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Abstract

We present a practical vision-based robaotic bin-pickingtem that per-
forms detection and 3D pose estimation of objects in an uastred bin
using a novel camera design, picks up parts from the bin, anidpns er-
ror detection and pose correction while the part is in thpggi. Two main
innovations enable our system to achieve real-time roldtagcurate op-
eration. First, we use a multi-flash camera that extractsstoteepth edges.
Second, we introduce an efficient shape-matching algordalhed fast di-
rectional chamfer matching (FDCM), which is used to reljadétect objects
and estimate their poses. FDCM improves the accuracy of feramatch-
ing by including edge orientation. It also achieves massi@ovements in
matching speed using line-segment approximations of e@g@B distance
transform, and directional integral images. We empincalow that these
speedups, combined with the use of bounds in the spatial gpathnesis
domains, give the algorithm sublinear computational caxipl. We also
apply our FDCM method to other applications in the contexdeformable
and articulated shape matching. In addition to signifigeiniiproving upon
the accuracy of previous chamfer matching methods in alhefavaluated
applications, FDCM is up to two orders of magnitude fastantthe previous
methods.

1 Introduction

Building smarter, more flexible, and independent robots ¢ha interact with the
surrounding environment is a fundamental goal of robotsgarch. Potential ap-
plications are wide-ranging, including automated marnufétg, entertainment,



in-home assistance, and disaster rescue. One of the languisy challenges in re-
alizing this vision is the difficulty of “perception” and “gmition"—i.e., providing
the robot with the ability to understand its environment amake inferences that
allow appropriate actions to be taken. Perception throngkgensive contact-free
sensors such as cameras are essential for continuous amddfasoperation. In
this paper, we address the challenge of robot perceptidreindntext of industrial
robotics.

1.1 Visual Perception in Industrial Robotics

Computer vision has made rapid progress in the last decadeinghcloser to
definitive solutions for longstanding problems in visuatgeption such as object
detection [DTO05, VJO1, TPMO08], object recognition [FFFPQG 01, DBAFF02],
and pose estimation [AT06, SB06b, MREMO04]. While the hug&les made in
these fields lead to important lessons, most of these meiterdsot be readily
adapted to industrial robotics because many of the comnsmgsions are either
violated or invalid in such settings.

Material properties: One of the most common assumptions in traditional vi-
sion algorithms relates to the characterization of thectftece of materials in the
scene. Most vision algorithms characterize materials asheatian [BJO3], i.e.,
the appearance (radiance) of a single surface point isiamtato the location of
the observer (camera). While this is a reasonable assumiptimany scenarios,
this is less applicable to industrial vision tasks. Sevesahmon materials handled
in industrial settings such as metal, glass, ceramics, amé glastics are not close
to Lambertian. Hence, using the Lambertian assumptionuich sbjects generally
results in poor performance. This necessitates industimts to possess the abil-
ity to understand and make inferences about objects thatd@wplex reflectance
characteristics.

Environmental challenges: The types of errors that afflict vision-based sys-
tems in industrial settings are also very different fromsidn natural environ-
ments. Several industrial assembly and manufacturing tasist be accomplished
in dark or dimly lit environments with dust, dirt, grime, agdease. It is essential
for vision-based techniques to be able to cope with suchcesusf error in order
to be successful in such environments.

Variable appearance: The most popular methods for object detection, recog-
nition, and pose estimation are based on the idea of feaeserigtors such as
Scale Invariant Feature Transform (SIFT) [Low04], Hisargrof Gradients (HOG)
[DTO5], and SURF [BETGO08]. The basic idea is to detect sdvargpoint loca-
tions on the surface of each object and compute these feddgiptors at these
keypoint locations. The features of each object are therdia a database. When
a test image is acquired, the keypoint locations and theifeatescriptors for the
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test image are computed and then matched to the featuresl stothe database.
An appropriately computed matching score is used to detadtracognize ob-
jects, and the geometric relationship between the matckgpdoint locations in
the test image and the database are used to make inferermgtstiad poses of
the objects. This general principle is quite popular andsisduin several object
recognition methods [STFWO05, LSP06, NFF07]. Unfortunatétis successful
paradigm cannot be easily adapted to industrial roboticalme visual appearance
features are unreliable in industrial settings. Variabédarial properties, as well as
uncontrolled illumination and environmental conditiomsake appearance-based
descriptors unreliable and preclude the use of such tegbsign most industrial
applications.

Background Clutter: The objects in a factory environment are usually stacked
in part containers, which produces additional challengeb s overlapping parts,
occlusions, cast shadows, and complex backgrounds. Theya@host commercial
vision systems assume that parts are separated in a kitigg before operation.
Machine vision systems that are capable of handling cluteiusions, and com-
plex backgrounds would eliminate the need for kitting ssaghereby allowing
such systems to handle a complex bin of parts.

Model-based estimation:While industrial settings are challenging because of
the above-mentioned factors, they are also in some waysstroured and allow
opportunities to exploit this structure. For example, 3DECAodels of most of
the industrial parts are readily available. Even if someheit are not, the fact
that most industrial assembly lines repeatedly handle gefg@t of discrete parts
many times (order of millions) makes CAD model acquisitiasteeffective. The
3D CAD models provide a reliable source of information, ptitdly overcoming
the challenging reflectance and environmental conditions.

1.2 A Practical Vision-Based Robotic Bin-Picking System

In this paper, we present a practical vision-based robatigplzking system that
overcomes the challenges described in Section 1.1. Thersyserforms detec-
tion and estimation of the 3D poses of objects that are sthicka part container,
picks up the parts from the container using an industriabt@om, performs pose
verification and refinement while the part is in the gripped énserts the picked
part at a designated position. We have introduced two nalezls that allow us
to achieve reliable, fast, and accurate operation: (1) Navaging hardware that
provides reliable geometric features regardless of theabtbjmaterial and surface
characteristics; (2) Fast, robust, and accurate 3D pogeatiin based on the Fast
Directional Chamfer Matching (FDCM) algorithm.

The fundamental challenges that arise due to non-Lamhemtiterials (e.g.,
metal, glass, ceramic), textureless parts (e.g., unifppainted parts), and greasy
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and dirty environments lead to the fact that photometrituies such as color and
appearance descriptors are not robust enough in industtiéhgs. This motivates
the need to develop features that are dependent on the ggahéie part rather
than its photometry. We use an inexpensive camera desigmuditti-flash camera
(MFC) [RTF"04], that provides reliable geometric features: depth sdgehe
location of the depth edges on an object are dependent othegrose of the object
with respect to the observer and the object geometry. Thwereflepth edges can
be used to determine the pose of the object uniquely. Iniaddithese geometric
descriptors allow easy and efficient incorporation of the@G&D models into our
system. Given the 3D CAD model of an object, we retrieve theepaf the object
that provides the best match between the observed featndetha depth edges
from the CAD model. This allows us to bypass a time-consuntiaming phase
for each of the objects that would otherwise be necessary.evi part can be
integrated into our system in less than 10 minutes.

Although many shape matching algorithms have been propngrdhe decades,
chamfer matching (CM) [BTBW77] remains among the fastedtranst robust ap-
proaches in the presence of clutter. We adapt traditioreainédr matching with a
host of techniques to improve reliability, accuracy, anelesp First, we exploit the
geometric redundancies in the 3D structure of industrigtbfay approximating the
edge features using line segments. This, along with a 3[@ratelistance trans-
form representation, allows us to both reduce the memorpfiot and speed up
the matching algorithm by orders of magnitude. Second, werporate a direc-
tional error term in the distance transform definition whsdfnificantly improves
the reliability, robustness, and accuracy of matchingtheur we improve the pose
estimation accuracy using a continuous optimization piope The result is a
system that is capable of real-time operation for sevedalstrial assembly appli-
cations.

While the primary goal of this research is to develop a robustreliable vision
system for industrial robotics, the FDCM algorithm alsoiaebs state-of-the-art
performance in shape matching. We present two additionaicagpion domains
that benefit from FDCM: deformable object detection usingaadadrawn shape,
and human pose estimation.

The paper is organized as follows. We briefly overview thatesl literature
in Section 2. We present the shape matching algorithm anoptisnization in
Section 3. Pose estimation and the robotic bin-pickingesysare described in
Section 4. We report on our extensive experimental vabdatf the proposed
system and compare it to the state of the art in Section 5. @pergs concluded
in Section 6. We note that this paper builds upon our previsak [LTV 710,
LTVC10].



