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ABSTRACT

A tenet of object classification is that accuracy improves with
an increasing number (and variety) of spectral channels avail-
able to the classifier. Hyperspectral images provide hundreds
of narrowband measurements over a wide spectral range, and
offer superior classification performance over color images.
However, hyperspectral data is highly redundant. In this pa-
per we suggest that only 6 measurements are needed to obtain
classification results comparable to those realized using hy-
perspectral data. We present classification results for a natural
scene using three imaging modalities: 1) using three broad-
band color filters (RGB) and three narrowband samples, 2)
using six narrowband samples, and 3) using six commonly
available optical filters. If these results hold for larger datasets
of natural images, recently proposed multispectral image sen-
sors [1, 2] can be used to offer material classification results
equal to that of hyperspectral data.

Index Terms— Natural Scene Classification, Hyperspec-
tral Imaging, Multispectral Imaging

1. INTRODUCTION

In recent years scene understanding and object classification
has received intensive attention as it benefits many practical
applications such as autonomous driving, robot vision and
content-based image retrieval. The input for many classi-
fication tasks are images taken using conventional cameras
containing three broadband spectral measurements (the red,
green, and blue channels of the image). RGB cameras are
bountiful, cheap, and easy to use; however, the coarse sam-
pling of the visible spectrum limits classification accuracy,
especially in the presence of metameric scene elements.

Hyperspectral imaging (HSI) systems, on the other hand,
record hundreds of measurements and provide fine spectral
resolution over a wide range of the electromagnetic spectrum.
HSI is able to capture material specific information which
greatly improves classification performance. The improved
performance comes at a cost. HSI camera systems require
specialized processing units, are expensive and bulky, have
long acquisition times, and suffer from a low signal-to-noise
ratio. Moreover, the spectral profile of elements in natural

scenes vary slowly such that neighboring narrowband spectral
measurements are highly correlated. This inherent spectral re-
dundancy suggests that far fewer measurements can be used
to produce classification fidelity approaching that of HSI.

Recent work in camera and sensor design has led to two
imaging systems which can capture a handful of co-located
spectral measurements. By manipulating vertical silicon
nanowires, [1] is able to create multi-layer image sensors
tuned to specific wavelengths while [2] extends the typical
Bayer filter found on color images to capture multispectral
images. A camera add-on proposed by [3] can be used to
increase spectral resolution for consumer cameras. These
systems increase spectral measurements on the order of ones,
far fewer than the hundreds capable with HSI. It is unclear
how much benefit such systems would pose for material
classification, or even which measurements should be taken.

In this paper we present the effectiveness of using six
channels in natural scene analysis tasks. In particular, we
compare the classification performance of using the entire hy-
perspectral data to a select set of 6 multispectral channels.

We evaluate our approach on 2 scenes with ground truth
labeling of 7 different material categories. We hope that these
results will motivate more comprehensive research into alter-
native imaging modalities for scene analysis.

1.1. Related Work

Two well-established techniques for improving upon color
image classification performance are to perform classification
using (1) joint measurements of RGB and side-band informa-
tion and (2) dense spectral sampling from HSI.

Augmenting the visible spectrum with a broadband near-
infrared channel has been shown to improve material clas-
sification [4], agricultural foodstuff discrimination [5], and
image segmentation tasks [6]. Multi- and hyperspectral im-
ages have been used extensively to improve the performance
of image segmentation and classification in specific applica-
tion areas such as remote sensing (see [7] for a survey of the
field), medical diagnosis and bioinformatics [8, 9], and mili-
tary surveillance [10]. A comprehensive overview of classifi-
cation using HSI is offered in [11].

Unfortunately, no such effort has been made to improve



classification of natural scenes using HSI data. Work by [12]
and [13] shows that natural scenes exhibit spectral profiles
which vary slowly and are inherently of a lower dimension
than the hundreds of samples captured in HSI data. We of-
fer a foundation for further exploration into using only a few
spectral measurements for natural scene classification.

