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Abstract

We describe an imaging architecture for compressive

video sensing termed programmable pixel compressive

camera (P2C2). P2C2 allows us to capture fast phenom-

ena at frame rates higher than the camera sensor. In P2C2,

each pixel has an independent shutter that is modulated at

a rate higher than the camera frame-rate. The observed

intensity at a pixel is an integration of the incoming light

modulated by its specific shutter. We propose a reconstruc-

tion algorithm that uses the data from P2C2 along with

additional priors about videos to perform temporal super-

resolution. We model the spatial redundancy of videos using

sparse representations and the temporal redundancy using

brightness constancy constraints inferred via optical flow.

We show that by modeling such spatio-temporal redundan-

cies in a video volume, one can faithfully recover the un-

derlying high-speed video frames from the observed low

speed coded video. The imaging architecture and the re-

construction algorithm allows us to achieve temporal super-

resolution without loss in spatial resolution. We implement

a prototype of P2C2 using an LCOS modulator and recover

several videos at 200 fps using a 25 fps camera.

1. Introduction

Spatial resolution of imaging devices is steadily increas-

ing; mobile phone cameras have 5 − 10 megapixels while

point-and-shoot cameras have 12− 18 megapixels. But the

temporal resolution of video cameras has increased slowly;

today’s video cameras are mostly 30 − 60 fps. High-speed

video cameras are technically challenging due to high band-

width and high light efficiency requirements. In this paper,

we present an alternative architecture for acquiring high-

speed videos that overcomes both these limitations.

The imaging architecture (Figure 1), is termed Pro-

grammable Pixel Compressive Camera (P2C2). P2C2 con-

sists of a normal 25 fps, low resolution video camera, with a

high resolution, high frame-rate modulating device such as

a Liquid Crystal on Silicon (LCOS) or a Digital Micromir-

ror Device (DMD) array. The modulating device modulates

each pixel independently in a pre-determined random fash-

Figure 1. Programmable Pixel Compressive Camera (P2C2): Each

pixel of a low frame rate, low resolution camera is modulated inde-

pendently with a fast, high resolution modulator (LCOS or DMD).

The captured modulated low resolution frames are used with ac-

companying brightness constancy constraints and a wavelet do-

main sparsity model in a convex optimization framework to re-

cover high resolution, high-speed video.

ion at a rate higher than the acquisition frame rate of the

camera. Thus, each observed frame at the camera is a coded

linear combination of the voxels of the underlying high-

speed video frames. Both low frame-rate video cameras

and high frame-rate amplitude modulators (DMD/LCOS)

are inexpensive and this results in significant cost reduction.

Further, the capture bandwidth is significantly reduced due

to P2C2’s compressive imaging architecture. The underly-

ing high resolution, high-speed frames are recovered from

the captured low resolution frames by exploiting temporal

redundancy in the form of brightness constancy and spatial

redundancy through transform domain sparsity in a convex

optimization framework.

1.1. Contributions:

• We propose a new imaging architecture ‘P2C2’ for

compressive acquisition of high-speed videos. P2C2

allows temporal super-resolution of videos with no

loss in spatial resolution.

• We show that brightness constancy constraints signif-

icantly improve video reconstruction. Our algorithm

reconstructs high-speed videos from low frame rate
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observations over a broad range of scene motions.

• We characterize the benefits and limitations of P2C2

through experiments on high-speed videos. We imple-

ment a prototype P2C2 and acquire 200 fps videos of

challenging scenes using a 25 fps video camera.

2. Related Work

High speed sensors: Traditional high-speed cameras are

expensive due to requirement of high light sensitivity and

large bandwidth. Usually these cameras [1] have limited

on-board memory with a dedicated bus connecting the sen-

sor. The acquisition time is limited by the on-board mem-

ory. For example, FastCam SA5 (a $300K high-speed cam-

era) can capture atmost 3 seconds of video at 7500 fps and

1 megapixel. Though most videos have significant spatio-

temporal redundancy, current high-speed cameras do not

exploit them. P2C2 allows us to exploit this, thereby re-

ducing the capture bandwidth significantly. Further, exist-

ing cameras use specialized sensors with high light sensitiv-

ity and image intensifiers to ensure each frame is above the

noise bed. In contrast, P2C2 captures a linear combination

of video voxels, thereby naturally increasing the acquisition

signal-to-noise ratio and partially mitigating the need for

image intensifiers.

