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Abstract

With the recent availability of commercial light field
cameras, we can foresee a future in which light field sig-
nals will be as common place as images. Hence, there is
an imminent need to address the problem of light field pro-
cessing. We provide a common framework for addressing
many of the light field processing tasks, such as denoising,
angular and spatial super-resolution, etc. (in essence, all
processing tasks whose observation models are linear). We
propose a patch based approach, where we model the light
field patches using a Gaussian mixture model (GMM). We
use the ”disparity pattern” of the light field data to design
the patch prior. We show that the light field patches with
the same disparity value (i.e., at the same depth from the
focal plane) lie on a low-dimensional subspace and that the
dimensionality of such subspaces varies quadratically with
the disparity value. We then model the patches as Gaus-
sian random variables conditioned on its disparity value,
thus, effectively leading to a GMM model. During infer-
ence, we first find the disparity value of a patch by a fast
subspace projection technique and then reconstruct it using
the LMMSE algorithm. With this prior and inference algo-
rithm, we show that we can perform many different process-
ing tasks under a common framework.

1. Introduction

Light field is a function that describes the amount of light
passing through every direction and all the points in the 3-D
space. It is thus a five-dimensional function f(x, y, z, θ, φ)
with three spatial dimensions (x, y, z) and two angular di-
mensions (θ, φ). However, in free space the radiance is pre-
served along the direction of light travel and hence the light
field can be represented by a four-dimensional function
f(x, y, θ, φ). Another popular way of representing the light
field signal is the two plane parameterization f(x, y, u, v)
[12], which is the representation we use in this paper. The

advantage of capturing the light field signal as opposed to
2-D images is that we can perform efficient novel view syn-
thesis and refocus images after capture. To capture the light
field signal many camera architectures have been proposed
such as: 1) microlens array based design [16], 2) mask
based design [17], 3) coded aperture based design [13] and
4) camera array based design [18]. Among these the mi-
crolens array light field cameras are comercially available
as Lytro and Raytrix. Given the additional functionalities of
the light field camera over the traditional cameras, we can
expect that in future light field data will be as common as
images are today. Hence, there is an urgent need to design
efficient and robust light field processing algorithms, which
can perform operations such as denoising, spatial and angu-
lar super-resolution, and other such processing tasks. In this
paper, we provide a common framework for all processing
tasks whose observation model is a linear function of the
light field data.

Since, for many of the processing tasks, such as spa-
tial and angular super-resolution, the number of observa-
tions is less than the number of unknown parameters (under-
determined systems), we need good prior models for the
light field signal. We propose a Gaussian mixture model
(GMM) prior for light field patches. Light field for a dif-
fuse scene has a certain ”disparity pattern” as shown in the
X-U and Y-V slices of a light field data, see figure 1. This
disparity pattern depends on the depth of the scene from the
plane of focus. Consider a light field patch of dimension
n1×n2×s1×s2 that correspond to a depth equal to the fo-
cal plane. All theX−Y slices (there are s1s2 such slices) of
this patch are the same and hence the intrinsic or true dimen-
sion of this patch is n1n2 (though the ambient dimension is
n1n2s1s2). From the above argument it is clear that the in-
trinsic dimension of light field patches depend on their cor-
responding depths or disparity values and that patches with
the same disparity value lie on a low-dimensional subspace.
We further show that the dimensionality of these subspaces
are quadratically proportional to the disparity values. We
then learn different Gaussian patch priors for a discrete set
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of disparity values. Assuming a uniform prior on the dis-
parity values, our overall patch prior is thus a GMM. Given
a particular processing task, which is characterized by it’s
observation model, we propose a fast inference algorithm.
First we extract patches from the observed data,then we esti-
mate their disparity values using a fast subspace projection
algorithm and finally we estimate the corresponding light
field patches using ’linear minimum mean square estimator’
(LMMSE) algorithm [8]. We demonstrate the effectiveness
of the proposed approach for solving many light field pro-
cessing tasks such as denoising, angular and spatial light
field super-resolution.

