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Abstract

The recovery of objects obscured by scattering is an important goal in imaging and has
been approached by exploiting coherence properties, ballistic photons or penetrating
wavelengths, for example. Common methods use scattered light transmitted through
an occluding material, although these fail if the occluder is opaque. Light is scattered
by transmission through objects, but also by multiple reflection from diffuse surfaces in
a scene. This reflected light contains information about the scene that becomes mixed
by the diffuse reflections before reaching the image sensor. This mixing is difficult to
decode using traditional cameras. Here we show the combination of a time-of-flight
technique and computational reconstruction algorithms to untangle image information
mixed by diffuse reflection. We demonstrate a 3D range camera able to look around a
corner using diffusely reflected light that achieves sub-millimeter depth precision and
centimeter lateral precision over 40 cm x 40 cm x 40 cm of hidden space.
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1 Introduction

The light detected on an image sensor is composed of light from objects that are in
the line of sight, reflected light from objects that are not within the line of sight, and
background light. Light from objects outside the line of sight reaches the sensor via
multiple reflections (or bounces). In conventional imaging, it is difficult to exploit this
non-line-of-sight light if the reflections or bounces are diffuse.

Line-of-sight time of flight information is commonly used in LIDAR (LIght Detec-
tion And Ranging) [1] and two dimensional gated viewing [2] to determine the object
distance or to reject unwanted scattered light. By considering only the early ballis-
tic photons from a sample, these methods can image through turbid media or fog [3].
Other methods, like coherent LIDAR [4], exploit the coherence of light to determine
the time of flight. However, light that has undergone multiple diffuse reflections, has
diminished coherence.

Recent methods in computer vision and inverse light transport study multiple diffuse
reflections in free-space. Dual Photography [5] shows one can exploit scattered light
to recover 2D images of objects illuminated by a structured dynamic light source and
hidden from the camera. Time gated viewing using mirror reflections allows imaging
around corners, for example from a glass window [6, 7, 8]. Three bounce analysis
of a time-of-flight camera can recover hidden 1-0-1 planar barcodes [9, 10] but the
technique assumes well separated isolated hidden patches with known correspondence
between hidden patches and recorded pulses. Similar to these and other inverse light
transport approaches [11], we use a light source to illuminate one scene spot at a time
and record the reflected light after its interaction with the scene.

We demonstrate an incoherent ultrafast imaging technique to recover 3D shapes of
non-line-of-sight objects using this diffusely reflected light. We illuminate the scene
with a short pulse and use the time of flight of returning light as a means to analyze
direct and scattered light from the scene. We show that the extra temporal dimension
of the observations under very high temporal sampling rates makes the hidden 3D
structure observable. With a single or a few isolated hidden patches, pulses recorded
after reflections are distinct and can be easily used to find 3D position of the hidden
patches. However, with multiple hidden scene points, the reflected pulses may overlap
in both space and time when they arrive at the detector. The loss of correspondence
between 3D scene points and their contributions to the detected pulse stream is the main
technical challenge. We present a computational algorithm based on back-projection to
invert this process. Our main contributions are two-fold. We introduce the new problem
of recovering the 3D structure of a hidden object and we show that the 3D information
is retained in the temporal dimension after multi-bounce interactions between visible
and occluded parts. We also present an experimental realization of the ability to recover
the 3D structure of a hidden object, thereby demonstrating a 3D range camera able to
look around a corner. The ability to record 3D shapes beyond the line of sight can
potentially be applied in industrial inspection, endoscopy, disaster relief scenarios or
more generally in situations where direct imaging of a scene is impossible.
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2 Results
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Figure 1: Experimental Setup (a) The capture process. We capture a series of images
by sequentially illuminating a single spot on the wall with a pulsed laser and recording
an image of the dashed line segment on the wall with a streak camera. The laser pulse
travels a distance r1 to strike the wall at a point L, some of the diffusely scattered light
strikes the hidden object (for example at s after traveling a distance r2), returns to the
wall (for example at w, after traveling over r3) and is collected by the camera after
traveling the final distance r4 from w to the camera center of projection. The position
of the laser beam on the wall is changed by a set of galvanometer actuated mirrors. (b)
An example of streak images sequentially collected. Intensities are normalized against
a calibration signal. Red corresponds to the maximum, blue to the minimum intensities.
(c) The 2D projected view of the 3D shape of the hidden object, as recovered by the
reconstruction algorithm. Here the same color map corresponds to backprojected fil-
tered intensities or confidence values of finding an object surface at the corresponding
voxel.

Imaging Process The experimental setup is shown in Figure 1. Our scene consists
of a 40 cm high and 25 cm wide wall referred to as diffuser wall. We use an ultrafast
laser and a streak camera and both are directed at this wall. As a time reference we also
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Figure 2: Streak image with calibration spot The calibration spot in a streak image
(highlighted with an arrow). The calibration spot is created by an attenuated beam
split off the laser beam that strikes the wall in the field of view of the camera. It
allows to monitor the long term stability of the system and calibrate for drifts in timing
synchronization.

direct an attenuated portion of the laser beam into the field of view of the streak camera
(see Figure 2). The target object is hidden in the scene (mannequin in Figure 1) so that
direct light paths between the object and the laser or the camera are blocked. Our goal
is to produce three dimensional range data of the target object.

The streak camera records a streak image with one spatial dimension and one temporal
dimension. We focus the camera on the dashed line segment on the diffuser wall shown
in Figure 1a. We arrange the scanning laser to hit spots on the wall above or below this
line segment so that single bounce light does not enter the camera. Though the target
object is occluded, light from the laser beam is diffusely reflected by the wall, reaches
the target object, is reflected by multiple surface patches and returns back to the diffuser
wall, where it is reflected again and captured by the camera. In a traditional camera,
this image would contain little or no information about the occluded target object (see
also Supplementary Figure S6 and Supplementary Methods).

In our experimental setup, the laser emits 50 fs long pulses. The camera digitizes in-
formation in time intervals of 2 ps. We assume the geometry of the directly visible part
of the setup is known. Hence the only unknown distances in the path of the laser pulses
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are those from the diffuser wall to the different points on the occluded target object
and back (paths r2 and r3 in Fig. 1). The 3D geometry of the occluded target is thus
encoded in the streak images acquired by the camera and decoded using our recon-
struction algorithm. The recorded streak images lack correspondence information, i.e.,
we do not know which pulses received by the camera came from which surface point
on the target object. Hence, a straightforward triangulation or trilateration to determine
the hidden geometry is not possible.