Temporal super-resolution: Shechtman et al. [23]

perform spatio-temporal super-resolution by using multiple

cameras with staggered exposures. Similarly, Wilburn et al.

[26] use a dense 30 fps camera array to generate a 1000
fps video. Recently Agrawal et al. [2] showed that com-

bining this idea with per camera flutter shutter (FS) [17]

significantly improves the performance of such staggered

multi-camera high-speed acquisition systems. While these

systems acquire high-speed videos, they require multiple

cameras with accurate synchronization and their frame-rate

scales only linearly with number of cameras. In contrast,

we increase temporal resolution without the need for multi-

ple cameras and also our camera is not restricted to planar

scene motion. Ben-Ezra [3] built a hybrid camera where

motion is measured using an additional higher frame rate

sensor and then used to estimate the point spread function

for deblurring. We estimate both motion and appearance

from the same sensor measurements.

Video interpolation: Several techniques exist for frame-

rate conversion [22]. Recently, [12] showed that explicit

modeling of occlusions and optical flow in the interpolation

process allows us to extract ‘plausible’ interpretations of in-

termediate frames.

Motion deblurring: When a fast phenomenon is ac-

quired via a low frame-rate camera one can either obtain

noisy and aliased sharp images using short exposure, or

blurred images using long exposures. Motion deblurring

has made great progress by incorporating spatial regular-

ization terms within the deconvolution framework [21][6].

Novel hardware architectures [17][10] have also been de-

signed to improve deconvolution. These techniques require

the knowledge of motion magnitude/direction and cannot

handle general scenes exhibiting complex motion. In con-

trast, P2C2 can handle complex motion without the need for

any prior knowledge.

Compressive sensing (CS) of videos: Existing methods

for video CS assume multiple random linear measurements

are available at each time instant either using a coded aper-

ture [14] or a single pixel camera (SPC) [5]. [24] shows

that videos with slowly changing dynamics need far fewer

measurements for subsequent frames once the first frame

is recovered using standard number of measurements. [16]

presents an algorithm for compressive video reconstruction

by using a motion compensated wavelet basis to sparsely

represent the spatio-temporal volume. Such methods have

achieved only moderate success since (a) the temporal re-

dundancy of videos is not explicitly modeled and (b) the

hardware architectures need to be highly engineered and/or

are expensive.

In [25], the authors extend FS to videos and build a high-

speed camera for periodic scenes. For the class of video that

can be adequately modeled as linear dynamical system [20]

provides a method for compressively acquiring videos us-

ing the SPC architecture. Both approaches can handle only

periodic/dynamic texture scenes while P2C2 can capture ar-

bitrary videos.

Spatio-temporal trade-off: Gupta et al. [8] show how

per-pixel temporal modulation allows flexible post-capture

spatio-temporal resolution trade-off. The method loses spa-

tial resolution for moving elements of the scene, whereas

our method preserves spatial resolution while achieving

higher temporal resolution. Similarly, Bub et al. [4] pro-

pose spatio-temporal trade-off of captured videos but has

limited light throughput and unlike [8] lacks flexible res-

olution trade-off. Gu et al. [7] proposed a coded rolling

shutter architecture for spatio-temporal trade-off.

Per-pixel control: Nayar et al. [15] propose a DMD

array based programmable imager for HDR imaging, fea-

ture detection and object recognition. [8, 4] use DMD ar-

ray based per-pixel control for spatio-temporal resolution

trade-off. Similarly, DMD arrays were used in [19, 18]

for phase analysis and shape measurement. While the idea

of per-pixel modulation is not new, we propose a sophis-

ticated spatio-temporal modulation using P2C2 for high-

speed imaging. Such modulation allows us to achieve

higher temporal resolution without loss in spatial resolution.