To summarize, the technical contributions of this paper
are:

• We propose a common framework for solving many
different light field processing tasks using a GMM
prior for light field patches.

• We show that patches with a common disparity value
lie on a low-dimensional subspace. We compute the di-
mensionality of these subspaces for different disparity
values, which provide us an estimate of the minimum
number of observations needed to reliably reconstruct
light field patches of different disparity values.

• We provide an efficient algorithm for solving the in-
ference problem. We use a fast subspace projection al-
gorithm to estimate the disparity value of an observed
patch and then use the LMMSE algorithm to perform
the final reconstruction.

2. Prior Work
Light field prior has been used implicitly in many of

early light field works such as [12, 6, 18, 16, 1]. The pri-
ors that have been used most frequently are based on the
assumption that light field data are low-frequency signals.
However, these priors are weak in the sense that they do not
explicitly exploit the disparity pattern of the light field sig-
nal. To explicitly capture this structure, Levin et al. [10]
model the light field data using a 1-D depth variable and
a 2-D texture variables. They proposed a GMM model for
the light field data, in which conditioned on the depth vari-
able, the texture variable is a 2-D Gaussian random variable.
During reconstruction, the depth variable is first estimated
using a MRF formulation and then the texture estimation
becomes a simple linear problem. Further modifications to
this prior has been proposed in [9, 11]. Our patch prior
model is very similar to the prior proposed in [10]. How-
ever, the prior in [10] being a global prior, the inference is
computationally expensive. On the other hand, our prior
being defined on small patches, both learning and inference
are computationally efficient. Also, our inference step can
be parallelized by inferring each patch independently.

Among light field processing tasks, (spatial) super-
resolution has been considered in [14, 5, 3, 2]. In [14],
it is first detected whether the sub-images under each mi-
crolens of the plenoptic camera are flipped or not, and then
their central part is scaled up assuming that the scene is an
equifocal plane at a user-defined depth. In [3], the image
formation model of the plenoptic camera is derived and the
light field data is modeled as an autoregressive (AR) model.
The super-resolved data is then obtained using Bayesian in-
ference technique. A multi-view denoising algorithm has
been proposed in [21], where similar (noisy) patches from
different viewpoints are grouped together using depth es-
timates of the patches and are denoised together by using
PCA and tensor analysis. Recently, Yu et al. [20] have
shown that dynamic depth of scene effects can be produced
from a stereo camera. They recover a high resolution depth
map from the stereo images and use this depth map to syn-
thesize the light field of the scene.

Patch priors are quite popular in the image processing
[4, 15, 7, 19, 22]. The main advantage of using these priors
is that learning and inference are very efficient as compared
to the global image priors. Further, GMM patch priors have
been shown to be very effective in solving many image pro-
cessing problems [19, 22].

3. Problem Definition
We provide a common framework for all light field pro-

cessing tasks whose observation models are linear. Let x
represent the light field data that we want to reconstruct and
let the observation model of the processing task be given by

y = Hx+ n, (1)

where y is the observed data and n is the observation noise
which we will assume to be Gaussian distributed. As an
example, for the denoising problemH is the identity matrix
and y is the noisy light field data. Our goal is to estimate
the original light field data from the observation y. Since,
we take a patch based approach, y denotes extracted patches
from the observed data and x represents the corresponding
light field patch that we want to estimate. To obtain the
complete light field data, we estimate the individual patches
separately and then aggregate them later. In section 4, we
study the structure of light field patches, which naturally
suggests a GMM prior for patches. In section 5, we describe
our patch prior and its associated reconstruction algorithm.

4. Low-dimensional Structure of Light Field
Patches

In this section, we first describe the disparity pattern in
light field data. We then use these patterns to compute the
intrinsic dimension of light field patches corresponding to
different scene depths. This computations provide us with



an estimate of the minimum number of observations needed
to reliably estimate light field patches of different disparity
values.