2 Related Work

In recent decades, there has been a considerable amountkabmvautomating the
process of part assembly using vision systems [S173, NPKS®&R10]. Though
vision systems are successful in identifying, inspectarg locating parts in care-
fully engineered manufacturing settings, it remains atgrlallenge to extend their
applicability to more general, unconstrained settingsoAthey often make use of
simple geometric features such as lines, circles, or ellignd their spatial orga-
nization [Vis]. Changing a target object in the assemblycpss would require
significant manual adjustments or algorithmic modificagion

Model-based vision systemgxploit 3D CAD models of objects, along with
either acquired 2D images or range sensor data, for imaggometation. Such
methods provide means for efficient detection, recognitionl pose estimation of
objects in cluttered environments [Low87, Low91, SM92, 9HBN10, DUNI10].
Methods such as [Low87, Low91, DD92] rely on establishingrespondences
between 2D image features and points in the 3D models in todgtain an initial
estimate of object pose. The estimate is later refined usangtive algorithms.
These correspondences are, however, difficult to obtaibtgl

Since establishing 3D-to-2D correspondences using imagekard task, sev-
eral systems rely either directly or indirectly on 3D infation. Such methods
greatly simplify the correspondence problem at the costaieased hardware re-
quirements. The most common approach is the use of 3D ramg®rseeither
based on structured light [SS03] or on time of flight [CSID]. This provides the
ability to establish 3D-to-3D point correspondences byamiayg 3D point descrip-
tors from the CAD model to those in the acquired point clouthd&everal 3D
point descriptors [SM92, JH99, BN10] have been proposednaiching the 3D
scene points to the model points. To remove false matchestenpretation tree
procedure [GLP84] can be applied to find mutually consisgerits. With these
consistent pairs, one can use Horn’s method [Hor87] to estirthe object’s 3D
pose. Unfortunately, these descriptors are less reliabledse estimation of indus-
trial parts because these objects are mostly made of plarfacss, which leads to
very few and uninformative features.

Recently, the use of the multi-flash camera [RDA] for object pose estima-
tion was proposed in [ASBR10]. The MFC, which was originalBveloped in the
context of non-photorealistic rendering, provides deptbeefeatures that can be
used for pose estimation tasks. In this paper and in [LT®], we significantly
expand the scope and impact of MFC for industrial roboticshilgV [ASBR10]
presented a system capable of handling isolated parts,Wwemesent a system
that can handle multitudes of parts randomly placed in deried bin. Further, we
also present a novel shape-matching algorithm that reisulistter accuracy and



orders-of-magnitude improvement in matching speed, afigweal-time system
performance.

One of the main technical contributions of this work is theelepment of the
fast directional chamfer matching algorithm, which is Wydapplicable to several
applications that currently use shape matching. Below, refl¥ discuss related
approaches in shape matching.

Shape matchinghas been an active area in robotic vision research. Several
authors have proposed shape representations and siynitagéisures that aim to
be invariant to object deformations [BMPO02, LJ07]. Theseahwéds actively han-
dle intra-class shape variations and achieve good perfarenan object recogni-
tion. However, they require a clean segmentation of thestambject. This ren-
ders them less suitable for dealing with unstructured scdoe to the difficulty in
foreground-background separation.

Recent studies focus on the recognition and localizationhjéct shapes in
cluttered images. In [BBMO5], the shape matching problempdsed as finding
the optimal correspondences between feature points, whaidfs to an integer
guadratic programming problem. In [FTGO06], a contour segmetwork frame-
work is proposed in which shape matching is formulated asrfgngaths on the
network that are similar to model outlines. In [FFJSO08],r&eret al. propose
a family of scale-invariant local shape descriptors (p&iadjacent-segment fea-
tures) formed byk-connected nearly straight contour fragments in the edge ma
These descriptors are later utilized in a shape matchimgeineork [FJS10] through
a voting scheme on a Hough space.

Zhu et al. [ZWWSO08] formulate shape detection as a subsetti@h prob-
lem on a set of salient contours. Due to the NP-hardness dfeteetion prob-
lem, they compute an approximate solution using a two-diagar programming
procedure. In [FS07], a hierarchical object contour regmestion is proposed to
model shape variation, and the matching is performed usymgrdic program-
ming. In [RIMO8], a multi-stage approach is employed in Wuhdoarse detections,
which are established by matching subsets of contour segmare pruned by
building the entire contour using dynamic programming.

These algorithms yield impressive results for matchingpeban cluttered im-
ages. However, they share a common drawback, high commaattomplexity,
which makes them unsuitable for time-critical applicaiorAlthough proposed
decades ago, chamfer matching [BTBW77] remains the pexfemethod when
speed and accuracy are required, as discussed in [TST@OBjslIpaper, we pro-
pose an improved version of chamfer matching and demoastsatuperiority with
respect to other variants [Gav98, SBC08]. Our approachawgs the accuracy of
chamfer matching while greatly reducing its time complexiéading to a speedup
of up to two orders of magnitude in several application sdera



3 Fast Directional Chamfer Matching

In this section, we introduce oudast directional chamfer matchinglgorithm,
which we use for object detection and pose estimation instr@ robotics and
other application areas.

3.1 Chamfer Matching

First we briefly explain standard chamfer matching (CM) [BVB7], which is a
popular technique for finding the best alignment betweemplate edge map and
a query edge map. Lét = {u;}, wherei = 1,2, ..., |U]|, be the set of edge pixels
from a template edge map, and 1ét= {v;}, wherej = 1,2, ..., |V|, be the set of
edge pixels from a query image edge map. Thamfer distancdetweenl and
V is defined as the average over all pixalse U of the distance betweemn; and
its nearest pixel irV:

1 .
dow(U,V) = — % min |lu; — ;. (1)

u, €U J

wheren is the number of template edge pixets= |U]|.

Let W be a warping function defined on the image plane that is paeained
by s. For instance, i7" is a 2D Euclidean transformation, there SE(2) can be
written ass = (0, t,, t,), wheret, andt, are translations parallel to theand
y axes, respectively, arttlis the in-plane rotation angle. Its action on each image
pointx € R? is given via the transformation

([ cos() —sin(h) tr
Wix;s) = < sin(f)  cos(6) X+ ty ) )
The best alignment parametebetween the two edge maps is then given by

s = argsggg(lQ) dem(W(Uss), V) 3

whereW (U;s) = {W(u;,s)},1=1,2,...,|U|.
The chamfer matching cost can be computed efficiently udiegdistance
transform image
DTy (x) = ‘{flg& [x — vl (4)
which specifies the distance from each pixah the distance transform image to
the nearest edge pixel In. The distance transform can be computed in two passes



over the image using dynamic programming [FHO4]. Using ik&adce transform,
the cost function (1) can be evaluated in linear tithe:) via

den(U,V) = = 37 DTy (wy). ©)
u; €U

Chamfer matching provides a fairly smooth measure of fiteesscan toler-
ate small rotations, misalignments, occlusions, and detions. However, it be-
comes less reliable in the presence of background clutetalan increase in the
proportion of false correspondences. To improve its rotesst, several variants of
chamfer matching have been introduced that exploit edgmi@tion information.
In [Gav98, DCS09], the template and query image edges ardiged into discrete
orientation channels, and individual matching scoressacobannels are summed.
Although these methods improve performance in clutterethes, the cost func-
tion is sensitive to the number of orientation channels aawbmes discontinuous
across channel boundaries. In [SBCO08], the chamfer dist@raugmented with an
additional cost for orientation mismatch, which is giventbg average difference
in orientations between template edges and their neargstgaints in the query
image. The method is known as oriented chamfer matching (DCM

3.2 Directional Chamfer Matching

Instead of an explicit formulation of the orientation midotga we generalize the
chamfer distance to points iR? in order to match directional edge pixels. Each
edge pixelx is augmented with a direction term(x), and the directional chamfer
matching (DCM) score is given by

dpose(U.V) =+ 37 min (lu; — vyl + Alo(u) — 6(v)llx) ()
n el v;eV

where the parametey is a weighting factor between the location and orientation
terms. To compute the direction terms, we fit line segmentsaedge points (as
explained in Section 3.3), art(x) is the orientation of the line segment associated
with pointx. Note that the directions are written moduto 0 < ¢(x) < 7, and
the orientation error is defined as the minimum circularedéhce between the two
directions:

[p(x1) — ¢(x2)[lx = min {|¢(x1) — d(x2)], | [p(x1) — p(x2)| = 7|}.  (7)

In Figure 1, we illustrate the differences between DCM andVO[SBCO08].
The proposed matching cost, DCM, is a piecewise smooth iamactf both the
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Figure 1. Matching costs for an edge point. (a) Oriented daamrmatching
(OCM) [SBCO08]. (b) Directional chamfer matching (DCM, paoged in this pa-
per). Whereas in OCM the location error is augmented withotientation differ-
ence from the nearest edge point, DCM jointly minimizes fioraand orientation
errors.

translation(¢,, t,) and the rotatior(#) of the template pose. It is more robust to
clutter, missing edges, and small misalignments.

