corresponding to the

screw by back-projecting the end points of 2D lines in each

view and finding the intersection point between the back-

projected viewing ray and the reconstructed 3D line. We

further validate the reconstructed line segment by comparing

the length of the reconstructed line segment with the physical

length of screw. The center of the line segment is chosen as

the 3D gripping position.

Finally, we determine the end point of the line segment

corresponding to the head of the screw. We compute the

maximum image in all the views, which is simply a pixel-

wise maximum over the 8 MFC images. The head of the

screw is a smooth region with relatively lower curvature

compared to the screw body. Therefore the specular high-

(a) Proposed (b) Threshold

Fig. 10: Comparison of the threshold-based highlight detection with
the proposed algorithm. Detected edges superimposed (in red) on
the image. Best viewed in color.

lights on the screw head move in a larger neighborhood with

the alternating flashes and produce brighter patches in the

maximum image compared to the screw tail.

V. EXPERIMENTS

We performed an extensive evaluation of the proposed

method on the robot platform shown in Figure 1. We refer

the readers to the accompanying video, which demonstrates

bin picking of screws using the robot arm1.

A. Specular Feature Detection

We first compare the proposed specular feature detection al-

gorithm with the basic approach for detecting specularities in

the scene using simple thresholding on the maximum image.

The results are shown in Figure 10 where detected features

are superimposed (in red) on the images. Threshold-based

highlight detection is very sensitive and needs to be tuned

every time scene or any parameter of scene e.g., illumination,

viewpoint, etc. changes. Even with possibly the best choice

of threshold, highlights from the glossy background cause

a lot of spurious detections as seen in Figure 10(b). The

proposed algorithm robustly detects specular features in the

regions of high curvature as shown in Figure 10(a).

Figures 11(a)–11(c) show the correspondence results for

three view approach. Pixels in blue show lines fit to the

detected specular features. The top 5 line correspondences

across three views are labeled with different colors. This vi-

sually validates the accuracy of our algorithm. The algorithm

successfully locates multiple correspondences across the

views and hence can simultaneously estimate multiple poses

within a single capture cycle. Figure 13 shows histograms of

the correspondence costs for true and false matches. There

is a large gap between true and false matches.

B. Single Screw Pose Estimation

In order to statistically evaluate the accuracy of the proposed

system, we devised a method to evaluate the consistency of

pose estimate irrespective of the viewpoint of the camera.

Towards this evaluation, we first placed a single (isolated)

M4 25 mm length screw in the bin. This is then imaged

1The video was captured with unoptimized implementation. Please see
Table III for the optimized system performance.



(a) View 1 (b) View 2 (c) View 3

Fig. 11: Pixels in blue show the line fitting results on specular highlights detected from three views. Top 5 line correspondences across
views have been shown respectively in green, yellow, cyan, magenta and orange.
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Fig. 12: Histograms of deviations of the pose estimates from their median. Left three figures show errors in translations (X ,Y,Z) and
right two figures show errors in rotations. The 3 view approach (blue bars) has less deviation than the 2 view approach (red bars).
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Fig. 13: The correspondence cost for true and false matches.
Note that the scale on the horizontal axis for false matches is 200×
larger than that for true matches.

using MFC from 15 different locations arranged in a 3× 5

grid. This setup produced 50 image pairs for 2-view and 100

image triplets for 3-view pose estimation where the camera

positions have reasonable baseline with respect to the screw

orientation. Since the object is static, the estimated pose of

the object in the world coordinate system should be identical

irrespective of the viewpoints. The median pose estimate of

each method is selected as the ground truth.

Figure 12 shows the histogram of absolute deviations from

the median pose estimates and Table I presents the mean

absolute deviations. The results demonstrate that both (3-

view and 2-view) algorithms result in highly consistent

estimates with mean absolute deviation of less than 0.5 mm

in all the three directions (X ,Y,Z) and less than 0.8 degrees

in the estimates of elevation and azimuth angles. In this

experiment, the screw was placed perpendicular to X axis

and the motion of the camera had larger baseline along Y

axis, which resulted in slightly smaller translational error

in X axis. The 3-view approach achieves smaller estimation

deviations than the 2-view approach.