3. Imaging Architecture

Let the intensity of desired high frame rate video be

x(s, t) where s = (r, c) ∈ [1 N ] × [1 N ] are the row

and column coordinates respectively and t ∈ [1 T ] the tem-

poral coordinates. We term the higher rate frames xt as

‘sub-frames’ since the acquired frames are formed by in-
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Figure 2. Camera architecture: At every pixel the camera indepen-

dently modulates the incoming light at sub-frame durations and

then integrates it. For example, the 3-D spatio temporal volume

of a golf ball is modulated with a random mask at sub-frame du-

rations and then integrated into a frame. A frame captured by our

camera has the code embedded in the blur.

tegrating them. P2C2 captures the modulated intensities

y(sl, tl) where sl = (rl, cl) ∈ [1 N/Ls] × [1 N/Ls] and

tl ∈ [1 T/Lt] are its spatial and temporal coordinates. Ls

and Lt are the spatial and temporal sub-sampling factors re-

spectively. The captured frame ytl is related to sub-frames

xt as

ytl = D





tlLt
∑

t=(tl−1)Lt+1

xtφt



 (1)

where φ is the spatio-temporal modulation function

(achieved by LCOS as shown in Figure 3) and xtφt is mod-

ulation of sub-frame at t with mask at t. D(·) denotes a spa-

tial subsampling operation to account for the possibility that

camera could also be spatially modulated at sub-pixel res-

olution. Notice that Lt sub-frames are modulated with Lt

independent high resolution random masks and then inte-

grated to produce one spatio-temporally subsampled frame

of captured video (as shown in Figure 2). We limit our dis-

cussion mostly to temporal downsampling. Nevertheless,

the architecture and recovery algorithm presented later eas-

ily extend to spatial subsampling as well and we illustrate it

through results in experimental section.

Since the observed pixel intensities y are linear combi-

nations of the desired voxels x, with the weights given by

modulation function φ, the equation (1) can be written in

matrix-vector form as,

y = Φx (2)

where Φ is the matrix representing per pixel modulation

followed by integration in time and spatial sub-sampling. x

Figure 3. Prototype: Illustration of the optical setup.

and y are the vectorized form of desired high-speed voxels

x (eg., 256 × 256 × 32 voxels) and the captured video y
(128 × 128 × 4 video) respectively. The optimization term

enforcing fidelity of the recovered sub-frames to the cap-

tured frames is given by Edata = ‖y −Φx‖22.

3.1. Prototype P2C2

We realize P2C2 with an LCOS mirror SXGA-3DM

from Forth Dimension Displays as a spatio-temporal mod-

ulator. The mirror has 1280 × 1024 pixels and each pixel

can be fluttered (binary) independently at maximum rate of

3.2 kHz. This imposes an upper limit of 3200 fps on frame-

rate of the recovered video. LCOS works by flipping the

polarization state of incoming light and therefore needs to

be used with a polarizing beam-splitter and necessary relay

optics as shown in Figure 3. The scene is focused on LCOS

device which modulates this incoming light. The Pointgrey

Dragonfly2 sensor (1024 × 768 pixels at 25 fps) is in turn

focused on LCOS mirror. An LCOS modulator offers a sig-

nificantly higher contrast ratio (> 100) compared to off-

the-shelf graphic LCD attenuators. Further, the primary ad-

vantage of LCOS mirror over LCD arrays is the higher fill

factor of pixels. LCOS based per-pixel control was used

by Mannami et al. [13] for recovering high dynamic range

images.

Related architectures: P2C2 architecture is a general-

ization of previous imaging architectures proposed for high-

speed imaging and motion deblurring. Flutter shutter (FS)

camera [17] is a special case where all the pixels have same

shutter. P2C2 adopts a random spatio-temporal modula-

tion and is a generalized version of architectures for spatio-

temporal resolution trade-off [8, 4, 7].