The computational complexity of existing chamfer matchafgprithms is lin-
ear in the number of template edge points. Even though DCMdes an addi-
tional direction term, our algorithm (derived in this secli computes thexact
DCM score withsublinearcomplexity.

3.3 Line-Based Representation

The edge map of a scene is not an unstructured binary pa@erthe contrary, the
object contours comply with certain continuity constraititat can be retained by
combining line segments of various lengths, orientatiamsl translations. Based
on this observation, we represent an edge image as a cotlextin line segments.
Compared with a set of points which has cardinatityits line-based representa-
tion is more concise. Encoding an edge map using the lineebeepresentation
requires onlyO(m) memory size, wheren << n, and is particularly suitable
when the storage space for templates is limited. When trecbbkhibits a curved
contour, more segments are required for good approximationthe line-based
representation is still more concise than the set of edgegix

We use a variant of the RANSAC [FB81] algorithm to computelthe-based
representation of an edge map. The outline of the algorithmsifollows. The
algorithm initially hypothesizes a variety of line segneefly selecting a small
subset of edge points and their directions. The support cf #ae segment is
given by the set of points that satisfy the line’s equationtaia small residual,
v > 0, and form a continuous structure. The line segment withahgekt support
is retained, and its supporting points are removed from ¢hefsedge points. The



Figure 2: Line-based representation. (a) Edge image. Thgencontains 11,542
edge points. (b) Line-based representation of the edgeemEe image contains
300 line segments.

procedure is repeated with the reduced set of edge poinisthensupport of the
longest line candidate becomes smaller than a few points.

The algorithm only retains edge points with continuity anffisient support;
therefore, the noise and isolated edges are filtered outdditien, the directions
recovered through the line fitting procedure are more peeitian would be ob-
tained using local operators such as image gradients. Anm@eeof the line-based
representation is given in Figure 2, where a set of 11,548tpas modeled with
300 line segments.

3.4 Three-Dimensional Distance Transform

The matching score given in (6) requires finding the minimuatahing cost over
location and orientation terms for each template edge pdiherefore, the com-
putational complexity of the brute-force algorithm is qrait in the number of
template and query image edge points. Here we present adhmemsional dis-
tance transform representation(3y/) for computing the matching cost in linear
time. A similar structure was also used in [OH97] for fastleation of Hausdorff
distances.

This representation is a three dimensional image tensohiohathe first two
dimensions are the locations in the image plane and thedhirdnsion belongs to
a discrete set of edge orientations. We evenly quantizedfe erientation intg
discrete channels) = {(132-},1' =1,2,...,q, which evenly divide the rangé ).
Each element of the tensor encodes the minimum distance edgmpoint in the
joint location and orientation space:

DT3y (x,¢(x)) = min (Ix = v;| + MéG) = dv)ll), (8
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Figure 3: Computation of the integral distance transformst¢e. (a) The seV’

of points in the query edge map is mapped into a set of line eatgrthrough a
line-fitting procedure. (b) Edges are quantized into discagientation channels.
(c) Two dimensional distance transform of each orientatiwannel. (d) The three-
dimensional distance transfor™T'3y/, is updated based on the orientation cost.
(e) The 3D distance transform is integrated along the dis@dge orientations,
and the integral distance transform ten3dxT'3y/, is computed.

whereg(x) is the nearest quantization level in the orientation spiate the edge
orientationg(x).

We present an algorithm to compute tha'3y, tensor inO(q) passes over
the image by solving two dynamic programs consecutivelyudfign (8) can be
rewritten as

DT3y (x,¢(x)) = min (DT, +)\qu —QASZ-W 9)
(x, 6(x)) @_eé( Vi T ASE) = bill)
whereDTV{q;i} is the two dimensional distance transform of the edge paints

that have edge orientatiap.

Initially, we computeg two-dimensional distance transformv{éi}, which
requiresO(q) passes over the image using the standard distance tranafgom
rithm [FHO4]. Subsequently, thBT3y, tensor (9) is computed by using a second
dynamic program for each image pixel separately. The teissimitialized with
the two dimensional distance transformel'3y (x, ¢;) = DTV{@}(X), and is up-
dated with a forward recursion

DT3y (x, $;) = min{DT3y(x, ¢;), DT3v (x, i—1) + A|¢i—1 — dill=} (10)
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and a backward recursion

DT3y (x, ¢;) = min{DT3y (x, $;), DT3v (%, pir1) + N|dir1 — dill-}  (11)

for each pixelx. Unlike in the standard distance transform algorithm, spd@n-
dling is required for the circular orientation. The forwamad backward recursions
do not terminate after a full cyclé,= 1,...,qori = q,...,1 respectively, but
the values of the tensor entries continue to be updated ircalai form until the
value for a tensor entry is not changed. Note that at méstycles are needed for
each of the forward and backward recursions, therefore thrstwtime computa-
tional cost isO(q) passes over the image. We illustrate the computation ohtee t
dimensional distance transform in Figure 3(a)—(d). UdB3y,, the directional
chamfer matching score of any templafecan be computed as

dpem(U, V) Z DT3y (w;, p(w;)), (12)
uZEU

where the complexity is linear in, the number of edge points (.

3.5 Integral Distance Transform Tensor

Letly, x,) represent the line segment in the image plane connectirgspix and

x9. Let Ly = {l[s,-,e,.]}, j =1,...,m, be the line-based representation of tem-
plate edge point&/, wheres; ande; are the start and end locations of tjth line
segment respectively. For ease of notation, we sometinfieistoea line segment
with only its index,l; = [s; o,)- We assume that the line segment directions are re-

stricted tog discrete channel$, which is enforced in the line-based representation.
We choose the number of directiopdarge enough (in our experimenig= 60)
to avoid quantization artifacts. The line-based repredimt of Figure 2(b) is gen-
erated from the edge image in Figure 2(a) usjng 60 directions.

Since the edge points in a line segment all have the sameatiaan which is
the direction of the line segme&ﬁ(lj), the directional chamfer matching score (12)
can be rearranged as

dpem (U, V) Z Z DT3y( uZ, )) (13)

l €Ly u;€l;

In this formulation, the:th orientation channel of thBT3y tensor,DT 3y (x, q@k),
is only used for evaluating the matching scores of the ligr@ts having the
direction ¢y, which is achieved by summing over the points in the line sagm
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Integral images are intermediate image representati@usfosfast calculation
of region sums [VJO01] and linear sums [BB09]. Here, we preserintegral dis-
tance transform representatiolD(I'3y/) to evaluate the summation of costs over
any line segment i@ (1) operations, as shown in Figure 3(e).

Let xo be the intersection of an image boundary with the line thasea
throughx and has direction,;. Each entry of thdDT3, tensor is given by

IDT3y(x,¢:) = > DT3y(x;,é:). (14)

Xj€l[xg,x]

TheIDT3y tensor can be computed in one pass ovetifig, tensor. Using
this representation, the directional chamfer matchingesobany templaté/ can
be computed it (m) operations via

1 A R
dpen(U,V) = — > IDT3y(e), ¢(lfs;e;)) — IDT3y (55, d(1s; e;]))-
l[sj,ej]eLU

(15)

3.6 Search Optimization

In this section we present two search optimization tectesdaased on the bounds
on the matching cost and empirically show that the numberaiuated line seg-
ments issublinearin the number of template poinis

3.6.1 Bound in the Hypotheses Domain

The O(m) complexity is only an upper bound on the number of computatio
FDCM can be used for object detection and for localizatioor. dbject detection,
we only need to retain the hypotheses for which the templatiemng cost is less
than a detection threshold. For localization, we only neeétrieve the hypothesis
with the lowest matching cost.