Consider a simple scenario with a small hidden patch as illustrated in Figure 2a. It
provides intuition on how the geometry and location of the target object are encoded
in the streak images. The reflected spherical pulse propagating from the hidden patch
arrives at the points on the diffuser wall with different time delays and creates a hy-
perbolic curve in the space-time streak image. We scan and successively change the
position of the laser spot on the diffuser wall. The shape and position of the recorded
hyperbolic curve varies accordingly. Each pixel in a streak image corresponds to a fi-
nite area on the wall and a 2 ps time interval, a discretized space-time bin. However,
the effective time resolution of the system is 15 ps due to a finite temporal point spread
function of the camera. The detailed description of image formation is included in the
Supplementary Methods Section.

The inverse process to recover the position of the small hidden patch from the streak
images is illustrated in Figure 4b–e. Consider three pixels p, q and r in the streak image
at which non zero light intensity is measured (Figure 2a). The possible locations in the
world which could have contributed to a given pixel lie on an ellipsoid in Cartesian
space. The foci of this ellipsoid are the laser spot on the diffuser wall and the point on
the wall observed by that pixel. For illustration, we draw only a 2D slice of the ellip-
soid, i.e., an ellipse, in Figure 2b. The individual ellipses from each of the three pixels
p, q and r intersect at a single point. In the absence of noise, the intersection of three
ellipses uniquely determines the location of the hidden surface patch that contributed
intensity to the three camera pixels. In practice we lack correspondence, i.e., we do not
know whether or not light detected at two pixels came from the same 3D surface point.

Therefore, we discretize the Cartesian space into voxels and compute the likelihood of
the voxel being on a hidden surface. For each voxel, we determine all streak image
pixels that could potentially have received contributions of this voxel based on the time
of flight r1 + r2 + r3 + r4 and sum up the measured intensity values in these pixels. In
effect, we let each pixel vote for all points on the corresponding ellipsoid. The signal
energy contributed by each pixel is amplified by a factor to compensate for the distance
attenuation. If the distance attenuation factor were not accounted for, the scene points
that are far away from the wall would be attenuated by a factor of (r2r3)

2 and would be
lost during the reconstruction. Therefore, we amplify the contribution of each pixel to
a particular voxel by a factor of (r2r3)

α before backprojection. Reconstruction quality
depends weakly on the value of α. We experimented with various values of α and found
that α = 1 is a good choice for reduced computation time. This process of computing
likelihood by summing up weighted intensities is called backprojection [12]. We call
the resulting 3D scalar function on voxels a heatmap.

The summation of weighted intensities from all pixels in a single streak image cre-
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Figure 3: Reconstruction Algorithm An illustrative example of geometric reconstruc-
tion using streak camera images. (a) Data capture. The object to be recovered consists
of a 2 cm × 2 cm size square white patch beyond the line of sight (i.e. hidden). The
patch is mounted in the scene and data is collected for different laser positions. The
captured streak images corresponding to three different laser positions are displayed in
the top row. Shapes and timings of the recorded response vary with laser positions and
encode the position and shape of the hidden patch. (b) Contributing voxels in Cartesian
space. For recovery of hidden position, consider the choices of contributing locations.
The possible locations in Cartesian space that could have contributed intensity to the
streak image pixels p, q, r are the ellipses p′, q′, r′ (ellipsoids in 3D). For illustration,
these three ellipse sections are also shown in (a) bottom left in Cartesian coordinates.
If there is a single world point contributing intensity to all 3 pixels, the corresponding
ellipses intersect, as is the case here. The white bar corresponds to 2 cm in all sub-
figures. (c) Backprojection and heatmap. We use a back-projection algorithm that finds
overlayed ellipses corresponding to all pixels, Here we show summation of elliptical
curves from all pixels in the first streak image. (d) Backprojection using all pixels in a
set of 59 streak images. (e) Filtering. After filtering with a second derivative, the patch
location and 2 cm lateral size are recovered.
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ates an approximate heatmap for the target patch (Figure 2c). Repeating the process
for many laser positions on the diffuser wall, and using pixels from the corresponding
streak images provides a better approximation (Figure 2d). In practice, we use approx-
imately 60 laser positions. Traditional backprojection requires a high-pass filtering
step. We use the second derivative of the data along the z direction of the voxel grid
and approximately perpendicular to the wall as an effective filter and recover the hidden
surface patch in Figure 2e. Because values at the voxels in the heatmap are the result
of summing a large number of streak image pixels, the heatmap contains low noise and
the noise amplification associated with a second derivative filter is acceptable.

Algorithm The first step of our imaging algorithm is data acquisition. We sequen-
tially illuminate a single spot on the diffuser wall with a pulsed laser and record an im-
age of the line segment of the wall with a streak camera. Then we estimate an oriented
bounding box for the working volume to set up a voxel grid in Cartesian space (see
Methods). In the backprojection, for each voxel, we record the summation of weighted
intensities of all streak image pixels that could potentially have received contributions
of this voxel based on the time of flight. We store the resulting three dimensional
heatmap of voxels. The backprojection is followed by filtering. We compute a sec-
ond derivative of the heatmap along the direction of the voxel grid facing away from
the wall. In an optional post processing step, we compute a confidence value for each
voxel by computing local contrast with respect to the voxel neighborhood in the filtered
heatmap. To compute contrast, we divide each voxel heatmap value by the maximum
in the local neighborhood. For better visualization, we apply a soft threshold on the
voxel confidence value.

We estimate the oriented bounding box of the object in the second step by running
the above algorithm at low spatial target resolution and with down sampled input data.
Details of the reconstruction process and the algorithm can be found in the Methods
Section as well as in the Supplementary Methods Section.

