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Abstract

Traditional depth from defocus (DFD) algorithms assume

that the camera and the scene are static during acquisition

time. In this paper, we examine the effects of camera and

scene motion on DFD algorithms. We show that, given ac-

curate estimates of optical flow (OF), one can robustly warp

the focal stack (FS) images to obtain a virtual static FS and

apply traditional DFD algorithms on the static FS. Acquir-

ing accurate OF in the presence of varying focal blur is

a challenging task. We show how defocus blur variations

cause inherent biases in the estimates of optical flow. We

then show how to robustly handle these biases and compute

accurate OF estimates in the presence of varying focal blur.

This leads to an architecture and an algorithm that converts

a traditional 30 fps video camera into a co-located 30 fps

image and a range sensor. Further, the ability to extract im-

age and range information allows us to render images with

artistic depth-of field effects, both extending and reducing

the depth of field of the captured images. We demonstrate

experimental results on challenging scenes captured using

a camera prototype.

1. Introduction

Cameras have become ubiquitous with billions of them

present in various forms including cell-phone cameras,

surveillance cameras, cameras installed on cars, at home,

etc. In most cases, these cameras are passive devices just

recording and saving video streams. This leaves most of the

acquired data unprocessed. A major bottleneck towards au-

tomating the visual scene interpretation is the lack of 3D in-

formation that is crucial for scene understanding. The goal

of this paper is to make traditional video cameras be able

to extract meaningful 3D information by varying the focal

distance during the acquisition of the video.

Variable focus makes cameras 3D: Most cameras are al-

ready equipped with features such as auto-focus, variable

focal length and zoom, all of which require the focal dis-

tance to change. Unfortunately, this ability of the camera

is significantly under-utilized. The ability to auto-focus is

Figure 1. Consumer video cameras have the functionality to au-

tomatically focus. We can exploit this feature to acquire a focal

stack and perform depth from defocus. In this paper, we show

how this can be achieved in the presence of scene and/or camera

motion, thereby turning an off-the shelf 30 fps video camera into

a variable depth of field 30 fps camera and a 30 fps range sensor.

only used to obtain an image in which the subject of inter-

est is in-focus. The fact that different subjects in the scene

were in-focus at different focal distances enables the extrac-

tion of 3D information from these devices using depth from

focus/defocus methods. We exploit this variable focus to

simultaneously obtain an all-focus video and a depth map

video.

Traditional depth from focus/defocus approaches require

the scene to be static during the acquisition of multiple im-

ages. In this paper, we show how one can use optical flow

information in order to remove this restriction and obtain

3D information in the presence of camera or scene mo-

tion. As a direct consequence of our ability to align multi-

ple frames accurately, we are able to extract depth informa-

tion and texture map at the native frame-rate of the camera,

thereby converting a traditional 30 fps camera into a 30 fps

extended depth-of-field (EDOF) camera and a 30 fps range

sensor simultaneously.



1.1. Contributions

• DFD and EDOF imaging is extended to dynamic

scenes by explicitly accounting for scene and camera

motion. This enables a traditional video camera to ac-

quire a 30 fps variable depth-of-field (DOF) video and

act as a range sensor.

• The effects of (a) varying focal blur and (b) occlusions

on the motion compensation problem are analyzed and

an iterative refinement algorithm is designed that ex-

plicitly tackles such errors via reblurring.

• The design of a prototype is presented along with ex-

perimental results on several challenging scenes.

1.2. Prior Work

Depth From Defocus (DFD): Focus and defocus analysis

for depth estimation has significant advantages over stereo

and structure from motion as shown by [19, 14, 4], since

they circumvent the correspondence problem. Another ad-

vantage of DFD over stereo is that only a single camera

is required in DFD. Several algorithms for tackling DFD

have been proposed [15, 7]. They minimize a cost function

consisting of a data term and a spatial regularization term.

The data term constrains how the texture blurs as a function

of the unknown depth and the known focal distances. The

regularization terms model spatial smoothness constraints

within the depth map of the scene, typically by penalizing

the L2 cost of the depth difference of neighboring pixels.

However, none of these methods can handle the DFD prob-

lem in the presence of scene or camera motion. In this pa-

per, we present a framework to extend the DFD problem to

scenarios with scene or camera motion.

Active Range Sensors: These sensors use an active pulse

(e.g., laser, ultrasound) and either the direct time-of-flight

or the phase difference between the emitted and received

pulses to infer the scene depth. Structured light sys-

tems [17] use a pair of camera and projector to make the

point correspondence problem in stereo easier. While the

quality of the depth maps produced by such devices is usu-

ally high, they are expensive and require additional devices.