We order the template line segments with respect to thegthsnand start the
summation (15) from the longest line segment. A hypotheséiminated during
the summation if the cost is larger than the detection thuidsbr the current best
hypothesis. Since the lengths of the line segments rougtdgydexponentially, for
most of the hypotheses only a few arithmetic operations er®pned.

3.6.2 Bound in the Spatial Domain

The DCM cost function (6) is smooth and bounded in the spdtiaiain. We utilize
this fact to significantly reduce the number of hypotheseduated. Lety ¢ R?
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Figure 4: Empirical evidence of sublinear time complexitythe number of tem-
plate points. The graph plots the ratio of the number of eateld linesmn to the
number of template points vs. the number of template points. (If the complexity
were linear inn, the graph would be a horizontal line.)

be a translation of the modél in the image plane. The DCM cost variation due to
translation is given by

1 .
dpen(U +6,V) = — > min J[u; + 8 — vyl + Allg(us) = 6(v))x
u, €U J

1 .
< =3 min = v 18] 4+ No(w) — 6(%)lle = 18]+ dpo (U, V).
u, €U J
(16)

From Equation (16), the variation of the cost is bounded leysimatial translation
l[dpem(U + 8, V) — dpem(U, V)| < ||6]]. If the detection threshold is and

the cost of the current hypothesisiyis> 7, then there can not be a target within
the ||d|| = |¢» — 7| pixel range that has a matching cost lower than the detection
threshold. Therefore, we can skip the evaluation of the thgses within this
region.

3.6.3 Empirical Evidence of Sublinear Complexity

It is easy to see that the sublinear complexity holds in thee aaf scaling the
template shape. As the number of edge pointsincreases with the template
size, the cardinalityn. of the line-based representation of the template rema@s th
same. Hence, the same number of arithmetic operationsugeedo compute the
matching cost, which means the matching complexity is @mmstrespective of
the number of edge points.

14



a8 Gripper Camera
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Figure 5: Our robotic grasping system. A multi-flash cam&i&C), shown in
detail in (c), is mounted on the robot arm and used to perfoeteddion and pose
estimation of objects (parts) placed in a container. Thapgn camera is a standard
camera that is mounted above the robot’s wrist joint andtpdimt the tip of the
gripper. The gripper camera is used to perform error detedfter an object is
picked up from the container.

We also provide empirical evidence that in a more generabpsets well, the
matching complexity is a sublinear function of the numbeteofiplate points. As
explained above, th@(m) complexity is only an upper bound on the number of
evaluations, and on average we need to evaluate only adinacfithem lines.
Empirically, we evaluate thé: longest lines, wheré: is chosen to fi20% —30%
of the template points. Most of the energy is concentratezhiy a few lines, and
we find thatm grows sublinearly witm. In Figure 4, we plot the number of tem-
plate points;y:, on thez-axis and the ratio of the number of evaluated lines to the
number of template points‘%, on they-axis. For this graphs is selected as the
number of lines that fiB0% of the template points. The curve is generated using
1,000 shape images from the MPEG-7 dataset. We observe ghhe asumber
of template points increases, the fraction of evaluategklilecreases, which pro-
vides empirical evidence that the algorithm is sublineghanumber of template
points ( < O(n)).

4 Pose Estimation for Robotic Bin Picking

In this section, we present our robotic bin-picking systdmat tuses the shape
matching algorithm described in Section 3.
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Figure 6: Flowchart of our system.

4.1 System Overview

Figure 5 shows our system setup. We mount an MFC and a standarera on
an industrial robot arm. The MFC is used to perform objececk&in and pose
estimation of objects that are randomly arranged in a partaiwer. The robot
arm uses the estimated pose of the object to grasp the olpj@diftait out of the
container. The standard camera, which we call the grippseca, is focused on
the tip of the gripper and is used to perform error detectitar ¢he object is picked
up. Both cameras are calibrated offline using a checkerboaite calibration
determines internal parameters of the cameras as well go#es of the cameras
with respect to the robot coordinate system (hand-eyeredilim).

The flowchart in Figure 6 provides a summary of our system. We gn
overview of our algorithm below and explain the details offeg@rocess in the
following subsections.

1. Offline database generation(Section 4.3): For each object, we render the
3D CAD model according to a set of hypothesized poses, éxttepth
edges, and compute the line-based representation (whistpreaented in
Section 3.3) of the depth edges.

2. MFC imaging and depth edge extraction(Section 4.2): We captur@im-
ages, using thé different flashes of the MFC and one image without any
flash. The depth edges in the scene are computed using thagesm

3. Object detection and pose estimationUsing the FDCM algorithm (which
was presented in Section 3), we retrieve the database pdsiésan-plane
transformation parameters that have the minimum matchosg &nd use
these as a coarse pose estimate. The matching algorithmédkeeted us-
ing a heuristic that we calbne-dimensional searc{Section 4.4). Further
improvement of the coarse estimate is achieved via a migti-pose refine-
ment algorithm (Section 4.5).

4. Grasping and picking up the object We use the estimated 3D pose to
grasp the object with the gripper and lift it out of the pani@iner.
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Multi Flash Camera

Right Flash (LED)

/ Shadow Cast
by Left Flash

Left Flash (LED)

Shadow Cast
by Right Flash

Textureless Object

Figure 7: lllustration of the principle of multi-flash canagiMFC) imaging. The
scene is illuminated by flashing one LED at a time. Due to tlffergint positions

of the LEDs, the shadows cast by the object change. Whilasittevalues of
points such a1 (on the top surface of the object) remain nearly constantnwhe
illuminated by different LEDs, intensity values of pointsch asP2 (which is in
shadow for some of the LEDs) change. This property is exgioib detect depth
edges.

5. Error detection and pose correction (Section 4.6): We use the gripper
camera to detect grasping errors. We evaluate/re-estithatpose of the
object in the gripper. The pose of the object is correcte@dassary.

6. Assembly The pose-corrected object is ready for the next step of¢kera-
bly task.

4.2 MFC Imaging and Depth Edge Extraction

We use an MFC [RTFO04] to detect depth edges (depth discontinuities) in the
scene. A depth edge is a robust geometric feature. It isiamnato the surface
properties of objects (textured, textureless, shiny,) eand is unaffected by oil,
grime, or dirt on the object surface, which are common in #tdal environments.
The MFC is equipped witl8 point light sources made of light-emitting diodes
(LEDs). They are evenly distributed around the camera ir@lgr fashion, as
shown in Figure 7. During the MFC imaging, these LEDs are sptially switched

on to illuminate the scene. Only one LED is switched on at @ tiamd an image is
taken. This is repeated for each of theEDs. We also take an image with all the
LEDs turned off to record the ambient illumination. The eint LED positions
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(a) Flash from right (b) Flash from left (c) Depth edges (d) Canny edges
Figure 8: Comparison between depth edges extracted usingF&h and stan-
dard Canny edges for a simple scene (top) and a highly chgttecene (bottom).
(a, b) Two out of eight flash images captured with an MFC. Nbte different
shadow locations. (c) Extracted depth edges. (d) Standé&edsity edges com-
puted by using a Canny edge detector on an image captureduwitash. Note
that the Canny edge results include both texture and dejbseds well as are

affected by shadows due to ambient lights.

result in different illumination directions, so the posiis of shadows vary across
the 8 images. This property can be exploited to detect thihd=ges in the scene,
as discussed below.