TABLE I: Average absolute pose estimation errors for the 2-view
and 3-view approaches.

Average X Y Z Elevation Azimuth
absolute error mm mm mm degree degree

2-view 0.06 0.18 0.27 0.38 0.08

3-view 0.05 0.18 0.16 0.23 0.04

TABLE II: Statistical comparison of screw pickup success rate
between 2-view and 3-view in highly cluttered scenes.

Trials Pickup failure Flip failure Success rate

2-view 100 7 6 87%

3-view 100 4 5 91%

C. Bin of Screws

We then quantitatively evaluated the accuracy of the pro-

posed system to detect and localize objects in highly cluttered

scenes. More than 200 screws (M4, 25 mm length) were

thrown together in a bin to create cluttered scenes just as

shown in Figure 1(a). The gripper was made up of two

vertical steel pins as shown in Figure 1(d). In its default

position, the gripper is open with its pins apart. In order to

pick up the screw, the gripper first moves to the estimated

location/orientation and then closes the grip with the screw

held horizontally between the two pins. This location is as-

signed such that the midpoint between the two pins coincide

with the reconstructed axis and the gripper is perpendicular

to the screw direction.

The width of the gripper, in its open position, is kept at 5

mm, which is 1 mm larger than the diameter of the screw.

Therefore, to successfully grip the screw (before lifting the

object) the error in pose estimate should be less than 0.5
mm. When the pose estimate error is greater than 0.5 mm



TABLE III: Average time required for each process of the proposed
approach. The first 3 processes are repeated for 2 or 3 views. All
numbers in seconds.

MFC Spec. Line Corres. Corres. Total Total
Cap. Edges Fitting (2view) (3view) (2view) (3view)

0.87 0.11 0.15 0.01 0.04 2.3 3.4

the gripper fails to pick up the object. We achieved a 96%

grasping rate for 3-view and 93% for 2-view approach evalu-

ated over 100 trials each (Table II). Among these successful

grasps there were a few cases where the algorithm failed

to correctly detect the head direction of the screw which

resulted in pose flip failures. There were 5 flip failures in 3-

view estimates and 6 flip failures in 2-view estimates, which

resulted in overall correct pose estimates of 91% and 87%

respectively.

The pickup failures were mainly caused when two screws

(say S1 and S2) in parallel or anti-parallel orientations are

very close to each other. In such scenario, sometimes line

correspondence ends up matching S2 in one of the view to

S1 in the other two views. Hence, pose estimate is completely

off and leads to the failure in grasping of the screws. The

additional assumption about the Z = Z0 plane in 2-view case

increased the number of faulty correspondences and hence

led to a slight deterioration in the success rate.

Complexity: Table III shows the average processing time

required for each process of the proposed approach in

extremely cluttered environments. This was measured on an

Intel 3.06Ghz Quad-Core CPU with a C++ implementation.

Capturing MFC images is the bottleneck of the current

system. The processing times are only 0.53 and 0.82 seconds

for the 2-view and 3-view approaches respectively, excluding

the capturing time. Although in the current version the robot

picks up a single screw for each capture cycle, the algorithm

simultaneously estimates poses of multiple screws. It is

possible to pick up multiple screws within a single capture

cycle, which would drastically accelerate the system.

VI. CONCLUSION AND FUTURE WORK

We presented a system for specular object detection and

pose estimation using a multi-flash camera. We introduced

a novel feature that is present on the high curvature regions

of specular objects. We developed an algorithm to reliably

detect these features by exploiting the changing lighting

positions. We demonstrated our approach for pose estimation

of screws in a highly cluttered bin, where we used specular

features detected at multiple views to reconstruct the 3D axis

of the screw. We implemented our algorithm on a robot arm

and achieved highly accurate pose estimation with location

and orientation errors less than 0.5 mm and 0.8◦ respectively.

The proposed specular feature is useful in detecting any

shiny object with high curvature. Developing pose estimation

algorithms using specular features for a wider class of objects

would be an interesting future direction.
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