P2C2 is a compressive imaging system and is related to

SPC [5]. In P2C2 the mixing of voxel intensities is local-

ized in space and time as opposed to SPC which aims for

global mixing of underlying voxel intensities. Our architec-

ture also exploits the cost benefit of current sensors (espe-

cially in visible wavelength) by using a pixel array in place

of single pixel detector.

4. High speed video recovery

Since the number of unknown pixel intensities is much

larger than available equations, (2) is severely under-

determined. To solve for sub-frames x, a prior on spatio-

temporal video volume should be incorporated.

331



Figure 4. Brightness constancy constraints at p1, p2 and p3 and OF

consistency check at q2 and q3.

Most natural video sequences are spatio-temporally re-

dundant. Spatially, images are compressible in transform

basis such as wavelets and this fact is used in image com-

pression techniques such as JPEG2000. Temporally, object

and/or camera motion preserves the appearance of objects

in consecutive frames and this fact is used in video com-

pression schemes such as MPEG. We exploit both forms of

redundancy to solve the system of under-determined equa-

tions (2) and recover the high-speed sub-frames.

4.1. Transform domain sparsity

Each sub-frame is sparse in appropriate transform do-

main and we enforce this property in our recovery through

`1 regularization of its transform coefficients. The regu-

larization term enforcing spatial-sparsity of sub-frames is

Espatial =

T
∑

t=1

β‖Ψ−1xt‖1, where xt is the vectorized

sub-frame xt and Ψ the transform basis.

4.2. Brightness constancy as temporal redundancy

Unlike spatial redundancy, temporal redundancy in

videos is not easily amenable to sparse representation in

a transform basis. Hence, regularization of 3-D transform

basis coefficients to solve the under-determined system in

(2) results in poor reconstruction quality. To overcome this

challenge, we propose to keep temporal regularization term

distinct from spatial regularization. We exploit brightness

constancy(BC) constraint in temporal direction. This con-

straint is distinct from and in addition to the spatial trans-

form domain sparsity regularization.

Consider three consecutive frames of a club hitting the

ball in Figure 4. The points p1, p2 and p3 correspond to the

same point on the golf club in frames x1, x2 and x3 respec-

tively. If relative displacement of these points is estimated,

then their pixel intensities in (2) can be constrained to be

equal i.e. brightness at these pixels is constant x(p2, 2) −
x(p1, 1) = 0 (backward flow) and x(p2, 2) − x(p3, 3) = 0
(forward flow). This effectively decreases the number of un-

knowns by 2. The system becomes significantly less under-

determined if BC constraints at other points are known as

well. The sub-frame BC constraints over entire video vol-

ume are then given by

Ωx = 0 (3)

where every row of matrix Ω is the relevant BC equation

of a spatio-temporal point (s, t). We incorporate these con-

Figure 5. In clockwise direction (a) two sub-frames from the ini-

tialization (b) forward and backward OF at respective sub-frames

(c) corresponding forward and backward consistency map (d) sub-

frames from next iteration incorporate BC constraints only at

white pixels from (c).

straints in the optimization by adding a BC regularization

term EBC = λ‖Ωx‖22.

To create BC constraint at any spatio-temporal point

(s, t), we first estimate the optical flow (OF) at sub-frame

xt in forward direction (uf
t , v

f
t ). Then we perform consis-

tency check by estimating the backward flow (ub
t+1, v

b
t+1)

at sub-frame xt+1. Such a consistency check not only de-

tects points of xt occluded in sub-frame xt+1, but also

prunes the untrustworthy flow in (uf
t , v

f
t ). For example,

consider points q1 and q2 on blue background in Figure 4.

