
SocialSync: Sub-Frame Synchronization in a
Smartphone Camera Network

Richard Latimer, Jason Holloway, Ashok Veeraraghavan, Ashutosh Sabharwal

Rice University, Houston, TX

Abstract. SocialSync is a sub-frame synchronization protocol for cap-
turing images simultaneously using a smartphone camera network. By
synchronizing image captures to within a frame period, multiple smart-
phone cameras, which are often in use in social settings, can be used for
a variety of applications including light field capture, depth estimation,
and free viewpoint television. Currently, smartphone camera networks
are limited to capturing static scenes due to motion artifacts caused by
frame misalignment. To overcome this synchronization challenge, we first
characterize frame capture on Android devices by analyzing the statistics
of camera setup latency and frame delivery to the software application.
Next, we develop the SocialSync protocol to achieve sub-frame synchro-
nization between devices by estimating frame capture timestamps mil-
lisecond accuracy. Finally, we demonstrate the effectiveness of SocialSync
on mobile devices by reducing motion-induced artifacts when recovering
the light field.

Keywords: multiple viewpoints, camera array, camera network, syn-
chronization, smartphone, mobile device

1 Introduction

Smartphones, and by extension smartphone cameras, are taking over the world;
annual smartphone sales have been predicted to approach 1 billion units in 2014
[9]. This precipitous rise of readily available cameras has drastically increased
the number of pictures that are taken each day, while the advent of social me-
dia and image sharing websites (e.g., Facebook, Flickr, and Picasa) allows for
easier image dissemination than ever before. Previously, images were captured
for archival value–vacations, weddings, graduations, and other life events. The
omnipresence of cameras and internet access has transformed the role of images
in everyday life. Now, many images are taken of commonplace events for the
primary purpose of sharing with friends and family.

Images are inherently social – Facebook sees an average of 350 million im-
ages uploaded to its servers daily [7]. However, capturing images has traditionally
been an independent activity. While people collectively view, share, and com-
ment on images, photographers are islands; each taking pictures independently
and ignoring the resources of other nearby smartphone cameras. The goal of this



2 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

(a) Present day: Individual imag-
ing for social sharing

Dynamic
Scene

Potential
SocialSync User

(b) Future: Illustration of So-
cialSync for social imaging

Fig. 1. (a) While the flood of mobile devices has become ubiquitous during major
historical events, as seen during the election of Pope Francis, each user effectively op-
erates independently. Image credit: Michael Sohn Associated Press; (b) Synchronizing
the image capture times across mobile phones, a group of people working together will
be able to capture rich information of an event, even with dynamic motion present in
the scene

paper is to synchronize image captures using mobile devices during social image
acquisition, whereby users can collaboratively capture images which, when taken
together, are of greater value than the collection of individual photographs.

1.1 Why Social Imaging?

Whenever people congregate, such as at sporting events, political rallies, or pub-
lic celebrations, it is common to see many smartphones hoisted aloft capturing
images to share online. Fig. 1(a) shows St. Peter’s square in the Vatican as the
election of Pope Francis was announced. Mobile devices are ubiquitous through-
out the square, as people take pictures and video. The sheer number of cameras
at such events presents an opportunity to recover rich data about the scene, far
exceeding what is available with a single camera. Applications include captur-
ing light fields for post-capture processing, free viewpoint video, and computing
depth maps for scene reconstruction and modeling.

1.2 Problem Definition

Efforts such as Photo Tourism from Snavely et al. [20] (later commercialized by
Microsoft into PhotoSynth1) and its extension by Agarwal et al. [1] use images
taken from many cameras to reconstruct a 3D model of a target. A reasonable
facsimile of public objects and scenes can be rendered by scouring image aggre-
gation and sharing sites, such as Flickr, and by using geometric constraints pro-
vided from the disparate viewpoints. Users can zoom into an object, fly around
buildings, and remotely tour faraway locales. The limitation is that the scene
must be static, since the images have been taken at different times. Such an
approach works well with buildings, natural monuments, and landscapes, but
not so well for fast moving scenes, such as sports venues or concerts. Capturing

1 www.photosynth.net



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 3

a dynamic scene requires that cameras be synchronized to an accuracy that is a
fraction of the duration of a frame.

Synchronizing consumer cameras is a challenging task, even more so for
smartphone cameras. Mobile phones do not accept external hardware trigger
signals and software triggers do not offer tight enough bounds to capture images
simultaneously. In order for picture taking to become a communal experience,
as illustrated in Fig. 1(b), a protocol for synchronizing smartphone cameras is
of paramount importance. We demonstrate one such protocol and highlight the
necessity for highly accurate synchronization of mobile devices both for indoor
and outdoor dynamic scenes.

1.3 Contributions

To demonstrate and address the temporal challenges, which appear when using
mobile devices for social imaging acquisition, we use an HTC One (M7) and
Nexus 5 to:

1. Characterize the variables associated with relative latency causing temporal
differences between frames captured from different mobile devices.