Variable Depth-of-Field (DOF) Imaging: The DOF of an

imaging system can be extended by reducing the aperture.

This however reduces the amount of light received by the

camera, leading to low signal to noise ratio. On the other

hand, if we increase the aperture, the sensor noise is reduced

but at the cost of the decrease in DOF. We would ideally

want a large DOF but with reduced sensor noise. Recently,

several approaches have been proposed [5, 21, 11, 13, 9]

to overcome this fundamental trade-off between the sen-

sor noise and DOF. Veeraraghavan et al. [21] and Levin

et al. [11] use a broadband mask at the aperture making
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Figure 2. Depth from Defocus: The thin lens law states that when

a scene point is out of focus, the blur radius of the out-of-focus

scene point depends on the depth of the point apart from camera

dependent parameters such as the focal length, aperture diameter

and the sensor position. Given the camera parameters one can

estimate depth from the blur radius.

the point spread function of blur better behaved. This al-

lows computational deblurring extending the DOF. Dowski

and Cathey [5] increase the DOF by inserting a cubic phase

plate near the lens, while Nagahara et al. [13] increase the

DOF by moving the sensor during the exposure duration.

In both these methods the captured image is blurred, but

the blur kernel is independent of depth and therefore can be

deblurred using non-blind deblurring algorithms.

2. Basics and Limitations of DFD

A camera captures light from a scene and projects it on a

sensor. Parts of the scene that are in focus are at depth s0

given by the thin lens law:

1

Fl

=
1

v
+

1

s0
. (1)

Here, Fl is the focal length of the lens and v is the distance

between the camera lens and the sensor. Scene points that

are at distance s 6= s0 have a circle of confusion (blur) in

the image plane. The distribution of light energy within this

blur circle is referred to as the Point Spread Function (PSF).

This PSF is a disc with its radius depending on the depth s

of scene point:

σ =
Dv

2

(

1

Fl

−
1

v
−

1

s

)

, (2)

where D is the lens aperture and σ is the radius of blur circle

in the sensor plane. Figure 2 reviews this basic image for-

mation in a camera. The scene point A with its depth s is in

focus when the sensor is at distance v1 from the lens. When

the sensor is moved either towards the lens (v0) or away

from the lens (v2), the rays from A form a circle of confu-

sion with their radius given by equation 2. This dependence

of blur on the depth of the scene point can be used as a cue

to identify the depth of the scene, which is known as Depth

from Defocus (DFD).

DFD in Static Scenes: Typical DFD methods capture a fo-

cal stack F = {F1,F2, ...FM}, consisting of a sequence of M
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Figure 3. Effect of motion on DFD: Top row shows a static scene. A traditional DFD algorithm produces accurate depth and texture.

Middle row shows a dynamic scene where the red car is moving to the right. This motion causes correspondence errors in DFD, resulting

in depth and texture errors. Last row shows our algorithm applied to the scene in the middle row. Images shown here correspond to the

virtual focal stack Z3 i.e., image 1 and image 5 have been warped to image 3 of the captured focal stack using optical flow. This allows the

estimation of accurate depth and texture by correcting the correspondence errors. Depth values are in inches.

images Fj captured at various focus settings. Consider the

focal stack of a static scene shown in the top row of Fig-

ure 3. First (F1) and last (F5) images of a focal stack of 5

images for a static scene are shown. In this static case, tra-

ditional DFD methods can produce an accurate depth map.

The depth map can be used to obtain an extended depth-

of-field (EDOF) image (also known as all-focus image) by

combining the images in the focal stack.

Impact of Scene/Camera Motion: The basic assumption

in traditional DFD methods is that the scene and camera are

static. Consider the second row of Figure 3, where a focal

stack is obtained as the red car moves to the right. The scene

motion leads to correspondence errors in DFD, resulting in

depth and texture errors. In EDOF images, the error appears

as multiple copies of the moving object, while in the depth

map, spurious depth edges are present on and around the

moving object.