Reconstructions We show results of the 3D reconstruction for multi-part objects in
Figures 5 and 3. The mannequin in Figure 5 contains non-planar surfaces with varia-
tions in depth and occlusions. We accurately recover all major geometrical features of
the object. Figure 5i shows the reconstruction of the same object in slightly different
poses to demonstrate the reproducibility and stability of the method as well as the con-
sistency in the captured data. Note that the sporadic inaccuracies in the reconstruction
are consistent across poses and are confined to the same 3D locations. The stop-motion
animation in Supplementary Movie 1 shows the local nature of the missing or phan-
tom voxels more clearly. Hence, the persistent inaccuracies are not due to signal noise
or random measurement errors. This is promising as the voxel confidence errors are
primarily due to limitations in the reconstruction algorithm and instrument calibration.
These limitations can be overcome with more sophistication. However, our current
method is limited to diffuse reflection from near-Lambertian opaque surfaces. Note
also, that parts of the object that are occluded from the diffuser wall or facing away
from it are not reconstructed.
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Figure 4: Depth in Reconstructions Demonstration of the depth and lateral resolu-
tion. (a) The hidden objects to be recovered are three letters, I, T, I at varying depths.
The ”I” is 1.5 cm in wide and all letters are 8.2 cm high. (b) 9 of 60 images collected
by the streak camera. (c) Projection of the heatmap on the x-y plane created by the
back projection algorithm. (d) Filtering after computing second derivative along depth
(z). The color in these images represents the confidence of finding an object at the
pixel position. (e) A rendering of the reconstructed 3D shape. Depth is color coded
and semi-transparent planes are inserted to indicate the ground truth. The depth axis
is scaled to aid visualization of the depth resolution.
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Figure 5: Complex Object Reconstruction (a) Photo of the object. The mannequin
is approximately 20 cm tall and is placed about 25 cm from the diffuser wall. (b)
Nine of the 60 raw streak images. (c) Heatmap. Visualization of the heatmap after
backprojection. The maximum value along the z direction for each x-y coordinate in
Cartesian space. The hidden shape is barely discernible. (d) Filtering. The second
derivative of the heatmap along depth (z) projected on the x-y plane reveals the hidden
shape contour. (e) Depth map. Color encoded depth (distance from the diffuser wall)
shows the left leg and right arm closer in depth compared to the torso and other leg
and arm. (f) Confidence map. A rendered point cloud of confidence values after soft
threshold. Images (g-h) show the object from different viewpoints after application of a
volumetric blurring filter. (i) The stop-motion animation frames from multiple poses to
demonstrate reproducability. See Supplementary Movie 1 for an animation. Shadows
and the ground plane in images (f-i) have been added to aid visualization.
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Figure 3 shows a reconstruction of multiple planar objects at different unknown depths.
The object planes and boundaries are reproduced accurately to demonstrate depth and
lateral resolution. The reconstruction is affected by several factors such as calibration,
sensor noise, scene size and time resolution. Below, we consider them individually.

The sources of calibration errors are lens distortions on the streak camera that lead
to a warping of the collected streak image, measurement inaccuracies in the visible
geometry, and measurement inaccuracies of the center of projection of the camera and
the origin of the laser. For larger scenes, the impact of static calibration errors would
be reduced.

The sensor introduces intensity noise and timing uncertainty, i.e., jitter. The recon-
struction of 3D shapes is more dependent on the accuracy of the time of arrival than
the signal to noise ratio (SNR) in received intensity. Jitter correction, as described in
the Methods section, is essential, but does not remove all uncertainties. Improving the
SNR is desirable because it yields faster capture times. Similar to many commercial
systems, e.g., LIDAR, the SNR could be significantly improved by using an amplified
laser with more energetic pulses and a repetition rate in the kHz range and a triggered
camera. The overall light power would not change, but fewer measurements for light
collection could significantly reduce signal independent noise such as background and
shot noise.

We could increase the scale of the system for larger distances and bigger target objects.
By using a longer pulse, with proportionally reduced target resolution and increased
aperture size one could build systems without any change in the ratio of received and
emitted energy, i.e., the link budget. When the distance r2 between diffuser wall and
the hidden object (see Fig. 1) is increased without increasing the size of the object, the
signal strength drops dramatically (∝ 1/(r2r3)2) and the size of the hidden scene is
therefore limited. A configuration where laser and camera are very far from the rest of
the scene is, however, plausible. A loss in received energy can be reduced in two ways.
The laser beam can be kept collimated over relatively long distances and the aperture
size of the camera can be increased to counterbalance a larger distance between camera
and diffuser wall.

The timing resolution, along with spatial diversity in the positions of spots illuminated
and viewed by the laser and the camera affects the resolution of 3D reconstructions.
Additional factors include the position of the voxel in Cartesian space and the overall
scene complexity. The performance evaluation subsection of the Supplementary Meth-
ods section describes depth and lateral resolution. In our system, translation along the
direction perpendicular to the diffuser wall can be resolved with a resolution of 400 µm
– better than the full width half maximum (FWHM) time resolution of the imaging sys-
tem. Lateral resolution in a plane parallel to the wall is lower and is limited to 0.5-1 cm
depending on proximity to the wall.
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3 Discussion

This paper’s goals are twofold: to introduce the new challenging problem of recov-
ering the 3D shape of a hidden object and to demonstrate the results using a novel
co-design of an electro-optic hardware platform and a reconstruction algorithm. De-
signing and implementing a prototype for a specific application will provide further,
more specific data about the performance of our approach in real world scenarios. We
have demonstrated the 3D imaging of a non-trivial hidden three dimensional geometry
from scattered light in free space. We compensate for the loss of information in the
spatial light distribution caused by the scattering process by capturing ultrafast time of
flight information.

Our reconstruction method assumes that light is only reflected once by a discrete sur-
face on the hidden object without inter-reflections within the object and without sub-
surface scattering. We further assume that light travels in a straight line between re-
flections. Light that does not follow these assumptions will appear as time-delayed
background in our heatmap and will complicate, but not necessarily prevent recon-
struction.

The application of imaging beyond the line of sight is of interest for sensing in haz-
ardous environments such as inside machinery with moving parts, for monitoring highly
contaminated areas such as the sites of chemical or radioactive leaks where even robots
can not operate or need to be discarded after use [13]. Disaster response and search and
rescue planning, as well as autonomous robot navigation can benefit from the ability
obtain complete information about the scene quickly [14, 15]

A promising theoretical direction is in inference and inversion techniques that exploit
scene priors, sparsity, rank, meaningful transforms and achieve bounded approxima-
tions. Adaptive sampling can decide the next-best laser direction based on a current
estimate of the 3D shape. Further analysis will include coded sampling using com-
pressive techniques and noise models for SNR and effective bandwidth. Our current
demonstration assumes friendly reflectance and planarity of the diffuse wall.