Regular light field data (such as those captured by the
plenoptic camera [16]) can be considered as a 2-D array of
images, with the two dimensions representing the angular
dimensions u and v. Figure 1 shows various slices (X-Y,
X-U and Y-V) of a light field data. The specific intensity
patterns in the X-U and Y-V slices indicate that many of
the pixels have the same values. These pattern arise be-
cause a diffuse scene point, when observed from different
angular locations (views) in the U-V plane, gets mapped
to slightly different spatial locations in the X-Y plane. For
example, an in-focus scene point (a scene point which is
in the plane of focus of the main lens) gets mapped to the
same spatial location in all the images. Whereas, an out-of-
focus scene point gets mapped to slightly different spatial
locations. Further, the amount of spatial shifts (pixel dis-
parities) between any two consecutive images in the array
is the same. The amount of disparity is an indication of the
depth of the scene from the focal plane.

As discussed earlier, we process the light field data by
extracting many small patches from it, lets say of size
n1×n2×s1×s2. For small patch sizes, we can assume that
the whole patch can be characterized by a single disparity
value. The disparity value of a patch characterizes its intrin-
sic dimension (defined as the minimum number of variables
to represent the patch). Though the ambient dimension of
all the patches are the same, the intrinsic dimensions are
quite different. For example, consider a patch with dispar-
ity value 0: the X − Y slices (there are s1s2 such slices) of
this patch are all the same and hence the intrinsic dimension
is only n1n2 (whereas the ambient dimension is n1n2s1s2).
Figure 2 shows how to compute the intrinsic dimension of
a 2-D light field patch. It is easy to extend this argument to
the 4-D light field case and verify that the intrinsic dimen-
sion of a patch with disparity value of d pixels (between
consecutive images in the 2-D image array) is given by

(n1 + d(s1 − 1))(n2 + d(s2 − 1)). (2)

The intrinsic dimension provides us with a lower bound on
the number of observations needed to reconstruct the light
field reliably. Figure 3 shows the ratio of intrinsic to ambi-
ent dimensions for light field patches of size 16×16×5×5
for different pixel disparity values. We have plotted two
curves, one computed from Equation (2), and the other
computed empirically from the rank of the patch covari-
ance matrices (for each disparity value, we learn a patch
covariance matrix). Note that the two curves agree with
each other exactly. From this figure, we can conclude that
if the scene has a maximum disparity of +/ − 5 (and we
use 16× 16× 5× 5 patches), then we can reliable recover
the light-field data even if the observation model is under-

determined by a factor of 5 (which corresponds to the ratio
of intrinsic to ambient dimension being equal to 0.2).
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Various slices of a light field data 

Figure 1: Various slices (X-Y, X-U and Y-V) of a light field data.
The specific intensity patterns in the X-U and Y-V slices indicate
that many of the pixels have the same values. Hence, the intrinsic
dimension (defined as the minimum number of variables to rep-
resent a signal) of the light field patches are much lower than its
ambient dimension.

2-D light field patch of size n×s with a pixel disparity of d 

Array of s 1-D 
signals 

Intrinsic dimension of the n×s patch = n+d(s-1) 

total new pixels = d(s-1) 

d new pixels 

n pixels 

Figure 2: This figure shows how to compute the intrinsic dimen-
sion of a 2-D light field patch. It is easy to extend this argument to
the 4-D light field case and verify that the intrinsic dimension of a
patch of size n1 × n2 × s1 × s2 and disparity value d is given by
Equation 2.