2. HYPOTHESIS AND SOLUTION

We seek to test the following hypothesis: A few (say for ex-
ample 6) carefully selected spectral channels can be used to
achieve classification accuracy comparable to that of classi-
fication using HSI. We consider the following three imag-
ing scenarios, we first augment the three bands of a conven-
tional color camera with narrowband measurements, we se-
lect a subset of narrowband measurements captured in HSI,
and finally we use spectral channels inspired by available op-
tical filters.

Let the true spectral profile of every pixel p in the hyper-
spectral image be represented by H(p), a length–N column
vector where N is the number of spectral bands. We wish to
represent each pixel as a length–M vector, x(p), which max-
imizes discriminatory information between material classes.
Each entry in x(p) is a linear combination of the spectral mea-
surements in H(p)

x(p) = AH(p), (1)

where A is a positive M ×N matrix whose rows contain the
weights for each entry in x(p); the rows of A sum to 1.

Material classification is an exercise in labeling where a
labeling function `(·) maps observed data to an object class
(x → Y ). The goal is to reduce error when assigning labels.
In particular, we seek to minimize the labeling problem

min
∑
s∈S

`(x(s)) ↑ y(s), (2)

where S is the set of pixels to be classified, y(s) ∈ Y is the
true object class, and ↑ returns 1 if `(x(s)) is not equal to
y(s).

To minimize (2) is to find the optimal set of weights A to
produce x. Substituting (1) into (2) gives

argmin
A

∑
s∈S

`(AH(s)) ↑ y(s). (3)

Explicitly solving (3) is intractable, therefore we employ a
greedy selection algorithm [14] to find the rows of A sequen-
tially. That is, the first row of A is found which minimizes (3)
for M = 1. The second row is then computed by minimizing
(3) forM = 2 and by fixing the first row using the result from
the previous step. The procedure repeats until all M rows are
found.

Depending on the imaging scenario, further restrictions
are placed upon the rows of A. Each row of A correspond-
ing to a narrowband measurement is required to have a single

Fig. 1. Scenes used for testing: HSI was collected for the
two outdoor scenes shown above. Color images were gener-
ated using the spectral profile of the e2v EV76C560 camera
sensor to provide realistic measurements for broadband color
filters. Ground truth labeling of top scene was used to train
the classifier while the bottom scene was reserved for testing.
Gamma correction has been applied for display purposes.

non-zero entry. Weights for the RGB color filters are known a
priori and are fixed before searching for the remaining 3 nar-
rowband measurements. The weights for the common spec-
tral filters are also known a prioi which are then used to re-
strict the search space for each row of A.

In order to ensure consistent inputs to the labeling func-
tion we preprocess pixels prior to assigning a label. Each
pixel is normalized by dividing the value of each spectral sam-
ple by the sum of all spectral samples,

x(p) =
x(p)

N∑
i=1

xi(p)

(4)

where i is an index of the N spectral samples.
Hyperspectral images are spatially redundant as well as

spectrally redundant. In an effort to reduce computational
overhead, we compute superpixels for the input HSI data to
group neighboring pixels. We implement a straightforward
extension of the entropy-based superpixel segmentation ap-
proach proposed in [15]. Spectral measurements for individ-
ual pixels within a superpixel are averaged to form the spec-
tral response for that superpixel.

2.1. Classifier

Our goal in this paper is not to develop a new classifier but to
show that a few spectral channels perform surprisingly well.



So, we choose the most popular and common classifier–
support vector machines [16]–as the labeling function in (2).

SVM formulations can be constructed to create a non-
linear classifier [17] using a kernel to transform input data
into a higher dimensional feature space. We employ a Gaus-
sian radial basis function (defined entirely by one parameter,
γ) as the transformation kernel. SVM classifiers are highly
sensitive to the choice of kernel parameter γ and the soft-
margin cost C. We use exponentially increasing sequences
to perform a grid-search for the best combination of cost and
kernel parameters. Parameter estimation is completed inde-
pendently for each classification task.