The reconstruction of an image from diffusely scattered light is of interest in a variety
of fields. Change in spatial light distribution due to the propagation through a turbid
medium is in principle reversible [16] and allows imaging through turbid media via
computational imaging techniques [17, 18, 19]. Careful modulation of light can shape
or focus pulses in space and time inside a scattering medium [20, 21]. Images of objects
behind a diffuse screen, such as a shower curtain, can be recovered by exploiting the
spatial frequency domain properties of direct and global components of scattered light
in free space [22]. Our treatment of scattering is different but could be combined with
many of these approaches.

In the future, emerging integrated solid state lasers, new sensors and non-linear optics
should provide practical and more sensitive imaging devices. Beyond 3D shape, new
techniques should allow us to recover reflectance, refraction and scattering properties
and achieve wavelength resolved spectroscopy beyond the line of sight. The formula-
tion could also be extended to shorter wavelengths (e.g., x-rays) or to ultrasound and
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sonar frequencies. The new goal of hidden 3D shape recovery may inspire new research
in the design of future ultrafast imaging systems and novel algorithms for hidden scene
reconstruction.

4 Methods

Capture Setup The light source is a Kerr lens mode-locked Ti:Sapphire laser. It
delivers pulses of about 50 fs length at a repetition rate of 75 MHz. Dispersion in the
optical path of the pulse does not stretch the pulse beyond the resolution of the camera
of 2 ps and therefore can be neglected. The laser wavelength is centered at 795 nm. The
main laser beam is focused on the diffuser wall with a 1 m focal length lens. The spot
created on the wall is about 1 mm in diameter and is scanned across the diffuser wall
via a system of two galvanometer actuated mirrors. A small portion of the laser beam
is split off with a glass plate and is used to synchronize the laser and streak camera as
shown in Figure 1. The diffuser wall is placed 62 cm from the camera. The mannequin
object (Figure 3) is placed at a distance of about 25 cm to the wall, the letters (Figure 4)
are placed at 22.2 cm to 25.3 cm.

For time jitter correction, another portion of the beam is split off, attenuated and di-
rected at the wall as the calibration spot. The calibration spot is in the direct field of
view of the camera and can be seen in Figure 2. The calibration spot serves as a time
and intensity reference to compensate for drifts in the synchronization between laser
and camera as well as changes in laser output power. It also helps in detecting occa-
sional shifts in the laser direction due to, for example, beam pointing instabilities in
the laser. If a positional shift is detected, the data is discarded and the system is re-
calibrated. The streak camera’s photocathode tube, much like an oscillocope, has time
decayed burn out and local gain variations. We use a reference background photo to
divide and compensate.

The camera is a Hamamatsu C5680 streak camera that captures one spatial dimension,
i.e., a line segment in the scene, with an effective time resolution of 15 ps and a quan-
tum efficiency of about 10%. The position and viewing direction of the camera are
fixed. The diffuser wall is covered with Edmund Optics NT83 diffuse white paint.

Reconstruction Technique We use a set of Matlab routines to implement the back-
projection based reconstruction. Geometry information about the visible part of the
scene, i.e., diffuser wall could be collected using our time of flight system. Recon-
structing the three dimensional geometry of a visible scene using time of flight data is
well known [2]. We omit this step and concentrate on the reconstruction of the hidden
geometry. We use a FARO Gauge digitizer arm to measure the geometry of the visible
scene and also to gather data about a sparse set of points on hidden objects for compar-
ative verification. The digitizer arm data is used as ground truth for later independent
verification of the position and shape of hidden objects as shown via transparent planes
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in Figure 4e. After calibration, we treat the camera and laser as a rigid pair with known
intrinsic and extrinsic parameters [23].

We estimate the oriented bounding box around the hidden object using a lower resolu-
tion reconstruction. We reduce the spatial resolution to 8 mm/voxel and downsample
the input data by factor of 40. We can scan a 40 cm x 40 cm x 40 cm volume spanning
the space in front of the wall in 2-4 s to determine the bounding box of a region of
interest. The finer voxel grid resolution is 1.7 mm in each dimension. We can use the
coarse reconstruction obtained to set up a finer grid within this bounding box. Alter-
natively we can set an optimized bounding box from the collected ground truth. To
minimize reconstruction time, we used this second method in most of the published
reconstructions. We confirmed that apart from the reconstruction time and digitization
artifacts, both methods produce the same results. We compute the principal axis of this
low resolution approximation and orient the fine voxel grid with these axes.

In the post-processing step, we use a common approach to improve the surface visual-
ization. We estimate the local contrast and apply a soft threshold. The confidence value
for a voxel is V ′ = tanh(20(V − V0))V/mloc, where V is the original voxel value in
filtered heatmap andmloc is a local maximum computed in a 20 x 20 x 20 voxel sliding
window around the voxel under consideration. Division by mloc normalizes for local
contrast. The value V0 is a global threshold and set to 0.3 times the global maximum
of the filtered heatmap. The tanh function achieves a soft threshold.

System SNR The laser emits a pulse every 13.3 ns (75 MHz) and consequently the
reflected signal repeats at the same rate. We average 7.5 million such 13.3 ns windows
in a 100 ms exposure time on our streak tube readout camera. We add 50 to 200 such
images to minimize noise from the readout camera. The light returned from a single
hidden patch is attenuated in the second, third and fourth path segments. In our setups
this attenuation factor is 10−8. Attenuation in the fourth path segment can be partially
counteracted by increasing the camera aperture.

Choice of laser positions on the wall Recall that we direct the laser to various posi-
tions on the diffuser wall and capture one streak image for each position. The position
of a hidden point s (Figure 1) is determined with highest confidence along the nor-
mal N to an ellipsoid through s with foci at the laser spot, L, and the wall point, w.
Large angular diversity through a wide range of angles forN for all such pairs to create
baselines is important. Note also that N is the angle bisector of 6 Lsw.