3. DFD in Dynamic Scenes

In this section, we describe how to adapt DFD methods to

handle dynamic scenes. Let us assume that we have the

motion information between a frame Fi and all the other

frames within the focal stack F. Intuitively, this information

can be used to warp {Fj}
j=M
j=1 to Fi. This creates a “virtual”

focal stack Zi that corresponds to the time instant i and has

the properties of a static focal stack. The virtual focal stack

corresponding to F3 is shown in the bottom row (Moving

Car - Motion Warped) of Figure 3. Since the motion has

been compensated for in this focal stack Z3, the scene points

are in correspondence. Depth and texture maps for time

instant i can then be obtained from this virtual focal stack.

The central problem in motion estimation is the presence

of varying defocus blur across the frames. Standard mo-

tion estimation techniques such as optical flow rely on the

assumption of brightness constancy [10]:

I(x,y, t) = I(x+δx,y+δy, t +δ t) (3)

where (x,y) are the pixel grid points and t is the time in-

stant. In Figure 4, we analyze the effect of varying defocus

blur on the flow estimation. The two frames are focused

at different depths, and the pixel marked as A has differ-

ent intensities. This is because varying focal setting blurs A

with different kernels, leading to the violation of brightness

constancy. This violation induces spurious optical flow as

shown in the bottom row of Figure 4– Flow before reblur-

ring. The magnitude of optical flow estimated in the static

regions of the scene is around 2.5 pixels.

As shown in the example, in the absence of any further in-
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Figure 4. Flow estimation with varying blur. Top row shows two

images of a focal stack with different blur levels. Observed in-

tensities of pixel A violate the brightness constancy constraint for

flow estimation. This violation introduces error in flow estimation.

Texture and depth map (of image1) can be used to reblur image1 to

match the blur level of image5. Third row shows the improvement

in the estimated flow. This improvement is easily seen in static

parts of the scene.
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Figure 5. Block diagram of our reconstruction algorithm.

formation, computing optical flow with changing blur lev-

els is a challenging task. However, given the depth map and

the texture map of the scene at time instant i, the flow can

be solved accurately using reblurring (Figure 4– Flow after

reblurring). Likewise, given the flow information the depth

and the texture map can be recovered using DFD. This leads

to an iterative refinement algorithm for estimating the depth

and the texture of a dynamic scene via stage-wise optimiza-

tion, which is presented in the next section.

4. Iterative Reconstruction of Depth and Flow

The overview of our reconstruction algorithm is given in

Figure 5. Given the focal stack video, we initially com-

pute the optical flow between the frames. We then warp

the frames to generate a virtual focal stack for each time in-

stant. The virtual focal stack is used to compute the depth

and the texture maps using DFD. The results are refined by

alternating between flow estimation and DFD. The follow-

ing subsections describe each step of the algorithm.

4.1. Optical Flow

In the first iteration, the depth and the texture maps are un-

available. Hence, flow estimation can be approached by first

computing a coarse optical flow and then refining via reblur-

ring during the subsequent iterations.

Initial Flow: Several approaches to compute the coarse ini-

tial flow can be adopted each with its own pros and cons.

Spurious optical flow between frames i and i + 1 could be

computed in the first iteration and improved in subsequent

iterations. This would have errors caused by the blur change

as discussed earlier. Instead, we recover the initial flow by

making an additional assumption — the flow has constant

velocity within a period M of a focal stack. Frames from

two consecutive focal stacks, (say) ith and (M + i)th frames

of a video, have the same blur levels, hence satisfy bright-

ness constancy. We compute the optical flow between ith

and (M+ i)th frames and linearly interpolate the flow for the

in-between frames. Although the initial flow is coarse due

to the constant velocity assumption, it is refined via reblur-

ring during the following iterations. Along with the con-

stant velocity assumption, this approach also restricts the

allowable motion between ith and (M + i)th frames. In sce-

narios where this motion exceeds the allowable motion, the

previous approach could be adopted.

Flow Given Depth and Texture: After the initial iteration

of the DFD, the algorithm recovers a coarse estimation of

the depth and the texture maps of the scene. Let Di and Ti

be the depth map and the texture map of the scene at time

instant i respectively. This depth map Di allows us to blur Ti

with depth dependent kernels. This approach of matching

the blur level of different images has earlier been utilized in

shape from defocus [7, 18, 6]. Once the blur level of the two

images are matched, brightness constancy is satisfied and

hence optical flow can be computed with higher accuracy.

Figure 4 shows the reblurred image F5 and the computed

optical flow between this reblurred image and F1.

Occlusion: Here, we discuss the occlusion problem in mo-

tion compensation. Consider two frames F1 and F4 of a fo-

cal stack F shown in the top row of Figure 6. In this dataset,

red and blue markers rest on a turning table. Zoom in of

the red marker shows it moving to the right from F1 to F4.