5. GMM Patch Prior
We present our GMM patch prior model and a fast re-

construction algorithm based on the MAP criterion. As
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Figure 3: Ratio of intrinsic to ambient dimensions of 16× 16× 5
light field patches for different pixel disparity values: We show
two plots, one computed from Equation (2), and the other com-
puted empirically from the rank of the patch covariance matri-
ces (for each disparity value, we learn a patch covariance matrix).
Note that the two curves agrees with each other exactly. From this
plot, we can also conclude that if the scene has a maximum dis-
parity of +/ − 5 (and we use 16 × 16 × 5 patches), then we can
reliable recover the light field data even if the observation model is
under-determined by a factor of 5 (which corresponds to the ratio
of intrinsic to ambient dimension being equal to 0.2).

discussed in the previous section, the light field patches of
different disparities have different intrinsic dimensions and
hence they are fundamentally different. Keeping this differ-
ence in mind, we learn a Gaussian prior for each of the (m
quantized) disparity values di, i = 1, 2, ...,m. That is,

P (x|di) = N (x|mdi ,Σdi), (3)

where mdi and Σdi are the mean vector and covariance ma-
trix respectively for patches of disparity value di. We as-
sume each of the disparities to be equally likely and thus
the overall patch prior P (x) is a GMM:

P (x) =

∑m
i=1 P (x|di)

m
. (4)

We learn the mean vector and covariance matrix for each of
the disparity values by generating artificial light field data.
We obtain the artificial light field data by generating a 2-D
array of images by shifting it by specified disparity values.

As discussed in section 3, any (linear) processing task
can be represented by Equation (1). If we assume the ob-
servation noise to be i.i.d Gaussian distributed, then the like-
lihood distribution P (y|x) is given by

P (y|x) = N (y|Hx, σ2I). (5)

Given an observation patch y, one can use the maximum
aposterior criterion (MAP) to estimate x. However, com-
puting the MAP estimator of for the GMM prior is compu-
tationally expensive. Thus, we instead propose an fast (but

approximate) algorithm, where we first estimate the dispar-
ity value using a subspace projection operation and then use
the MAP criterion to estimate the light field patch x for the
estimated disparity value.

For each disparity value di, we compute the top PCA
subspace, i.e., the subspace spanned by the top few eigen-
vectors of the covariance matrix Σdi . Lets denote the sub-
space corresponding to disparity di by Qi. Under the trans-
formation operation H in Equation (1), the subspace will
be transformed to HQi. Given an observation patch y, we
project it to all the transformed subspacesHPi and compute
the projection residual ri

ri = min
α
||y −HQiα||2. (6)

The disparity value corresponding to the minimum projec-
tion residual ri is taken to be the estimated disparity value
d̂. Using this disparity value d̂, we then compute the MAP
estimator of x. The MAP estimator for Gaussian prior
N (x|md̂,Σd̂) and Gaussian likelihood Equation (5) is given
by:

x̂ = md̂ + Σd̂H
T (HΣd̂H

T + σ2I)−1(y −Hmd̂). (7)

This is also known as the linear minimum mean square esti-
mator (LMMSE) of x. Figure 4 summarizes our algorithm.

Extract patches from 
the observed data 

Estimate disparity: For each patch, find  
the nearest (transformed) PCA subspace 

Final reconstruction: For each patch, use  
the LMMSE estimator with the estimated  
disparity value  

Schematic summary of our algorithm 

Figure 4: Summary of our algorithm: Given the observed data, we
first extract patches from it. We then estimate the disparity value
for each patch by projecting the patch onto the low-dimensional
subspaces corresponding to different disparity values and finding
the one that is closest. Once we have estimated the disparity value
for a patch, we then reconstruct it using the LMMSE estimator
corresponding to that particular disparity value.

6. Applications of the GMM Patch Prior
We apply our light field GMM patch prior to denoise

light field data, create many refocused images from a



stereo image pair and (spatially) super-resolve the light field
data. We learn GMM prior for light field patches of size
16 × 16 × 5 × 5 and disparity values ranging from −5
to 5 with a quantization of 1. While estimating the dis-
parity value of patches, we use the top 50 eigen-vectors,
i.e., rank(Qi) = 50. We extract overlapping patches from
the observed data and aggregate the reconstructed light field
patches by simple averaging operation.