Let /; denote the image illuminated by thith LED, after subtracting the ambi-
ent image. First, we construct the maximum imafg,., where the cast shadows
due to the flashes are removed. We consider each pixel lacatid find the maxi-
mum intensity value at that location across the 8 images:

[max(xy y) = max IZ(.’L’, y) (17)

Next, we compute the ratio images

I;

Imax

RI; = (18)
Ideally, if a pixel is in a shadow region of imade (e.g., pointP2 in Figure 7),
this ratio should bé@ since the contribution of the illumination from the ambient
source has been removed. In contrast, the ratio in otheshadew regions (e.g.,
point P1 in Figure 7) should be close tbsince these regions are illuminated by
all the flashes. Notice that a depth edge corresponds to & gfdiransition from

a non-shadow region to a shadow region along the illuminadicection defined
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Figure 9. Database generation. We uniformly sample thdiootangles €, and
6,) on the2-sphere. The template database is generated by rendeangAD
model of the object at each of the sampled rotations.

by the LED position in each image. Therefore, for each ratiage, we detect this
transition by using a Sobel filter whose direction is alignégth the illumination
direction, followed by non-maximum suppression. We theshtheé filter responses
across different flash images and use hysteresis thresgditnilar to the Canny
edge detector [Can86] to obtain a depth edge image.

Comparison with Intensity Edges: Figure 8 compares depth edges extracted
using an MFC to standard intensity edges, which were condgateising a Canny
edge detector on an image captured without flash. Note teaamny edge results
include texture edges (e.g., the artificially painted obgaface in the top row,
and small scratches on the surface of the shiny objects ibdtiem row). They
are also affected by shadows due to ambient light (note fferelice of detected
edge locations between the MFC depth edge results and they@dge results).
In contrast, our approach using MFC imaging provides deptes only, which
can be used as robust geometric features for object detesntid pose estimation.

4.3 Database Generation

An object exhibits different silhouettes in different pssélthough the matching

algorithm in Section 3 models in-plane rotation and traista it does not model

rotations in depth, which can change an object’s depth-siligeuette. To accom-
modate these variations, we generate a set of templatessdbmrange of possible
rotations in depth, denoting this set of templates{b¥.}. The search problem
in (3) is generalized to find the best-matching template imghbt, as follows:

i d W (Uy; . 19
arg k,sgls}}g@) DCM( (Uka S)7 V) ( )
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Template

Query Image

Figure 10: One-dimensional search. A template is rotateldr@amslated such that
one template line segment (the blue line segment) is aligrdone line segment
in the query image (the green line segment). The templatansiated along the
guery line segment, and the directional chamfer matchisgis@valuated for each
translation.

Given a CAD model of the object, we generate a database ofi-aelgte tem-
plates by detecting the depth discontinuities in the modelthis simulation, a
virtual camera with the same internal parameters as thecezaéra is placed at
the origin, and its optical axis is aligned with theaxis of the world coordinate
system. The CAD model of the object is then placed on:thgis at a distance,
from the virtual camera, which is equal to the actual distaoicthe part container
from the real MFC in our setup. The virtual flashes are swilohre one at a time,
and eight renderings of the object (including cast shadawesacquired. The depth
edges are detected using the procedure described in Sé@ion

An arbitrary 3D rotation can be decomposed into a sequenttead elemental
rotations about three orthogonal axes. We align the firdiege axes to the camera
optical axis and refer to the rotation about this axisnaglane rotation(d,). The
other two axes are on a plane perpendicular to the camereabpttis, and we
call the rotation about these two axast-of-plane rotationd,, andd,). Note that
an in-plane rotation simply results in an in-plane rotatidithe observed images,
whereas the effect of an out-of-plane rotation depends er3ihstructure of the
object. Due to this distinction, we only include out-of4péarotations of the object
in the database. We samplé out-of-plane rotationst(, andé,) uniformly on the
2-sphere,S2, as shown in Figure 9, and generate the depth-edge tenip|diar
each rotatiork € {1,...,K}.
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4.4 One-dimensional Search

In order to retrieve the coarse pose of the object in the sesing (19), we sequen-
tially search over all the database templatég, wherek = 1,..., K. For each
templateU;,, searching for the best alignmeht= (0.,1,,t,) is computationally
intensive (three degrees of freedom). Here we present &tieumethod to greatly
reduce the search space (from three degrees of freedom tiegree of freedom),
which exploits the fact that under the best alignment, theptate and query im-
age line segments are well aligned. Additionally, the méjos of the template
and the query images are reliably detected during the Ittiegfiprocess, since the
algorithm favors line segments with larger support.

We order the sets of template and query line segments frogekirio shortest
and use a few major lines from the ordered sets of templatg@eny line segments
to guide the hypothesis search. The template is initialigteal and translated such
that a template line segment is aligned with the directiom ofuery image line
segment and the end point of the template line is translatethtch the start point
of the query line segment, as illustrated in Figure 10. Theptate is then trans-
lated along the query line segment direction, and the casttiion is evaluated
only at locations where there is an overlap between the tgmeats. This pro-
cedure reduces the three-dimensional search (in-plangamtand translation) to
one-dimensional search along only a few directions. Thechd#me is invariant
to the size of the image and is only a function of the numbereofglates and
guery image lines and their lengths. With this heuristic,car efficiently find the
minimum-cost template and its alignment parameters.

45 Multi-View Pose Refinement

The minimum-cost template, together with its in-plane $farmation parameters
(0., tg, t,), provide a coarse estimate of the 3D object posefLet, be the out-
of-plane rotation angles, and lgtbe the distance from the camera, which are used
to render the template. We back-project the in-plane tagiosl parameters to 3D
using the camera calibration matili&, and obtain the initial 3D pose of the object,
p’, as the three Euler angl¢§,, 6,,6.) and a 3D translation vectdt,, t,,t,)".

The 3D posep can also be written in matrix form

M, — ( e te > € SE(3), 20)

whereR;, is the3 x 3 rotation matrix computed by a sequence of three rotations
around ther—y—z axes,Rg. Ry, Ry, , andt,, is the 3D translation vector.

The precision of the initial pose estimation is limited by tHiscrete set of
out-of-plane rotations included in the database. Belowpvesent a continuous
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optimization method to refine the pose estimate. The prapossthod is a com-
bination of the iterative closest point (ICP) [Zha94] andu€sNewton [BV04]
optimization algorithms. It can work with any number (onevmre) of views with
known camera poses.

Refinement Algorithm: Let M) ¢ SE(3) be the 3D rigid transformation
matrix representing the pose of the camera corresponditigetgth view in the
world coordinate system, and I8& = (K 0) be the3 x 4 projection matrix.
As explained in Section 4.1, the projection matrix is knoWwrotigh camera cal-
ibration, and the camera poses are known through hand-éipeatian and the
motion of the robot. The edge points detected intheview are given by the set
v = (vi7y,

First, we establish a set of correspondences between theABDnibdel points
ﬁgj) and the 2D detected edge poimg). We find these 3D-to-2D point corre-
spondences via closest-point assignment on the image. glam® so, we simulate
the multi-camera setup and render the 3D CAD model with iEdpethe current

pose estimatp. LetUU) = {ugj)} be the sets of detected edge points in ttie
synthetic view and7) = {#"")} be the corresponding 3D CAD model points in

the jth camera coordinate system. For each puﬁ"i)[ e UY), we search for the
nearest point i’ () with respect to the directional chamfer matching cost as

arg_min[u? = v || + Ao () = o(v)], (21)

v eve)

and establish 3D-to-2D point correspondenta$’, v7)).
Using the found correspondences, our optimization algaritninimizes the
sum of squared projection errors simultaneously in all fleevs:

cp) = 3.3 [PMOMMD g — |2, 22)

I a®

Note that both the 3D pointfal(.”) and their projections are expressed in homoge-
neous coordinates, while the corresponding edge poinsxaressed in Cartesian
image coordinates. With a slight abuse of notation, in thisnulation, we assume
that the projections of the 3D points have been convertedtioriage coordinates
before measuring the distances.

The nonlinear least squares error function given in (22)irgnmized using the
Gauss-Newton algorithm. Starting with the initial posereate p°, we improve
the estimation via the iterations

p't' =p’ + Ap. (23)
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The update vectoAp is given by the solution of the normal equations
(J2Je)Ap = —J e, (24)

wheree € R is the residual vector comprising thésummed error terms in (22),
andJ. is the N x 6 Jacobian matrix of with respect tg, evaluated ap’. Similar
to the ICP algorithm, the correspondence and minimizatiablpms are solved
iteratively until convergence.