This motion occludes the pixels in the background region

marked in blue. In F1, this occluded region is blurred while

it is occluded in other images of this focal stack. This im-

plies that the information regarding the focused background

for this occluded region is unavailable.



Figure 6. Occlusion handling. We detect occluded regions by

checking consistency between the forward and backward optical

flows between frames. If the occluded regions are static, we can

fill them by using images from different focal stacks; otherwise we

fill them using original (blurred) image in the current focal stack.

While warping F4 to F1 to compensate for the motion, this

occlusion region needs to be detected and filled in. The oc-

clusion region is detected by the inconsistency between the

forward and backward optical flows. The pixel is assumed

to be occluded if the forward-backward tracking results in

a disparity greater than 2 pixels. The detected occlusion

region is shown in the third row of Figure 6.

The information required to fill in the occluded region while

warping F4 to F1, can be retrieved by looking at other frames

with the same blur level i.e., F4+M j where M is the length of

a focal stack and j is any integer. In other words, the values

for this region can be identified by looking at other frames

with same blur level which have pixels from the background

in the occluded region. This is shown in the bottom right of

Figure 6. However, this might not be possible when the oc-

cluded pixels itself are moving. For instance, in the case of

camera motion, even the pixels corresponding to the back-

ground move. In such cases, this region is filled up by copy-

ing corresponding pixels from the source frame, F1 in this

case which leads to visible artifacts on the object bound-

aries.

Figure 7. Pairwise MRF defined on superpixels. A spatial edge

connects two nodes within an image if the superpixels share the

boundary. A temporal edge connects two node across images if

the superpixels have overlapped region after the alignment using

optical flow.

4.2. Depth and Texture Given Optical Flow

After aligning the images in a focal stack using optical flow,

we estimate depth maps D = {D1,D2, ...DM} and textures

T = {T1,T2, ...TM} corresponding to each image Fi in the

focal stack. We formulate the problem of depth estima-

tion using a spatio-temporal Markov Random Field (MRF).

As shown in Figure 7, we define an MRF using superpix-

els of the images as nodes and assume that each super-

pixel is represented by a front-parallel plane having a single

depth value. These superpixels are perceptually meaning-

ful over-segmentation of an image which conserves most of

the structure in terms of color and shape [16]. It provides

advantages in terms of reduced complexity by moving from

pixel grid to superpixel map and is also representationally

efficient as it can model smoothness between all pixels in a

superpixel. Similar to [22, 20], superpixel segmentation for

each frame is obtained using an iterative algorithm where

we initialize superpixels as a regular grid and update their

shapes based on the current estimate of shape and color dis-

tribution of each segment. This produces superpixels which

are regularly shaped.

Given a set of superpixels P and a finite set of depth labels

S, the objective is to assign a depth label s∈ S to each p∈P.

The energy function of the MRF is represented as

E(s) = ∑
p∈P

Dp(sp)+α ∑
{p,q}

Vpq(sp,sq), (4)

where α controls the degree of regularization.

To compute the data term Dp(sp), we assume that textures

Ti are available for each focal stack image Fi. Initially

these textures are obtained by applying photomontage algo-

rithm [2] on the motion compensated focal stack Zi. After

the first iteration we use textures computed using the previ-

ous estimate of the depth maps. Given the textures, the data

term is computed by the sum of the squared difference be-

tween the observed superpixel and the reblurred superpixel
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Figure 8. Our camera prototype.

for each depth level sp. The PSF is assumed to be a disk

kernel for reblurring the textures.

In our MRF formulation, we consider both spatial and tem-

poral smoothness. Spatial smoothness penalizes changes in

depth maps between two neighboring regions. We adopt the

Potts model for spatial smoothness. Temporal smoothness,

on the other hand, penalizes large change in depth between

two consecutive frames. The smoothness term is computed

as

Vpq(sp,sq) = wpq T (sp 6= sq), (5)

here, T (.) is the indicator function with value 1 if its ar-

gument is true and 0 if it is false. This term penalizes

depth discontinuities between the neighboring superpixels

p and q, and wpq is a spatial/temporal weighting factor. The

weight wpq between two spatially neighboring superpixels

p and q is determined by the similarity in the average color

of the two superpixels: wpq = exp

(

−
||Ip−Iq||

2

τ

)

. Weights

for the temporally neighboring superpixels are determined

in the following way: Consider frames A and B. Let u be the

optical flow between these two frames. Superpixel p ∈ A is

warped to frame B using the optical flow u. The overlap of

p with the superpixels of frame B is then used as weights

between temporal neighbors. We use graph cut algorithm

[3] to minimize the energy function.