The location and spacing of the laser positions on the wall can have a big impact on re-
construction performance. To obtain good results one should choose the laser positions
so as to provide good angular diversity. We use 60 laser positions in 3-5 lines perpen-
dicular to the line on the wall observed by our 1D streak camera. This configuration
yielded significantly better results than putting the laser positions on few lines parallel
to the camera line.
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Scaling the system Scaling up the distances in the scene is challenging because
higher resolution and larger distances lead to disproportionately less light being trans-
ferred through the scene. A less challenging task may be to scale the entire experiment
including the hidden object, the pulse length, the diffuser wall and the camera aper-
ture. The reduction in resolution to be expected in this scaling should be equal to the
increase in size of the hidden object.

To understand this consider a hidden square patch in the scene. To resolve it we require
discernible light to be reflected back from that patch after reflections or bounces off
other patches. Excluding the collimated laser beam, there are a three paths as described
earlier. For each path, light is attenuated by approximately d2/(2πr2), where r is the
distance between the source and the destination patch and d is the side length of the
destination patch. For the fourth segment, the destination patch is the camera aperture
and d denotes the size of this aperture. If r and d are scaled together for any path,
the contributed energy from the source patch to the destination patch does not change.
This may allow us to scale the overall system to larger scenes without a prohibitively
drastic change in performance. However, increasing the aperture size is only possible
to a certain extend.

Non-Lambertian surfaces Our reconstruction method is well-suited for Lambertian
reflectance of surfaces. Our methods is also robust for near-Lambertian surfaces, e.g.,
surfaces with a large diffuse component, and they are implicitly handled in our cur-
rent reconstruction algorithm. The surface reflectance profile only affects the relative
weight of the backprojection ellipses and not their shapes. The shape is dictated by the
time of flight which is independent of the reflectance distribution.

Surfaces that are highly specular, retroreflective or have a low reflectance make the hid-
den shape reconstruction challenging. Highly specular, mirror-like and retroreflective
surfaces limit the regions illuminated by the subsequent bounces and may not reflect
enough energy back to the camera. They also could cause dynamic range problems.
Subsurface scattering or additional inter-reflections extend the fall time in reflected
time profile of a pulse. But the onset due to reflection from the first surface is main-
tained in the time profile and hence the time delayed reflections appear as background
noise in our reconstruction. Absorbing low-reflectance black materials reduce the SNR
but the effect is minor compared to the squared attenuation over distances.

Although near-Lambertian surfaces are very common in the proposed application areas,
reconstruction in the presence of varying reflectance materials is an interesting future
research topic.
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Supplementary Figures
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Supplementary Figure S1: Forward Model. (a) The laser illuminates the surface S
and each point s ∈ S generates a wavefront. The spherical wavefront contributes to
a hyperbola in the space-time streak image, IR. (b) Spherical wavefronts propagating
from a point create a hyperbolic space-time curve in the streak image.
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Supplementary Figure S2: Backprojection. A space time transform on a raw streak
image allows us to convert a 4 segment problem into a sequence of 2 segment problems.
The toy scene is a small 1cm×1cm patch creating a prominent (blurred) hyperbola in
the warped image. Backpropagation creates low frequency residual but simple thresh-
olding recovers the patch geometry.
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Supplementary Figure S3: Fresnel Approximation for convolution operation.
With a near-constant depth assumption of ∆z � z0, the streak image IR is approxi-
mated as a convolution of the warped shape countour image ISW with the hyperboli-
cally shaped kernelK. The warped shape image in turn is the true shape (S), deformed
along the z direction according to laser distance. We assume an opaque object and
hence the contributions are only from the points on the curve (surface) and not from
the area behind the curve.
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Supplementary Figure S4: Stop motion reconstruction. Results of a multi-pose stop
motion animation dataset after filtered backprojection and soft-thresholding. A hidden
model of a man with a ball is captured in various poses. The rendering shows the se-
quence of reconstructions created by our filtered backprojection algorithm and demon-
strates the ability to remove low-frequency artifacts of backprojection. The mislabeled
voxels remain consistent across different poses indicating stability of our capture and
inversion process. Shadows are introduced to aid visualization.
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Supplementary Figure S5: Improving depth and lateral resolution. (a) In a still
camera, the ability to discern displacement of a patch with area (∆x)2 by a distance
∆z is limited by camera sensitivity. (b) Using time resolution, the ability to discern
the same patch is improved and possible within practical camera sensitivity. The pixel
(u, t) receives energy only from inside the ring. For simplicity, the diagrams in this
document show the scene in flat-land and the surfaces are drawn as 2D curves.
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Supplementary Figure S6: Reconstruction attempt with a slow camera. We per-
formed an experiment to demonstrate the challenges in imaging around the corner with
a conventional, low temporal resolution laser and camera. (a) A setup with hidden
mannequin but using a red continuous laser and a Canon 5D camera. (b) An image of
the wall recorded with the Canon 5D camera with the room lights turned off and no
hidden object present. (The recorded light is due to the reflections from walls behind
the laser and camera.) (c) An image recorded with the hidden mannequin present. The
increased light level on the wall is marginal, is low spatial frequency and shows no no-
ticeable high frequency structure. (d) An image of the wall with the hidden mannequin
moved away from the wall by 10 cm. The reduction in light level on the wall has no
visible structure. (e) The difference between image in (b) and (c) using a false color
map. (f) The difference between (b) and (d). (g) The difference between (c) and (d).
(h) The plot of intensities along the centered horizontal scanline of each of the images
(b=red, c=black, d=blue).
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Supplementary Figure S7: Resolution in depth. (a) Distance estimation. Time here
is measured in mm of traveled distance at the speed of light 1 mm≈0.3 ps. (b) Error
is less than 1 mm. (c) Plot of intensity as a small patch is moved perpendicular to the
first surface.
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a b c

Supplementary Figure S8: Resolution in lateral dimension. (a) Setup with chirp
pattern (occluder removed in this photo) (b) Raw streak photo from streak camera (c)
The blue curve shows reconstruction of the geometry and indicates that we can recover
features with 0.5 cm in lateral dimensions in the given scenario.
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Supplementary Methods

Modelling Light Pulse Propagation

In this section, we analyze the relationship between the hidden scene geometry and the
observed space time light transport in order to design methods to estimate the shape of
the hidden objects. Consider a scene shown in Supplementary Figure S1. The scene
contains a hidden object (whose surface we are interested in estimating) and a diffuser
wall. A laser beam(B) emits a short light pulse and is pointed towards the diffuser
wall to form a laser spot L. The light reflected by the diffuser wall reaches the hidden
surface, is reflected and returns back to the diffuser wall. The streak camera is also
pointed towards the wall.