Multi-class labeling is achieved by creating multiple bi-
nary classification problems. We employ a one-versus-one
scheme where the binary classifier discriminate between two
classes. Test samples are assigned to the label which performs
the best in the most head-to-head comparisons.

3. EXPERIMENTS

We validate our hypothesis using two scenes captured out-
doors on the University of Houston campus. The scenes were
acquired using a Headwall Photonics hyperspectral imager
which provided measurements in 325 spectral bands with a
spatial resolution of 1004×2500. The hyperspectral data uni-
formly spanned the visible and near-infrared spectrum from
400nm-1000nm. Each scene includes objects in 7 different
categories–vegetation, metal, concrete, pathway, skin, fabric,
and rubber. Ground truth labels were marked by hand for both
scenes.

Color image representations of the two scenes were syn-
thesized using the spectral profile of the e2v EV76C560 cam-
era sensor to provide a real-world RGB profile. The camera
sensor is used in machine vision cameras and is representa-
tive of the spectral response of many cameras. Each scene
includes a diffuse Spectralon calibration target with 99% re-
flectance in the wavelength range used in this study which
was used to apply white balancing to the color images. A
color representation of the scenes is shown in Figure 1; the
top scene was used for classifier training while the bottom
scene was reserved for testing the classifiers. Complex light-
ing in the scene resulted in acquiring spectral information for
scene elements under varying lighting conditions, i.e. in di-
rect sunlight and in shadow.

Benchmark accuracy was computed using the full HSI
data, RGB color filters, and RGB coupled with a broadband
near-infrared channel (as realized using the same camera sen-
sor with an IR pass filter). In addition, we compute classifi-
cation results using RGB and 3 narrowband channels, 6 nar-
rowband channels, and 6 optical filters. All of the use cases
were synthesized using the HSI data.
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Fig. 2. Classifier results: Object classification accuracy us-
ing 6 different imaging modalities and SVM classifier. Classi-
fication accuracy increases with the number of measurements
but faces diminishing returns. The three test cases using 6
measurements are within 3 percentage points of the hyper-
spectral classifier despite using only 2% of the measurements.

3.1. Classification Results

Training of the SVM classifier was conducted using a 5-fold
scheme where the training samples were randomly divided
into 5 groups. Training was then conducted using a leave
one out methodology, 4 groups are used to learn the support
vectors and the fifth group is used to test against. Parame-
ter estimation was completed using a grid-search with expo-
nentially increasing values for the cost and kernel parameter,
C ∈ {20, 21, . . . , 28}, γ ∈ {20, 21, . . . , 28}. SVM classifica-
tion tasks were executed using the LIBSVM library [18]. 916
samples were extracted from the top scene in Figure 1 to train
the classifier while 649 samples from the bottom scene were
used for testing.

Overall accuracy results are shown for the six use cases
in Figure 2. The results show a clear trend in the data—
incorporating more measurements improves overall accuracy.
As expected, using only three RGB broadband filters results
in the lowest overall accuracy, while having access to all 325
narrowband samples in the HSI data yields the best results.

Augmenting color images with side-channel informa-
tion greatly improves the classification accuracy. Adding
the broadband near-infrared channel accounts for half of the
difference in accuracy between RGB images and HSI data.
Adding three narrowband measurements to the RGB data of-
fers further improvement in accuracy, resulting in nearly 85%
of the samples being correctly identified. The three narrow-
band samples were selected using the previously mentioned
greedy selection algorithm to solve (3) after setting the first
three rows of the weighting matrix to match the red, green,
and blue spectral response curves of the e2v EV76C560
camera sensor. Interestingly, the solution favored measure-
ments from within the visible spectrum with the narrowband



Table 1. Confusion matrix for 6 optical filters using SVM
Class V M C P S F R Accuracy (%)

Vegetation 181 12 3 2 2 0 0 90.5
Metal 0 104 1 16 0 0 5 82.5
Concrete 0 4 32 11 0 0 0 68.0
Pathway 0 13 0 178 0 0 9 89.0
Skin 0 5 0 5 12 0 0 54.5
Fabric 0 0 0 0 0 21 0 100
Rubber 0 5 0 1 0 0 27 81.8
Accuracy (%) 100 72.7 88.9 83.6 85.7 100 65.8 86.4