Implementation for Bin Picking: The pose refinement method could be used
with a single view to refine the coarse pose estimate. Howewverfound that
the estimation accuracy obtained using a single view is nough for accurate
grasping. To increase the accuracy, we use a two-view agiprod/e move the
robot arm to a second location and capture the scene agaig td MFC. The
second location is determined depending on the coarse ptisate of a detected
object, such that in the second view the object is capturdtkatenter of the image
and from a different out-of-plane rotation angle.

Since we perform the coarse pose estimation on the first vigigally the
projection errors in the second view are larger than thoskarfirst view. This is
particularly the case when the distance between the camdrtha object is very
different from the hypothesized distancethat was used to generate the database
(Section 4.3). To improve convergence, we first perform &imement using the
first view only, for several iterations, and then jointlynggiboth views. In general,
we found thaRo0 iterations suffice for convergence.

4.6 Error Detection and Pose Correction in the Gripper

The estimated 3D pose of the object is used to grasp the algew the gripper
and lift it out of the part container. The grasping will fdilthe estimated pose is
inaccurate. Moreover, even if the estimated pose is cortieetgrasping process
may introduce errors because of slippage and interferanoe the other objects.
These can result in a grasping failure (object is not pickgdar in the object
having the wrong pose in the gripper, which would make it isgdole to perform
subsequent assembly tasks. Therefore, after graspingsenth@ gripper camera to
detect these errors and correct the object pose beforethstage in the assembly.
The goal of this error detection and pose correction protess determine
whether the object is grasped with the correct pose. We usmdad camera as
the gripper camera and mount it above the wrist joint of tHt@rm, as shown
in Figure 5. The gripper camera is focused on the tip of thepgt and captures
an image of the object after it is lifted out the part containd/e use the Canny
edge detector to extract edges from the image acquired lyrithyger camera. The
extracted edges include both texture and depth edges, aléatot as robust as the
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depth edges extracted using the MFC. However, since thetdbjalready isolated
in the gripper, we find that these edges work well for erroedbn.

Since we know the ideal pose of the object in the gripper (tsephat would
occur if there were no error in the initial pose estimation gnipping process),
we use this ideal pose as the initial guess and apply the péisement algorithm
described in Section 4.5. If the refined pose is very diffefeam the ideal pose
or the matching cost becomes larger than a threshold, thatfeteet it as an error
and drop the object back into the part container. Otherwiseuse the refined
pose for the subsequent assembly task. Since the gripparaasiocated above
the robot’s wrist joint, we can obtain a second view of theeabjn the gripper
with a different pose by rotating the wrist and capturingtheo image using the
gripper camera. In the experiments (see Section 5.1.4) haw that single-view
pose estimation is sufficient for detecting errors, but fmsgcorrection, two-view
pose estimation is preferable due to the higher accuraayrest

Foreground Extraction: We exploit robot motion to make the pose estimation
in the gripper more accurate and efficient. The idea is to nteveobot arm during
the exposure time of the camera, while keeping the relatige petween the cam-
era and the gripper fixed. This can be achieved by fixing thegaif the robot that
are between the gripper and the arm segment to which the adamettached (not
moving the wrist joint) and moving the other joints. This oblnotion introduces
blur only in the background while keeping the foregroundecbgharp. As shown
in Figure 11, images captured during such a robot motionymedharp edges only
on the foreground object (which is stationary relative ®¢amera), leading to ac-
curate and efficient pose estimation. We call thigground extractionbecause it
is essentially the reverse of standard background suistnact

5 Experiments

We conducted extensive evaluations of the proposed digofior several applica-
tions using challenging real and synthetic datasets. ésthition, we first demon-
strate results for the robotic bin-picking system desctibe Section 4 and then
present results of the proposed shape matching algoritestiithed in Section 3)
for other applications: deformable object detection usitgnd-drawn shape, and
human pose estimation.

Note that in all of our experiments, we emphasize our FDCNrigm’s im-
provement in accuracy and speed compared to CM and OCM. Fannagble ob-
ject detection and human pose estimation, the performahE®GM is roughly
comparable to state-of-the-art methods, and if desiredréM estimates could
be further refined by using them as initial hypotheses foreremmputationally
expensive point registration algorithms.
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(d)

Figure 11: Foreground extraction. Images captured by tippgr camera (a) while
the robot arm is fixed and (c) during a robot arm motion in whiehrelative pose
between the object and the gripper camera is fixed. Note thét)j the back-
ground is blurred due to the motion, while the foregroundeobjemains sharp.
Corresponding Canny edge detection results using the damieshbld are shown
in (b) and (d).

In all our experiments, we used= 60 orientation channels. We set the weight-
ing factor\ = % which means that 6° error in line orientation carries the same
penalty as d-pixel distance in image plane.

5.1 Pose Estimation for Robotic Bin Picking
5.1.1 Synthetic Examples

We quantitatively evaluated the accuracy of the proposedhimgy algorithm to de-
tect and localize objects in highly cluttered scenes on &nsive synthetic dataset.
The synthetic dataset was generated using 3D models of 6tspbjath 3D shapes
of varying complexity, which were placed randomly one oVver dther to generate
several cluttered scenes. We computed depth-edge imagamblating the MFC
and its cast shadows in software using OpenGL. The averagasomn of each
part in the dataset was$%, while the maximum occlusion wa$%. Moreover,
in order to simulate missing depth edges and other impéfectin MFC imaging,
a small fraction (about0-15%) of the depth edges were removed. Furthermore,
the depth-edge images were corrupted with significant roysedding uniformly
sampled line segments. There were a tota@sf such synthetic images rendered
under this setup, six of which are shown in Figure 12.

For each object in this experiment, we generated a dataloadaining K =
300 shape templates, one for each of the uniformly sampled feplaoe rotations
(see Section 4.3). For each query image, we retrieved theadmplate pose using
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Table 1: Detection failure rates and processing time inljigluttered scene with
multiple objects.

Algorithm Circuit | Diamond | Ellipse | T-Nut | Knob | Wheel || Avg. || Time
Breaker Part Part (sec)
FDCM (ours) 0.03 0.01 0.05 0.11 | 0.04 | 0.08 || 0.05| 0.71
OCM [SBCO08] 0.05 0.05 0.14 0.17 | 0.04 | 0.17 | 0.10 | 65.3

CM 0.11 0.22 0.26 034 | 026 | 0.22 || 0.24 | 29.1

a brute force search scheme (over all in-plane rotation r@mghation parameters).
Full 3D pose of the objects were then recovered for a knownhdesing the es-
timated in-plane transformation parameters together thighout-of-plane rotation
parameters that generated the template poses. An estima®labeled as correct

if the position was withirb mm, and the three estimated angles were each within
10°, of the ground truth pose.

Detection and Localization: We compared the performance of our proposed
FDCM to CM (described in Section 3.1) and OCM [SBCO08]. The=dgon fail-
ure rates and processing times are shown in Table 1. WheMdwsa@ an average
detection failure rate 0f.24, the proposed FDCM algorithm had a failure rate of
only 0.05. It also improved upon the error rate of the competing stétihe-art
matching formulation (OCM) by a factor of 2. Notice that atiewith discrimi-
native shapes, such as the diamond part and the circuitdirgakt, are easier to
detect and localize. In contrast, the T-nut object, whichdaimple shape, is rela-
tively difficult to detect, since false edges from cluttedather objects frequently
mislead the optimization algorithm. Our FDCM algorithmiisx faster than CM,
and90x faster than OCM: The average detection time of FDCM &a@$ seconds,
compared t®9.1 seconds for CM an@5.3 seconds for OCM. Several examples
of successful detections for various objects in challepgicenarios are shown in
Figure 12.

Robustness to OcclusionWe further quantitatively evaluated the robustness
of the FDCM algorithm to varying degrees of occlusion, fromatclusion to an
average occlusion df0%. The results are presented in Figure 13. We achieved
greater thar®9% detection rate up t6% occlusion, and abous% detection rate
when one-fourth (25%) of the object is occluded.

Two-View Pose Refinementin this experiment, we evaluate the accuracy of
the pose refinement algorithm described in Section 4.5. dJ$ia same set of 6
objects, we render one object at a time in random poses. Afterarse pose es-
timate was computed, both the refinement schemes using eweavid that using
two views were applied independently to further refine thireges. The final
pose estimates were compared to the ground truth pose. Thksran Table 2,
averaged ove6 objects andl00 trials each, demonstrate that the two-view ap-
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Figure 12: Examples of successful pose estimation on théhetjo dataset.