For each location of the laser spot L, a 3D image (2 spatial and 1 temporal dimension)
is recorded. The laser spot is moved to multiple locations on the wall (2D). The two
dimensions for laser direction and the three dimensions for recording lead to a 5D light
transport data. The pulse return time at each location on the wall depends upon several
known parameters such as the location of the laser spot and unknown parameters such
as the hidden surface profile. The idea is to exploit the observed 5D light transport data
to infer the hidden surface profile.

For an intuitive understanding, consider the hidden scene to be a single point, as shown
in Supplementary Figure S1. The reflected spherical wavefront propagating from that
hidden scene point reaches the different points on the wall at different times creating
a hyperbolic curve in the space-time streak image (Supplementary Figure S2). When
the hidden scene contains a surface instead of individual and isolated scene points, the
space-time hyperbolas corresponding to the different surface points are added together
to produce the captured streak images and so we need to demultiplex or deconvolve
these signals. In general, we could use a captured 5D light transport data but in our
experiments, we are restricted to a streak camera that has a one spatial dimension.
Thus, our system captures only a four dimensional light transport.

Bounce Reduction

In our setup, the optical path for light travel consists of 4 segments (Supplementary Fig-
ure S1): (1) from the laser B to the spot on the wall L, (2) from L to the scene point s,
(3) from s again to a point on the wall w, and (4) finally from w to the camera C where
it is recorded. However, the first and the fourth segment are directed segments and do
not involve diffuse scattering. This allows us to precalibrate for these segments and
effectively reduce the tertiary scattering problem to a primary (single) scattering prob-
lem. More concretely, suppose the camera records the streak image IC(p, t), where p
is the pixel coordinate and t is time. In IC , t = 0 corresponds to the instant the laser
pulse is emitted from B. Then IC is related to the intensity IR(w, t) of light incident
on the receiver plane by the transformation

IR(w, t) = IC(H(w), t− ||L−B|| − ||C − w||). (S1)

9



Here H is the projective transformation (homography) mapping coordinates on R to
camera coordinates. The time shift by the distance from camera to screen, ||C − w||,
varies hyperbolically with the pixel coordinate w. Since the geometry of wall, R, is
known,H , ||L−B|| and ||C−w|| can be computed in advance. Note there is no cos(θ)
factor or 1/r2 fall off in the above formula as the camera integrates over more pixels for
oblique and distant patches. For this to hold, it is also important that R is Lambertian,
as we assume. To summarize, the processing step (S1) reduces the problem to a single
scattering problem, with an unfocused point source at L emitting a pulse at t = 0 and
an unfocused virtual array of receivers on R recording the intensity of the reflected
wavefront, IR(w, t).

Scattering of the light pulse

Generating Streak Images After the homography correction, we can consider a sim-
plified scenarios of just two surfaces, the wall R and the hidden surface S. The surface
S is illuminated by a light source at L. The surface R (receivers) can be assumed to
host a virtual array of ultrafast photodetectors. The virtual photodetectors create an
image IR(w, t) as intensity pattern of the incoming light as a function of time, t, and
the position w. Hence the image, IR(w, t), is the intensity observed at w ∈ R at time
t. Experimentally, the virtual photodetectors are realized by using a Lambertian object
R observed by a streak camera with ps time resolution (Supplementary Figure S1).
Ignoring occlusions, the intensity pattern at R takes the following approximate form

IR(w, t) =
∫
S

∫
τ

1
πr2c

δ(rc − t+ τ)IS(s, τ)dτd2s (S2)

where w ∈ R, s ∈ S, t, τ ∈ R and rc = ||w − s||. Furthermore, IS(s, τ) encodes
the hidden 3D shape S as the intensity of the light emitted by the transmitter at s ∈ S
at time τ . Note that we use units in which the speed of light c = 1. In other words,
we measure time in units of distance. Note also that we make an approximation in
neglecting the dependence on the normals to surfaces R and S. In the situation of
interest to us, the object S is a diffuse (Lambertian) object illuminated by a single point
source at position L ∈ R3. Concretely, this point source is the surface patch the laser
is directed to. Hence, neglecting the normal dependence, IS(s, τ) = Iδ(τ − rl)/(πr2l )
with rl = ||L− s||. Equation (S2) becomes

IR(w, t) =
∫
S

I
1
πr2c

1
πr2l

δ(t− rc − rl)d2s (S3)

The propagation of laser to wall and wall to camera is ignored in IR. Laser to wall
propagation is corrected using an offset value for time. The wall to camera sensor
propagation is inverted by using a homography. In summary, the recorded streak image,
IC , which involves three or more bounces is converted to image, IR, which involves
only one bounce. For simplicity, we will ignore IC and consider IR as the streak image
for rest of the discussion.
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Hyperbolic Contribution For a fixed laser position, L, and sensor location, w, at
a time t, the allowed values of s all lie on an ellipsoid with focal points L and w,
given by the equation t = rc + rl. (More specifically, the locus of s lies on a pro-
late spheroid, i.e., an ellipsoid with two equal equatorial radii, smaller than the third
equatorial radius.)

If we fix L and s this equation describes a two sheeted hyperboloid in (w, t)-space:

t− rl = rc =
√

(x− u)2 + (y − v)2 + z(x, y)2 (S4)

where (u, v) are the two coordinates of w in the plane of the receiver wall. In par-
ticular, each point on the hidden surface S will contribute a hyperboloid to the im-
age IR(u, v, t). The hyperboloids will have different shapes, depending on the depth
z(x, y), and will be shifted along the t-axis. Smaller depth z(x, y) increases eccentric-
ity and leads to higher curvature at the vertex of the hyperboloid .

Modified Fresnel Approximation Suppose that the hidden surface S has a small
depth variation. We can write z(x, y) = z0 + ∆z(x, y), with approximate mean
depth z0 and minor variations ∆z(x, y). Hence, ∆z(x, y) � z0. In this case, we
apply an additional approximation, which is the analog of the Fresnel approximation
in Fourier optics. Note that we are dealing with incoherent and pulsed light, so we
call it the modified Fresnel approximation. Concretely, we expand the square root in
(S4) and assume that z0 � (x − u) or (y − v). The right hand side of (S4) becomes
rc =

√
(x− u)2 + (y − v)2 + z2

0 + ∆z(x, y), or rc = r0 + ∆z(x, y). Using this
approximation in the argument of the delta function in (S3), and neglecting ∆z in the
denominator, we can express IR as a convolution.