Both points have same spatial coordinates and have same

intensity x(q2, 2) − x(q1, 1) = 0. The fact that both q1
and q2 are same points in the scene (here background) is es-

tablished solely from OF by performing following consis-

tency check: q1 goes to q2 according to forward OF and q2
comes back to q1 in the backward OF. On the other hand

x(q2, 2) 6= x(q3, 3) even though q2 = q3. This is be-

cause forward OF suggests q2 is same as q3 since q2 be-

longs to background and has 0 flow. But the backward OF

at q3 is non-zero and hence q3+(ub(q3, 3), v
b(q3, 3)) 6= q2.

This implies point q2 is occluded and/or has unreliable for-

ward OF (uf (q2, 2), v
f (q2, 2)). This means the consistency

doesn’t check at q2 i.e. of (q2, 2) = 0 whereas it checks

at q1 i.e. of (q1, 1) = 1. BC constraint is enforced only

when consistency checks. We perform consistency check

in backward direction as well by checking consistency be-

tween (ub
t , v

b
t ) and (uf

t−1, v
f
t−1). The process of pruning OF

is illustrated in Figure 5. The sub-frames estimated in first

iteration of our algorithm (Figure 5a) are used to determine

EBC for the next iteration. The results of next iteration are

shown in Figure 5d.

The importance of brightness constancy in video recov-

ery is shown in Figure 6. Third column shows reconstruc-

tion fidelity obtained by assuming only spatial sparsity. The

fourth column shows our reconstruction which incorporates

explicit brightness constancy (BC) constraints. This signif-

icantly improves reconstruction since the algorithm adapts

to the complexity of motion in a particular video.
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Figure 6. Importance of Brightness Constancy: All results are 16X temporal super-resolution. Shown are the original high-speed frames,

motion blurred frames and reconstructions with and without BC. Notice the huge improvement in reconstruction SNR due to BC. The

results in column 4 and its necessary OF were computed in an alternating fashion using an iterative procedure on the observations. OF was

not assumed to be available. ‘Golf’ and ‘Recoil’ high-speed video credit TECH IMAGING.

4.2.1 Recovery Algorithm

Initialization: Given optical flow, BC constraints are in-

corporated through EBC . But OF can be determined only

when the sub-frames are available. Hence, we iteratively

determine the sub-frames and the optical flow in an alternat-

ing fashion. We begin by estimating the sub-frames without

any BC constrains. In the first iteration we trade-off spatial

resolution to recover frames at desired temporal resolution.

We assume that each sub-frame xt is an upsampled version

of a lower spatial resolution frame: xt = U(zt) where zt
is a vectorized [ N

Ls

√

Lt

× N

Ls

√

Lt

] image and U(·) is a linear

upsampling operation such as bilinear interpolation. The

initial estimate is given by solving

z0 = arg min

T
∑

t=1

β‖Ψ−1U(zt)‖1 + ‖y −ΦU(z)‖22. (4)

The estimate x0 = U(z0) doesn’t capture all the spatial

detail and is noisy but it preserves the motion information

accurately as shown in Figure 5a. We estimate OF [11] on

initial estimate (Figure 5b) and perform consistency check

to prune the flow (Figure 5c) as described in section 4.2.

Only the consistent flow is used to build BC constraint ma-

trix Ω0 for next iteration.

Optimization: We minimize the total energy function

which also includes the term EBC built using matrix Ωk−1

from previous iteration.

xk = arg min

T
∑

t=1

β‖Ψ−1xt‖1+‖y−Φx‖22+λ‖Ωk−1x‖22

(5)

The above problem is convex but the problem size is signif-

icantly large. Even for a moderate sized video of 256X256
pixels and 32 frames, we need to solve for 2 million vari-

ables. We use a fast algorithm designed for large systems,

based on fixed point continuation [9], to solve the optimiza-

tion problem. In all our experiments we fix the parameters

at β = 10−5 and λ = 10−1. In practice, our algorithm

converges in 5 iterations.

5. Experimental Results

We rigorously evaluate the performance and reconstruc-

tion fidelity on several challenging datasets. First, we sim-

ulate P2C2 in software by capturing fast events with a stan-

dard high-speed camera.