Table 2. Confusion matrix for HSI using SVM
Class V M C P S F R Accuracy (%)

Vegetation 183 16 1 0 0 0 0 91.5
Metal 0 109 0 15 0 2 0 86.5
Concrete 0 3 31 13 0 0 0 66.0
Pathway 0 13 0 179 0 0 8 89.5
Skin 0 3 0 0 19 0 0 86.4
Fabric 0 0 0 0 0 21 0 100
Rubber 0 4 0 1 0 0 28 84.8
Accuracy (%) 100 73.6 96.9 86.1 100 91.3 77.8 87.7

samples located at 416nm, 466nm, and 641nm.
As seen in Figure 2, selecting 6 narrowband samples to

classify the scene is as accurate as using RGB and 3 narrow-
band filters and is within three percentage points of the HSI
benchmark. Unlike the RGB and 3 narrowband filters, the
distribution of measurements spans the entire spectrum and
is not concentrated within the visible range. The narrowband
samples are centered at 405nm, 419.5nm, 690nm, 767.5nm,
825nm, and 919.5nm.

The highest classification accuracy came from imaging
with 6 optical filters. The optical filter specifications were in-
spired by actual filters commonly available through commer-
cial retailers. We included 4 filter types (shortpass, longpass,
bandpass and band reject) with cut-off/cut-on/center wave-
lengths set every 25nm. The bandpass and band reject filters
had variable bandwidths of 25nm, 50nm, and 75nm at each
center wavelength.

Despite the plethora of choices available, the selected fil-
ters (chosen using a greedy approach) were all bandpass fil-
ters and 5 of the 6 had a bandwidth of 25nm. The distribu-
tion of the filters seems to follow the same general trend as
the six narrowband filters, with center wavelengths of 425nm,
450nm, 650nm, 725nm, 775nm, and 800nm. The filter cen-
tered at 650nm had a bandwidth of 50nm. With an overall
accuracy of 86.4% the six channels were 98.5% as accurate
at classification as HSI while using only 2% of the total num-
ber of measurements.

The confusion matrices shown in Table 1 and Table 2
show SVM classification performance using 6 optical filters
and HSI data respectively. The imaging modalities tend to
have similar strengths and weaknesses. The only significant
difference between the two is that HSI classification was able
to learn the sparsely represented skin class better than the 6
optical filters.
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Fig. 3. Spectral responses: The spectral response for the
various imaging modalities superimposed upon a representa-
tion of the spectrum sampled by the HSI. (a) shows the RGB
and NIR spectral responses, (b) shows RGB and three nar-
rowband filter locations (in white), (c) shows the location of
the six narrowband filters (in white), and (d) shows the loca-
tion and bandwidth of the six optical filters. The broadband
spectral curves have been normalized for clarity.

The distribution of spectral samples for the imaging
modalities are shown in Figure 3. The broadband red, green,
blue, and near-infrared channels have been normalized for
clarity. It is interesting to note that no measurements were
used between 500nm-600nm when solving (2). This suggests
that RGB classification is less likely to succeed since the
green channel provides little distinguishing information. In
fact, using just the red, blue, and near-infrared channels out-
performs the red, green, and blue channels in classification
accuracy (77.5% accuracy for RB+NIR vs 71% for RGB).

4. DISCUSSION AND FUTURE WORK

In this paper we showed that there is potential to greatly im-
prove the accuracy of material classification in natural scenes
by sampling only a few spectral channels. Specifically, using
6 bandpass filters may be sufficient to obtain classification ac-
curacy comparable to that of a hyperspectral imager but with-
out the need to capture hundreds of spectral measurements.
A fruitful course for future research is two-fold. First a com-
prehensive analysis is of narrowband HSI of natural scenes
is to determine the large-scale applicability of taking only a
few measurements for material classification. The second is
to build and test a prototype imaging system which operates
in the modalities described in this paper.
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