IR(u, v, t) ≈
∫
x,y

δ(t− rl −∆z − r0)
π22r2cr2l

dxdy (S5)

=
∫
x,y,τ

δ(t− τ − r0)δ(τ − rl −∆z)
π22r2cr2l

dxdydτ

= (K ∗ ISW )(u, v, t) (S6)

The hidden shape S is expressed using a delta function IS = ∆z(x, y). Supplemen-
tary Figure S3 shows that, after a transform due to laser position, L, we have a new
warped shape approximation ISW (x, y, τ) = δ(τ − rl − ∆z(x, y))/(πr2l ). We split
the delta function inside the intergral above and re-write the equation as a convolu-
tion (in 3-dimensional (u, v, t)-space) of the warped shape approximation ISW . This
warped image ISW “cramps up” information about the shape S in the time domain,
warped by the additional “deformation” rl, given by the distance to the laser. Finally
the convolution kernel K(x, y, t) = δ(t − rk)/(πr2k), with rk =

√
x2 + y2 + z2

0 , is a
hyperboloid, whose eccentricity (or curvature at the vertex) depends on z0.

Note that equation (S6) is highly nonlinear in the unknown depths ∆z, but linear in the
warped shape ISW , from which these depths can be determined. In conclusion, using
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the modified Fresnel approximation, for every depth, we can express the forward prop-
agation as a convolution with a hyperboloid. But for each depth, z0, the curvature and
position of the hyperboloid in space-time streak image, IR, is progressively different.

Algorithms for surface reconstruction

Problem statement as a system of linear equations Let us express the results of the
last section using linear algebra. Let us discretize the bounding box around the hidden
shape and the corresponding 3D Cartesian space into voxels and arrange the voxels
into a vector fS ∈ RN . Here N is the number of voxels in the 3D volume of interest.
The value of fS(i) is set to zero for all the voxels that do not contain a surface point
s ∈ S. The value of fS(i) for voxels that lie on the surface of the objects is the albedo
(or reflectance) of the corresponding surface point. Voxels that are interior to the object
are occluded by voxels on the surface of the object and do not return any signal energy,
so they are also set to zero. Consider now the streak image IR recorded with the laser at
position L1. Vectorize the streak image pixels into a single vector gR,1 ∈ RM , where
M is the total number of spatio-temporal pixels present. The pixel values will depend
linearly on the albedos in fS and hence satisfy a linear equation of the form

gR,1 = A1fS , (S7)

for some M ×N matrix A1. Concretely, the entries of A1 can be read off from equa-
tions (S2) and (S3). If multiple streak images 1, . . . , n are recorded corresponding to
different locations of the laser, then those different streak images are stacked on top of
each other in a vector y, which satisfies the linear equation

gR =


gR,1
gR,2

...
gR,n

 =


A1

A2

...
An

 fS = AfS

Our goal is to analyze and solve the above linear system. The Fresnel approximation of
the last section gives an intuition. The Fresnel approximation allows us to rewrite the
linear system as gR = AF fSW , where AF is a block circulant matrix that represents
the convolution with the hyperbolic kernel K.

Backprojection for surface reconstruction

Each voxel in the 3D world contributes signal energy to only a very small subset of
the spatio-temporal bins (streak camera pixels) that are imaged. The specific spatio-
temporal bins or pixels that contain signal energy are related to the hidden 3D surface.
Further, if a particular pixel in the image contains no signal energy, this means that
every voxel in the 3D world that would have contributed energy to it was empty. Both
these pieces of information can be used to contruct an algorithm for reconstruction. The
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basic intuition behind this algorithm (a backprojection algorithm, similar to algorithms
used tomographic reconstruction) is very simple. Each observed pixel contributes en-
ergy back to all the source voxels that could have contributed energy to this pixel and
the contribution made is proportional to the observed signal energy. Voxels in the world
that were occupied receive contributions from all the pixels in the streak image that they
contributed to and therefore have a large response. This response energy with appro-
priate filtering and thresholding can be used to recover the 3D surface. If the working
volume is shallow (i.e., can be represented with a plane at depth z0 plus minor depth
variations), we can use a single kernel of Frensel approximation leading to a block cir-
culant matrix A. Below, we first explore reconstruction with Frensel approximation.
Then we strive for a more accurate result. We use a different kernel for each depth,
leading to a non-block circulant matrix.

Depth Independent Fresnel Approximation In order to implement the backpropa-
gation algorithm, in practice, it is necessary to model the forward propagation of the
spherical wavefronts from each of the hidden surface voxels. Although approximate,
we first use the Fresnel approximation based forward propagation model described in
the Section ”Scattering of the light pulse” for a better understanding and ability to
easily analyze the invertibility. Under the Fresnel approximation the captured streak
images can be written as a convolution of the unknown surface with the hyperbolic
blur kernel as given by

IR = K ∗ ISW
with K(x, y, t) = δ(t −

√
x2 + y2 + z2

0)/(π(x2 + y2 + z2
0)). The backprojection

kernel, on the other hand, is K̃(x, t) = δ(t+
√
x2 + y2 + z2

0). Hence backprojection
is, up to the distance attenuation prefactor, the adjoint of propagation. If the Fresnel
approximation is valid, the effect of backprojection on the captured streak images can
be described as a convolution with the point spread function psf = K̃ ∗ K. The
function psf can be computed analytically. This function has a large peak at the center,
surrounded by a butterfly shaped low frequency component. This peak implies that
when one performs backprojection peaks will be observed at all the locations where
there is a 3D scene point. The limitations of backprojection are also evident from
the function psf . Since the peak is surrounded by low frequency components, this
approach without any post-processing (filtering) will lead to overly smoothened results.
Rephrasing these observations in the matrix notation introduced at the beginning of this
section, one can say that the backprojection operation is described by the matrix ÃF ,
which is the same as ATF ,up to the distance attenuation factors. The composition of
propagation and backprojection ÃFAF is close to the identity matrix.