5.1. Simulation on high speed videos

Figure 6 shows example reconstructions of high-speed

sub-frames at 16X temporal super-resolution. Notice that

while normal camera frames are highly blurred, the recon-

struction retains sharpness and high frequency texture detail

is maintained. Several of our examples contain complex

and non-linear motion. Most examples also contain several

objects moving independently causing occlusion and disoc-

clusions. To better understand the quality of reconstruction

with varying spatio-temporal compression factors, examine

Figure 8. This video has highly complex motion, where

different dancers are performing different motions. There is

significant non-rigidity in motion and challenging occlusion

effects. Notice that our reconstruction retains high fidelity

even at high compression factors. Even a compression fac-

tor of 4 × 4 × 4 = 64 produces acceptable visual quality

and 24dB PSNR.
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Figure 7. Results on LCOS prototype: For dataset on top, one frame from normal 23 fps camera, our recovered video and zoom-in insets

are shown. The fourth and fifth column shows the X-T slices of original and recovered video. For middle and bottom datasets two images

from normal 23 fps camera and four recovered images are shown.

Figure 8. Effect of spatio-temporal upsampling factors on Dancers

video. Notice that our reconstructions retain visual fidelity even

in presence of complex non-rigid multi-body motions and occlu-

sions. High-speed video credit TECH IMAGING.

5.2. Results on P2C2 prototype datasets

We captured several datasets using our prototype device.

The camera was operated at 23 fps and 8 different masks

were flipped during the integration time of sensor. This al-

lows us to reconstruct the sub-frames at a frame rate of 184
fps (23 × 8). We note that in our experimental setup we

were limited by the field of view since the beamsplitter size

forced us to use a lens with a large focal length .

In Figure 7, we show three different datasets. In the pen-

dulum dataset, four letters ‘CVPR’ were affixed to four out

of five balls and the pendulum was swung. As shown in

X-T slices the balls and the letters had significant accelera-

tion and also change in direction of motion. The recovered

frames are much sharper than the original 23 fps frames as

shown in inset. Note that the characters are much clearer

in the reconstructed frame despite a 40 pixel blur in each

captured frame. Also, the X-T slice clearly shows recon-

struction quality. On the other hand, a fine feature such as

the thread is blurred out since the flow corresponding to it

is hard to recover.

Next, we rotate a fan and capture it at 23 fps and re-

construct sharper and clearer frames at 184 fps as shown in

white inset. During recovery, we do not assume that motion

is rotational. Note that the normal camera frame has in-

tensities integrated from both fan blade and the background

mesh as shown in black inset. We can handle this sub-frame

occlusion in our recovery as indicated by the clear back-

ground and foreground in the recovered frame.

Finally, we drop a marble in water and capture it at 23
fps and reconstruct at 184 fps. Again, we do not assume any

motion path but still recover the curved path of the marble.
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Note that, despite specularities in the scene our algorithm is

robust.

6. Analysis

Choice of modulation masks: There are two require-

ments on modulation masks to obtain high fidelity recon-

struction. Firstly, the temporal code at a given pixel should

have broadband frequency response [17], such that none

of the scene features are blurred irrevocably. Secondly,

the temporal code at a local neighborhood of pixels should

be different. This along with spatial smoothness assump-

tion provides sufficient conditioning in a neighborhood to

recover low resolution sub-frames during the initialization

process (4). This initialization is important to extract opti-

cal flow estimates which are then propagated forward using

the iterative framework. On the other hand, when brightness

constancy constraints are available, a modulation mask with

well-conditioned matrix is desirable. Given ground-truth

BC constraints, we reconstruct sub-frames of Golf dataset at

16X temporal super-resolution under three different masks

(Table 1). We see that random mask of P2C2 offers signif-

icant advantage over the ‘all one’ mask and flutter shutter.

We believe that proper theoretical analysis will lead to the

design of optimal modulation masks and this is an area of

future work.