5. Experiments

In this section we discuss our prototype design and results

on few challenging scenes.

5.1. Camera Prototype

Figure 8 shows our camera prototype. It translates a 1/3

inch Sony progressive scan CCD with a stepper motor

which drives the National Aperture Inc., MicroMini Stage

MM − 3−X . The sensor moves around 2µm in each mo-

tor step. Thus, the distance between two consecutive sensor

positions to capture the image can be varied at multiples of

2µm. This can be controlled according to the DOF of the

scene to be captured and the number of images required per

stack. In our experiments, we used 67 steps (= 134µm)

between two consecutive sensor positions. A C-mount lens

with a focal length of 12.5mm is attached to the fixed optical

stage. While capturing the video, we move the sensor con-

tinuously and typically keep our exposure time to be 10ms.

A very small translation of the camera sensor covers a large

amount of focal depths [13].

The camera translates along the optical axis of the lens with

a constant speed. When it reaches the pre-specified ex-

tremum in one direction, the camera translates in the oppo-

site direction. Hence it is capable of continuously capturing

images at 30 fps. In most of our experiments, during one

half period of sensor motion, the camera captures 5 images,

which is the size of the focal stack.

Calibration: The magnification of the imaging system

changes due to the translation of the sensor. In addition,

the direction of the translation is not perfectly aligned with

the central axis of the camera. These effects induce a planar

projective transformation between the focal stack images.

During calibration, we place a calibration grid in the scene

and estimate the planar homographies between the the focal

stack images. These transformations are used to warp the

images and processing is done in a canonical space (coordi-

nate frame of F3).

The relation between the scene depth and the blur kernel

size is necessary for reblurring. During calibration, we

place the calibration grid at multiple depths. At each depth,

the focus is on the grid in one of the focal stack images, and

the blur kernel sizes for all the other focal stack images are

computed. The blur kernel size for a given depth is then

estimated via linear interpolation.

5.2. Results

DFD/EDOF for Dynamic Scenes: We collected several

challenging datasets of dynamic scenes with our proto-

type. Shown in Figure 9 are the results on two different

datasets where we compare the DFD and EDOF images be-

fore and after explicit motion compensation using our al-

gorithm. The dataset on the left consists of two markers,

with the orange marker moving to the right while the blue

marker is moving to the left. The dataset on the right con-

sists of a can rolling towards the camera. The first and third

columns show the EDOF images and the depth maps before

motion compensation. Notice the errors in the depth map

due to object motion. The second and fourth column shows

the EDOF images and depth map after motion compensa-

tion. Notice the significant increase in depth accuracy in

the marker dataset and the reduction of motion artifacts in

the EDOF images of the can dataset. This estimated depth

and texture maps enable us to render novel views. Figure 11

shows frames from marker dataset and the toy dataset ren-
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Figure 9. Comparison between EDOF images and depth maps generated with or without motion compensation. Traditional DFD without

motion compensation fails to handle moving objects and produces artifacts at boundary regions. In the ‘rolling can’ example on the right,

depth map artifacts can be seen corresponding to the texture map artifact highlighted for the result without motion compensation. Our

algorithm correctly compensates for the object motion and generates high-quality depth maps and EDOF images. Depth values are in

inches.

dered from 3 novel views. Accuracy of the retrieved bound-

aries for the objects can easily be visualized in these novel

views. As the bottom surface is texture-less, no depth infor-

mation is recovered on the surface.

Figure 10 shows a dataset of desktop where the coffee mug

is being picked up. This dataset has 4 captured images in

each focal stack. Two images from this dataset has been

shown in the top row of the Figure. Left column corre-

sponds to the near-focus image while the right column cor-

responds to the far-focus image. EDOF images and depth

maps have been shown in the second and third rows respec-

tively. It can be noted that EDOF images have all parts of

the image as sharp. Depth map recovered for the textured

regions are close to the ground truth values while few errors

can be observed at the texture-less regions.

Effect of Refinement: Figure 12 shows the importance

of the iterative optimization described in Section 4. This

dataset consists of a toy scene in which the red car is mov-

ing to the right. Notice that both the depth map and the

EDOF images have flow artifacts after the initial iteration

(constant velocity flow assumption); whereas these artifacts

are significantly reduced after second iteration via reblur-

ring, leading to depth and texture maps as shown in the right

column of Figure 12.