(a) Photo of each part. (b) Sample depth-edge template.ef@i&ted query image.
(d) Pose estimation result.
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Figure 13: Detection rate versus percentage of occlusion.

Table 2: Comparison of the average absolute pose estimation between the
one-view and two-view approaches.

Average tx ty ty Ox Oy 0
absolute errof mm | mm | mm | degree| degree| degree

1 View 0.127| 0.165| 1.156| 0.674 | 0.999 | 0.349

2 View 0.094| 0.096| 0.400| 0.601 | 0.529 | 0.238

proach outperformed the one-view approach. In the rendarades,1 mm cor-
responded to abouit56 pixels on the image plane, indicating that the two-view
estimate achieves sub-pixel accuracy.

5.1.2 Real Examples

Object Detection and Pose Estimation in Cluttered ScenesTo quantitatively
evaluate performance, we performed several real expetan&ix different types
of objects were laid one on top of another in a cluttered maaseshown in Fig-
ure 14. We then extracted depth edges using the MFC and perfoobject detec-
tion and pose estimation on the resulting depth-edge imagesach trial of this
experiment, we used the system to detect a single instarare aject type. Over
several hundred trials, the average detection rate9%&s Shown in Figure 14
are some typical example trials of this experiment. On eayge, we overlay the
silhouettes of the detector outputs for three differenecbiypes. Notice that some
of the parts have no texture, while others are quite speciasuch challenging
scenarios, methods based on traditional image edges Gagny edges) usually
fail, but the MFC enables us to robustly extract depth edgésm notice that since
the depth edge features are not affected by texture, ouoth@tbrks robustly even
for parts that have artificial texture painted on them. Thilidates that the method
can work in the presence of oil, grime, or dirt (which are alintnon in industrial
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Figure 14: Results using real examples. The system detaadccurately esti-
mated the pose for specular (shiny metal) objects, texdssebbjects (such as the
ones in the bottom center image), and objects that have fdtgmisleading tex-
ture painted on them (such as the ones in the bottom rightéin&yerlaid on each
image is the top detector output for each of three differbjea types.

environments), all of which add artificial texture to thefaae of objects.
Statistical Evaluation: In order to statistically evaluate the accuracy of the

proposed system, we need a method of independently olgaihan 3D ground
truth pose of the object. Since there was no simple way ofimbta this (es-
pecially when objects were stacked on top of each other edpit a bin), we
instead devised a method to evaluate the consistency ofgstisgate across multi-
ple viewpoints of the camera. We placed an object in the sesedeommanded the
robot arm to move to several rotations and translationshabdata are collected
when the camera is pointing at the object using many diffecemera poses. The
camera poses were maintained such that the distance alnepttis between the
camera and the object #510 mm from the hypothesized distantethat was used
to generate the database (Section 4.3). From each camerdiie€ images were
captured, and our algorithm was used to estimate the poke objfect in the cam-
era coordinate system. Since the object is static, the atithpose of the object
in the world coordinate system should be identical irreBpe®f the viewpoint
of the MFC. For each view, the estimated pose of the objecttreasformed to
the world coordinate system using the known position anehtaition of the robot
arm. We repeated this experiment fodifferent objects, witl25 trials for each ob-
ject (the object was placed in a different pose for each)trialiring each of these
independent trials, the robot arm was movedt@odifferent viewpoints in order
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Figure 15: Results from real examples. Histograms of dewiatfrom the median
pose estimate, in mm (top) and degrees (bottom), acrosspieultials of pose
estimation.

to evaluate the consistency of the pose estimates. Thaghastoof the deviations
from the median pose estimate is shown in Figure 15. Thetsedemonstrate that
the algorithm computes consistent estimates, with a stdrdviation of less than
0.5 mm in the in-plane directioné&r, y) and about degrees in each of the three
orientation angles. The standard deviation of the estimnatee > direction (along
the optical axis of camera) is slightly larger (approxinhate2 mm).

Effect of Depth Variation: In our experiments, the system was optimized
for a part container with a depth variation 46 mm and a distance along the
axis of 275 mm from the camera to the top of the part container. As expthin
Section 4.3, the pose estimation algorithm requires a raage of the distance,
t., from the camera to the objects along thaxis. In this experiment, we analyze
how deviations of the true object distance from the hypatieelsdistance . affect
pose estimation accuracy.

We placed a single object in the scene and performed poseatisin at several
different camera poses with offsets along thaxis from the hypothesized distance
of 275 mm. At eachz offset (height), we repeated the pose estimationlfiir
trials by randomly changing the camera pose in (thgy) directions. As in the
previous experiment, we used the median pose estimate gsated truth pose.
An estimate is labeled as correct if the translation errmmputed as the Euclidean
distance between the, y, z) translation vectors, is less thamm and the rotation
error, computed as the geodesic distance between two 3ibratais less thaf®.

30



100}

951

9071

Success Rate [%)]

85

801
-40 -30 -20 -10 O 10 20 30 40 50
Camera Height Offset [mm]

Figure 16: Effect of depth variation on pose estimation.

The accuracy of the system is shown in Figure 16. The posaaibin algorithm
is quite robust to depth variations betwder20, +50] mm, which is significantly
larger than our target capture range. Outside of this raogetwo-view pose
refinement algorithm failed to converge to the true solut@rseveral trials, due to
the incorrect distance assumption causing large projeetiors. This experiment
suggests that for part containers with larger depth variaticoarse pose estimation
should be performed at multiple scales, targeting diffedmpths, to get a better
initial depth estimation. Alternatively, we could move ttabot arm and change
the height of the capture position based on previous objesd pstimates in order
to maintain a roughly constant distance between the camnerthe objects.

5.1.3 Bin-Picking System Performance

We evaluated the performance of bin picking using the rab®gstem shown in
Figure 5. Extension 1 demonstrates our system accompjishisitask in real time.
Figure 5 shows a part container (bin) containing a large rarrobcircuit breaker
parts. The gripper (end effector) of the robot arm is desigoegrasp each of the
objects by first inserting its three metal pins in the clodateghrough a hole in the
object. The gripper then opens by moving the three pins ligaiatward, thereby
exerting outward horizontal forces on the inside edgesehtiie. The gripper has
a diameter o8 mmin its closed state, while the hole in the object has a dieinud
about6 mm. Therefore, in order to successfully insert the grippeide the hole
(before lifting the object), the pose estimate error in {hey) directions must be
less thanl.5 mm. If the pose estimate error is greater, the pins will nahkerted
into the hole, resulting in a failure to grasp the object.
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Our system was able to successfully guide the robot arm igragping task,
achieving a grasping success rate¢% over several hundred trials. There were
two main causes for the grasping failuresiid of the trials: (1) This particular
target object has very similar depth edges when it is flipgeside-down, which
occasionally led to inaccurate pose estimates; (2) Evem e pose estimation
was correct, the hole of the object was occasionally ocduale other objects,
resulting in a grasping failure. It is important to note thadltof these grasping
failures were detected by the error-detection procesgubim gripper camera, so
they did not affect the subsequent assembly task. Among#tarices of success-
ful grasping, a few trials resulted in the object being pitkg by the gripper in
an incorrect pose, due to interference from neighboringaibjduring the pickup
process. These cases were also detected and were corretiathtically by our
system using the gripper camera and our process for posgagistn and correction
in the gripper (described in Section 4.6).

Processing Time:The entire pose estimation process requires lessltisaie-
ond for an object in an extremely cluttered environment (@&l quad-core.4
Ghz CPU with3 GB memory). The decomposition of processing time.&sec-
onds for FDCM and).3 seconds for the multi-view pose refinement algorithm. As
shown in Extension 1, almost all of the computation occuméndurobot motion,
so the computation time has almost no effect on the systematige speed. In
environments with minimal clutter, the algorithm runs abtwice as fast, since
there are significantly fewer edges in the captured images.

5.1.4 Pose Estimation in the Gripper

To evaluate the system’s potential for error correctiorhim gripper, we measure
the accuracy of pose estimation in the gripper using diffenembers of views. In
this experiment, we picked up circuit breaker parts fromghg container as de-
scribed in Section 5.1.3. After each pickup, we capt@wadages at different wrist
rotation angles, as shown in Figure 17, using the gripperecarand foreground
extraction during robot motion (described in Section 4\ performed the pose
refinement algorithm (Section 4.5) using from 1-8 views (f@se experiments,
we used the ideal pose of the object as the initial guess).