P2C2 ‘All one’ FS

PSNR in dB 26.2 21 16
Table 1. Reconstructing Golf dataset at 16X temporal super-

resolution with different masks with ground truth BC constraints.

Comparison with prior art: We compare P2C2 with

flexible voxels (FV) [8] on a fast phenomenon shown in

Figure 9. Flexible voxels reconstruction suffers from two

disadvantages: spatial smoothness is introduced in mov-

ing parts of the scene leading to blurred features and since

the coding sequence for flexible voxels is mostly zeros, it

leads to a highly light-inefficient capture method leading to

performance degradation in the presence of noise. In 16×
temporal upsampling example shown in Figure 9, the high

temporal resolution reconstruction of FV is noisier than our

reconstruction.

Effect of spatio-temporal upsampling: To evaluate the

impact of varying upsampling factors, we perform statisti-

cal evaluation of sub-frame reconstructions using P2C2 on

several challenging high-speed videos. These videos have

very different spatial and motion characteristics. We care-

fully selected the dataset to ensure that it spans a large range

of videos in terms of spatial texture, light level, motion mag-

nitude, motion complexity, number of independent moving

objects, specularities, varying material properties. Shown

in Figure 10 is a plot of reconstruction PSNR (in dB) as

a function of spatial and temporal upsampling for various

datasets. From our visual inspection we note that recon-

structions with PSNR of 30dB or greater have sufficient

Figure 9. One frame of a video sequence of marble dropped in

water. 40dB sensor noise was added. Our reconstruction is less

noisy (zoom for better view) than those of flexible voxels due to

higher light efficiency of P2C2.

textural sharpness and motion continuity to be called good

quality reconstructions. From the figure, it is clear that we

can achieve 8 − 16X temporal upsampling and retain re-

construction fidelity. Also, when we perform 32X spatio-

temporal super-resolution using P2C2 (2X2X8 or 4X4X2)

we obtain acceptable reconstruction fidelity. Few frames

from the reconstructions and their corresponding PSNR val-

ues are also shown in Figure 6 and 8 to relate visual quality

to PSNR.

Benefits: Our imaging architecture provides three ad-

vantages over conventional imaging architectures. It signif-

icantly reduces the bandwidth requirement at the sensor by

exploiting the compressive sensing paradigm. It improves

light throughput of the system compared to acquiring a short

exposure low frame-rate video and allows acquisition at low

light levels. These are significant advantages since the pro-

hibitive cost of high-speed imagers, is essentially due to the

requirement for high bandwidth and high light sensitivity.

Finally, the imaging architecture is flexible allowing incor-

poration of several other functionalities including high dy-

namic range (HDR) [13], assorted pixels [27] and flexible

voxels [8].

Limitations: P2C2 exploits spatio-temporal redundancy

in videos. Scenes such as a bursting balloon cannot be di-

rectly handled by the camera. Since the spatio-temporal re-

dundancy exploited by traditional compression algorithms

and our imaging architecture are very similar, as a thumb

rule one can assume that scenes that are compressed effi-

ciently can be captured well using our method. Our proto-

type uses a binary per-pixel shutter and this causes a 50%
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Figure 10. PSNR vs compression factors. (a) Spatial compression is kept at 1 and temporal compression is varied (b) Spatial compression

is 2 in both dimensions. (c) Spatial compression is 4 in both dimensions. Notice that the video reconstruction fidelity remains high

(PSNR>30dB) even at total compression factors of 16−32. (d) Brightness Constancy constraints significantly improves the reconstruction.

reduction in light throughput. Since most sensors already

have the ability to perform ‘dual mode’ integration (i.e.,

change the gain of pixels) we imagine the possibility of non-

binary modulation in future. The algorithm is not real-time

and this precludes the direct-view capability.

Conclusion: We presented Programmable Pixel Com-

pressive Camera (P2C2), a new imaging architecture for

high-speed video acquisition, that (a) reduces capture band-

width and (b) increases light efficiency compared to related

works. We also highlighted the importance of explicitly ex-

ploiting the brightness constancy constraints.
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