Reduced Depth of Field: Since our method computes both

depth and texture simultaneously for dynamic scenes, this

enables us to synthetically reduce the depth of field (DOF)

of the acquired images. The depth quantization of the DFD

algorithm is much finer than the DOF of each of the cap-

tured focal stack images. Shown in Figure 13 is a dataset
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Figure 10. (a) Two images from a desktop scene with coffee mug

being picked up with left one near-focused and right one far fo-

cused. (b) Corresponding EDOF images. (c) Corresponding

Depth maps. Depth values shown here are in inches.

including a book on magic. This book was translated to

the left and towards the camera. Shown in the first row are

two of the captured images showing the translation and the

DOF of the captured images. The corresponding EDOF im-

ages estimated by our algorithm are shown in the second

row. The depth map at time t1 is shown in the left of third



Figure 11. Novel views rendered using the depth and texture maps

from different viewpoints.

After initial iteration

EDOF

Artifacts 
due to 

incorrect 
flow

EDOF

Depth Map Depth Map

After 2nd iteration

Figure 12. EDOF images and depth maps (left) after initial itera-

tion and (right) after second iteration. Zoom-ups from each image

has been shown. Note the boundary artifacts are reduced after the

second iteration.

row. Finally, the depth map and the EDOF image are used

in a depth dependent reblurring framework to produce the

reduced DOF image shown in the right of third row. Notice

that the DOF of this rendering is about 3 times smaller than

the original DOF of the captured focal stack. Thus our al-

gorithm can be used either to extend or reduce the DOF. Re-

ducing the DOF is important for inexpensive and small cam-

eras (like cellphone cameras) that have a very large DOF

because of their small aperture size.

Camera Motion and Video results: We collected datasets

with camera translation. EDOF and depth map videos were

reconstructed. The effect of the camera motion is much bet-

ter seen as video. This experimental result along with other

video results and can be found at the project webpage 1.

1http://www.umiacs.umd.edu/users/nshroff/MotionDFD.html

Figure 13. Variable depth-of-field (DOF) imaging. The estimated

depth map enables us to compute extended DOF images and re-

duced DOF images.

6. Conclusion

In this paper, we have shown how advances in optical flow

and motion estimation can be exploited towards extending

the problem of DFD and EDOF imaging to dynamic scenes.

The idea of performing explicit motion compensation is

general and can be used with any of the available state-of-

the-art DFD algorithms. Though in this paper, our imple-

mentation is based on a graph cut formulation, the ideas

proposed here can be easily extended for other DFD ap-

proaches. Our analysis shows the importance of accurate

flow estimation, describes some of the fundamental chal-

lenges in this problem due to focal blur,and suggests meth-

ods to handle these challenges.

Limitations: Our method suffers from the disadvantages

of traditional DFD, such as the need for scene texture and

a lens with large enough aperture to cause depth of field ef-

fects. It further inherits the limitation of dense motion esti-

mation algorithms i.e., motion between successive frames

of the video should not exceed the limitations of optical

flow estimation algorithms, and motion component parallel

to the axis of the camera cannot be estimated reliably. Fur-

ther, the depth range in the scene should be small enough so

that (a) the number of images in a focal stack is kept reason-

able, and (b) the maximum blur of any observed scene point

is manageable. The choice of the initialization scheme for

the optical flow can pose limitation in terms of the maxi-



mum motion possible between two images with the same

focal depth. This will be addressed in future work where

initial optical flow could be solved by estimating motion

for multiple frames together while compensating for blur in

the same framework.

The main advantage of our approach is that this turns video

cameras into high resolution variable depth of field and

range sensors. Since most video cameras today have a built-

in auto-focus feature that allows us to vary the focal distance

during video acquisition, our approach could convert an off-

the-shelf video camera into a range sensor also. Unfortu-

nately, the firmwares available with cameras today do not

provide external access to the auto-focus mechanism. The

FrankenCamera [1] is an indication that the field is poised

to change this lack of ability to control the hardware fea-

tures available on the camera platform. We hope that this

and several similar research directions [13, 12, 8] have the

positive effect of convincing camera and lens manufacturers

to allow external access to some of the in-built functional-

ities. Such external access, we believe, would turn tradi-

tional video cameras into powerful devices that are capable

of improving our ability to do image understanding from

the acquired videos.
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