Depth Dependent backprojection While it is very useful to use the Fresnel approx-
imation to analyse the effect of backprojection, the approximations made lead to inac-
curacies when (a) the scene has significant depth variation or (b) there are occlusions.
In those cases we need to use the more precise formulas (S2), (S3). Propagation can
then no longer be written as a convolution, since the integral kernel, i.e., the hyperbola,
changes shape with varying depth.
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Limitations of Backprojection Backprojection suffers from several limitations. The
results of backprojecton are smoother than the original surface and there are still a few
false positive surface points. We also observe that surface slopes beyond 45 degrees
are extremely hard to reconstruct. This can be explained theoretically, at least in the
Fresnel approximation as follows. The Fourier transform of the hyperbolic convolution
kernel falls off gently (by a power law) in the direction orthogonal to the receiver plane,
but falls off exponentially in the parallel direction. Hence features having high parallel
spatial frequencies, such as high slope regions, are very hard to recover. In order to
tackle these limitations it would be necessary to use additional prior information about
the 3D scene being reconstructed.

We use the traditional approach that removes the low frequency artifacts around sharp
features. The method is known as filtered backprojection that involves using a carefully
chosen high pass filter. In our case, a good choice is second derivative in the z direction
of the voxel grid. Supplementary Figure S4 shows the results after such filtering and
applying a soft threshold described in the main paper.

Note that backprojection is a voxel-based technique and does not take into account the
surface-based properties like orientation or reflectance profile. Hence our technique is
expected to work best for nearly Lambertian surfaces, for which the recorded images
do not depend strongly on the surface normals.

Necessity of ultrafast imaging

We consider the achievable resolution and space-time dimension tradeoffs in hidden
shape recovery.

Limits of Traditional Photography

Even with a still camera, one can in principle detect the displacement of a small hid-
den area of a scene as shown in Supplementary Figure S5(a), but the problem is ill-
conditioned. To see this, let us consider for simplicity a near planar scene at depth
z0, illuminated homogeneously by a far away source. The intensity of light incident
at a point r ∈ R that was emitted by a surface patch above r of size ∆x by ∆x is
proportional to I(∆x)2/(z2

0), where I is the total intensity received. Moving the patch
by ∆z � z0 in depth, the contributed intensity will change by ∆I ∝ I(∆x)2∆z/z3

0 .
Hence we conclude that ∆I/I ∝ (∆x)2∆z/z3

0 . As in typical scenario, the spatial
resolutions (∆x,∆z ≈ 5mm, z0 ≈ 20cm, we require intensity resolution, ∆I/I ∼
3× 10−5. This means one has to distinguish intensities of 1 from 1.00003. This is not
possible in practice. Note that the intensities received after tertiary scattering are al-
ready very small, so it is hard to obtain a good signal to noise ratio. We show the limits
of traditional low temporal resolution photography via an example in Supplementary
Figure S6.

14



Benefits of Time Resolution

For an ordinary camera, two conditions make the problem ill-conditioned: The relative
intensity contributed by an emitter changes only slightly (∝ ∆z/z0) and this small
change is overwhelmed by the contribution of the background with area A, yielding
the factor (∆x/z0)2. Using a ps accurate high-speed light source and sensors these
problems can be circumvented.

A change in patch position smeans it contributes to a different pixel in the streak photo,
provided ∆z/c > ∆t, where c = speed of light and ∆t is time resolution.

Unlike an ordinary sensor, not all patches on S contribute to a pixel (time bin) in a
streak photo making the mixing easier to invert. The locus of points contributing to a
fixed sensor and time-bin position, (u, t), lie on a ring with radius d =

√
(ct)2 − z2

0

(Supplementary Figure S5(b)). If the time bin has a width of ∆t� t, the width of the
ring is approximately ∆d = c2t∆t/d. Hence the total area of the ring is 2πd∆d =
2πc2t∆t. We want to detect changes in the intensity emitted by a patch of size ∆A =
(∆x)2. Hence the change in total intensity is approximately ∆I/I = ∆A/(2πd∆d) =
(∆x)2/(2πc2t∆t). In our scenario typically ∆x ≈ 3c∆t. Furthermore ct ≈ z0. Hence
∆I/I ≈ 3∆x/(2πz0). Thus the required intensity increment is linearly proportional to
∆x/z0, and not quadratically as before. In our case, this ratio is a reasonable ∼ 10−2.
This gives the guidance on time-resolution. In addition, the time resolution of the light
source should not be worse than that of the sensor.

Performance Validation

We performed a series of tests to estimate the spatial resolution perpendicular and par-
allel to the visible surface, i.e., the wall. We use the FARO Gauge measurement arm to
collect independently verifyable geometric position data (ground truth) and compared
with positions recovered after multiple scattering using our algorithm. In our system,
translation along the direction perpendicular to the diffuser wall can be resolved with
a resolution of 400 µm better than the full width half maximum (FWHM) time resolu-
tion of the imaging system (Supplementary Figure S7, a and b). Lateral resolution in a
plane parallel to the wall is lower and is limited to 0.5–1 cm depending on proximity
to the wall (Supplementary Figure S8).

Choice of resolutions

There are four important parameters for our shape estimation setup: The spatial reso-
lution, i.e., the spacing between sensor pixels, the temporal resolution of sensors and
the laser, the intensity resolution and signal to noise ratio of our sensors (and power
of the light source) and the angular diversity determined by the geometry of the setup.
We saw in Section ”Benefits of Time Resolution” that time resolution is critical and
gives us an approximate lower bound on the resolution of our 3D reconstruction This
is the same as in the case of a direct view traditional time of flight camera. However,
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our situation differs from a direct view time of flight camera. Neither our sensors nor
our light source have any directional resolution into the hidden space after a diffuse
reflection.

Spatial Camera Resolution If we could determine the correspondences, i.e., which
part of the received signal at a sensor was emitted by which transmitter (surface patch),
spatial resolution of a streak camera would actually be unnecessary. Time resolution
will directly determine reconstructed 3D resolution of hidden objects. Despite these
two challenges, finite time resolution of the streak camera and the loss of correspon-
dence, the sufficiently high spatial resolution allows us to exploit the local structure in
streak photo to recover shape without explicitly solving the correspondence problem.

16