Figure 18 shows pose estimation errors using different rusntif views. Since
the ground truth of the object pose in the gripper is not alzdl, we used the pose
that was estimated using alviews as the ground truth, and compared it with
the poses estimated using different numbérs) of views. The plots show the
average estimation errors and standard deviations of #stgration errors (error
bars) over100 trials. Similar to our observations from synthetic dataogh in
Table 2), the translation errors on real data are smalletviorview estimation
than for one-view estimation (see Figure 18, left). Twoavigose estimation is
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Figure 18: Pose estimation errors in the gripper using miffenumbers of views.

sufficient for accurate pose correction (error less thdnmm), and using more
than two views does not further improve the estimation. Tdtation estimation
errors are roughly the same: (2 degrees) for each number of views. Figure 19
shows a typical example of two-view pose estimation. Thieneged pose of the
object matches the object’s outline in both views quite @lgsllustrating the high
accuracy of the estimated pose. The difference betweerestiimated pose and
the ideal pose provides an idea of the typical size of thélnitose error in the
gripper. Our system automatically estimates and corrbdstror in the gripper.

5.2 Deformable Object Detection

We applied the FDCM algorithm to object detection and I@zlon on the ETHZ
shape class dataset [FTGO06]. The dataset consist§soimages, each of which
contains one or more objects from five different object dasspple logos, bot-
tles, giraffes, mugs, and swans. The objects have largatiars in appearance,
viewpoint, size, and non-rigid deformation. We followea thxperimental setup
proposed in [FTGO06, FJS10], in which a single hand-drawipstiar each class is
used to detect and localize its instances in the dataset.

Our detection system is based on scanning using a slidingowmin\We retain
all the hypotheses whose matching costs are less than thetidatthreshold. We
densely sampled the hypothesis space and searched thesiatagifferent scales

33



Estimated Pose

1st View 2nd View

Figure 19: Two-view pose estimation in the gripper. The ligese is used as the
initial guess and refined to give the estimated pose. (Batkepare superimposed
on the input images of the two views).

and3 different aspect ratios. The ratio between two consecustbades isl.2 and
between consecutive aspect ratios$.is We performed non-maximal suppression
by retaining only the lowest-cost hypothesis among any grafudetections that
have significant spatial overlap.

In Figure 20, we plot detection rate vs. false positives page. The curve
is generated via altering the detection threshold for th&chirag cost. We com-
pared our approach with OCM [SBCO08] and two recent studies-@yari et.
al. [FTGO06, FJS10]. Our approach outperforms OCM at all &teef positive rates
and is comparable to [FJS10]. Compared to [FJS10], ourteeané better for
two classes (giraffes and bottles) and slightly worse ferdWwans class, while for
two other classes (apple logos and mugs), the numbers acstaidentical. As
shown in the detection examples (Figure 21), object loatitin is highly accu-
rate. Note that [ZWWS08] and [RIMO08] report slightly befperformance on this
dataset, but we could not include their results in our grd@tause their results
were only reported in graphical format (as precision-fecaives). Also note that
these methods are orders of magnitude slower than FDCM.

Complexity Comparison: The average number of points in the shape tem-
plates werd , 610, computed over five classes. Our line-based representadiech
an average o089 line segments per class. Note that the number of lines pss cla
provides an upper bound on the number of computations egju8ince the algo-
rithm retrieves only the hypotheses having a smaller cast the detection thresh-
old, the summation was terminated for a hypothesis if thé exseeded this value.
By using this bound in the hypothesis domain (see Sectiod 86 more details),
on average only4 line segments were evaluated per hypothesis.

The average evaluation time for a single hypothesisGwis s using FDCM,
whereas this process todk.50 s for OCM and17.59 us for CM. The proposed
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Figure 20: Receiver operating characteristic (ROC) cunmeshe ETHZ shape
dataset comparing our proposed approach to OCM [SBCO8emcsicent studies
by Ferrari et. al. [FTG06, FJS10].
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Figure 21: Several localization results on the ETHZ shapasgd The images are
searched using a single hand-drawn shape shown in the Igyi¢rof the images
in the rightmost column.

method ist3 x faster than chamfer matching a7 x faster than oriented chamfer
matching. Note that the speed up is more significant for tasgeed templates,
since our cost computation is insensitive to the template, svhereas the cost of
standard chamfer matching increases linearly.

On average, we evaluatéd)5 million hypotheses per image, which to0ki2
seconds. Using the bound in the spatial domain presenteekcitio® 3.6.2 enabled
91% of the hypotheses to be skipped, reducing the averadeatoea time per
image t00.39 seconds. Note that the speedup is not proportional to tlotidra
of hypotheses skipped because in order to use the bound épétial domain, we
could no longer use the bound in the hypothesis domain (8e8t6.1).
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Table 3: Pose estimation errors on three action sequencess Bre measured as
the mean absolute pixel distance from the ground truth nmaokations.

Algorithm Walking | Jogging| Boxing || Average
FDCM (ours) 7.3 12.5 9.7 9.8
OCM [SBCO08]| 15.0 15.3 13.6 14.6
CM 9.3 13.6 10.6 11.2

Figure 22: Human pose estimation resukgst row: Walking sequenceSecond
row: Jogging and boxing sequences. Estimated poses and coateunserlayed
on the images.

5.3 Human Pose Estimation

We utilized our shape-matching framework for human posenesibn, which is a
highly challenging task due to the large set of possible@gdtions of the human
body. As proposed in [MMO02], we matched a gallery of humarpskahat have
known poses to each test image. Due to articulation, thedfilee pose gallery
needed for accurate pose estimation is large. Hence, infexdncreasingly im-
portant to have an efficient matching algorithm that can capb background
clutter.

The experiments were performed on the HumanEva dataset6ggB®@hich
contains video sequences of multiple human subjects peirigrvarious activities
captured from different viewing directions. The groundhriocations of human
joints at each image were extracted using attached mari@rape gallery tem-
plates were acquired in two steps. First, we computed theahwsithouettes via
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HumanEva background subtraction code. Then, using the \Catdges around
the extracted silhouette outlines, we obtained the shappl#tes. We performed
the experiment on video sequences from one subject of tlutgens: walking,
jogging, and boxing. For each action, we included all of tages from the
subject’s training sequence (abdyb00-2, 000 images) in the shape gallery. We
used this to estimate the subject’s pose in the correspondilidation sequence.
As we extracted Canny edges directly from the validationgesa they included
us significant amount of background clutter. The best shapwlate, together
with its scale and location, were then retrieved via the miateframework. We
guantitatively evaluated the mean absolute error betwleeigrtound truth marker
locations and the estimated pose on the image plane. Thitsrgsesented in Ta-
ble 3, demonstrate significant improvements in accuracypeoed to OCM and
CM. Our proposed approach can evaluate more thammillion hypotheses per
second, whereas CM and OCM can evaluate @nly00 and14, 000 hypotheses
per second, respectively. Examples of pose estimatiorhamgrsin Figure 22.
The code for FDCM can be downloaded from the first author’'ssiteb

6 Conclusion

We presented a practical robotic system that uses novelwemyision hardware
and algorithms for detection and 3D pose estimation of itréhigarts in a clut-
tered bin. Our implementation of the system on a robotic arthieaes accuracies
on the order of 1 mm (reduced to less than 0.5 mm with autoreatix correction)
and2°, with a total processing time of less than 1 second. Given & G#del,
a new object can be integrated into our system in less thanidGtes. Our goal
with this line of research is to make substantial progressitds more versatile
and easy-to-customize robotic bin-picking systems.
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A Index to Multimedia Extensions

The multimedia extensions to this article are at: http:Awir.org.

Table 4: Multimedia Extensions

Extension Type Description

System demo video. In the video, we demonstrate
the robustness and real-time performance of the
proposed system for picking up parts in a chal-
lenging setting. Through showing 10 consecutive
pickups of an industrial part from a highly clut-
tered bin, we illustrate the applicability of the pro-
posed system to industrial assembly. Each of the
major components of the algorithm is highlighted.
The video also contains several close-up views of
the pickups.

Video
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