6.1. Light field Denoising

Denoising is an important processing task in the context
of light field data as some of the light field camera architec-
tures the light throughput is low. To simulate large amount
of noise, we add noise to the light field data (taken from the
Stanford light field archive). The light field data we use for
our experiments has angular dimension of 5×5. We extract
(overlapping) patches of size 16×16×5×5 from the noisy
light field data, estimate the disparity value for each of the
patches by using the subspace projection method and then
denoise them using the LMMSE algorithm. Finally, we ag-
gregate all the patches to get our final denoised light field
data. Figure 5 shows the X-Y, X-U and Y-V slices of the
original light field data, noisy data and the denoised data. It
also shows the estimated disparity map. Note that our de-
noising approach recovers the correct disparity structure of
the data.

6.2. Refocusing from Stereo Pair

One of the main applications of capturing light field is to
obtain refocused images at different depths after capturing a
scene. Here we show that by capturing just two images (for
example from a stereo camera), we can perform refocus-
ing at many depth values. In our experiments, we use two
images from a light field data of angular resolution 5 × 5,
see Figure 6. Given the two input images, we reconstruct
the light field data and then perform refocusing. We extract
16×16 patches from each of the images, estimate the depth
map and then reconstruct the light field patches. From the
reconstructed light field data, we then obtain the refocused
images at many depth values, see figure 6.

6.3. Light Field (Spatial) Super-resolution

Since light field cameras trades off the spatial resolution
for angular resolution, there is a need to develop good super-
resolution algorithms. In this experiment we demonstrate
that we can spatially super-resolve the light field data by a
factor of 4. From the input low-resolution light field data,
we extract patches of size 4×4×5×5 and using our GMM
patch framework reconstruct the corresponding 16 × 16 ×
5× 5 patches. Aggregating these patches give us the super-
resolved light field data. Figure 7 shows the super-resolved
data obtained by our approach and by the standard bicubic

Original light field data Noisy data (17.8 dB) 

GMM denoised data (31.9 dB) Estimated disparity map 

Figure 5: Light field denoising using our GMM patch prior model:
We extract patches from the noisy input data, estimate the dispar-
ity value for each of the patches using our subspace projection
method and then denoise them using the LMMSE algorithm. The
figure shows X-Y, X-U and Y-V slices of the original light field
data, noisy data and the denoised data. We also show the esti-
mated disparity map. Note that our denoising approach recovers
the corect disparity pattern of the data.

interpolation (we perform bicubic interpolation on each of
the low-resolution images/views of the light field data).

7. Conclusions
We provide an unified framework for solving many light

field processing tasks. We use a patch based approach
where we model the light field patches using a GMM prior.
First, we analyze light field patches of diffuse scenes and
show that patches with the same disparity value lie on a low-
dimensional subspace. We also compute the dimensional-
ity of each such disparity subspaces and show that it varies
quadratically with the disparity value. This analysis gives us
an indication of the amount of under-determinacy we can
tolerate in a processing task. We then model the patches
as Gaussian random variables conditioned on its disparity
value, thus, effectively leading to a GMM model. Given a
processing task (whose observation is linear), we provide
a two step algorithm for estimating the original light field
patches from the observed patches. In the first stage, we
estimate the disparity value of the observed patches using a
fast subspace projection algorithm and in the second stage
we use the LMMSE algorithm to finally estimate the light



Input stereo pair Reconstructed LF of  
angular dimension 5×5 

A few refocused images 

Figure 6: Our goal is to perform post-capture refocusing at many depth values from just two images (stereo pair). Using our GMM patch
prior, we reconstructed the light field data of angular resolution 5 × 5 and then obtain refocused images at many depth values. Here we
show three of the refocused images.

field patches. We also demonstrated the effectiveness of our
approach in solving the light field denoising problem, and
the light field angular and spatial super-resolution problems.

Currently, the proposed algorithm assumes a diffuse
scene and that the patches are small enough so that the effect
of depth discontinuities are negligible. In future, we would
like to explore more sophisticated priors that can handle
complex reflectance models and depth discontinuities.
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