2. Develop SocialSync, a sub-frame synchronization protocol that determines
the timestamp of a frame captured with millisecond accuracy.

3. Evaluate our ability to reduce motion artifacts using SocialSync when recov-
ering the light field from a smartphone camera network.

2 Background

2.1 Related Work

Multiple camera image capture: Many imaging tasks can be performed eas-
ily using multiple cameras, whether the cameras are arranged in a calibrated
array or arranged randomly. For example, camera arrays can be used to cap-
ture the light field of a scene [25, 26, 23, 10], record high speed video [24, 18, 19],
and improve image resolution [19], while distributed cameras have been used to
construct virtual cities from online photo repositories [20, 1] and synthesize 3
dimensional models of buildings [6]. State-of-the-art snapshot light-field acqui-
sition methods which may be used in smartphones require specialized hardware
[14, 23, 10]. Furthermore, mask-based systems [14] reduce light throughput while
camera arrays such as the PiCam [23] require hardware synchronization to en-
sure each element of the array captures images simultaneously. Fig. 2 highlights
the need for synchronization in dynamic scenes. A planar resolution chart trans-
lates to the right in front of unsynchronized and synchronized cameras (Fig. 2(b)
and Fig. 2(c) respectively). Aligning images using homographies shows that the
unsynchronized images have motion artifacts of approximately 10 pixels while
the synchronized cameras have error less than 1 pixel.

Using multiple cameras to capture a scene enables many benefits over single
viewpoint imaging. Applications include:



4 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

(a) Reference image (b) Unsynchronized phones (c) Synchronized phones

Fig. 2. Motion artifacts manifest when aligning unsynchronized frame sequences. (a)
A grayscale image of a planar resolution chart moving to the right taken from Fig. 3.
Grayscale images from three (b) unsynchronized and (c) synchronized cameras are
warped using homographies to the true depth of the moving resolution chart. The
aligned images are shown as an RGB image where misaligned edges present as color
artifacts. Notice that without synchronization (b) the bars in the resolution chart are
misaligned by 10 pixels while the synchronized images have errors of at most 1 pixel.

Light field: Light field cameras, such as Lytro [8] and Raytrix2, can be used
for digital refocusing, but sacrifice spatial resolution. Compared to single camera
techniques, various works have demonstrated light field recovery using camera
arrays [26, 5].
Free Viewpoint Television: Free-viewpoint television uses multiple cameras
for viewing a 3D scene by changing viewpoints [21]. In addition, an array of
smartphones could be used for a variety of special effects such as bullet time [25].
3D and Depth: Camera arrays are also useful when recovering 3D and depth
from a scene [22, 17].

2.2 Android Camera Library

The android camera library provides access to camera functions, such as locking
exposure, focus, zoom, and capturing images or video on demand. By abstracting
the camera utilities for the developer, the camera library hides the details of
binding to the Android camera service and operating the sensor hardware. An
application activates the camera by calling startPreview() to begin streaming a
sequence of image frames. A developer can specify a callback function to trigger
when a preview frame is available, either for processing or for saving to disk.
Both the Nexus 5 and HTC One support a variety of preview sizes. In our setup
we set both devices to capture 1920×1080 pixel images.

2.3 Time Synchronization Protocols

Clock synchronization is an important and well-studied sensor network problem.
Our solution uses the Network Time Protocol (NTP) [15, 16] to perform clock
synchronization among devices. The maximum clock synchronization error is
bounded by the round-trip time of the network. Because our WiFi access point
is capable of round-trip times (RTTs) of less than 2 ms to our time server, NTP
permits clocks synchronization to be within 1 ms. Fig. 3 shows the necessity of
proper synchronization when estimating depth from independent smartphone
cameras. Notice that the depth map for the unsynchronized cameras contains

2 http://www.raytrix.de/



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 5

Reference View Unsynchronized Depth Map SocialSync Depth Map
R
eg

is
te
re
d

U
n
sy
n
ch

ro
n
iz
ed

R
eg

is
te
re
d

S
o
ci
a
lS
y
n
c

Fig. 3. Computing depth maps to register 4 cameras to a reference view. Depth esti-
mation with unsynchronized images (top center) is challenging as the images are never
truly aligned (see Fig. 2(b)). Depth estimation is more accurate when using our So-
cialSync protocol (top right). Outset show the average of the 4 registered images using
timestamps to synchronize (middle row) and SocialSync (bottom row)

errors for the dynamic scene elements while the SocialSync cameras give an
accurate depth map.

2.4 Latency

A camera network’s response to a request for an image capture is limited by two
sources of latency:
Network Latency: Events sent between devices incur an end-to-end network
latency. Our measurements demonstrated two devices sharing the same WiFi
access point had a mean round trip latency of around 3 ms as well as an outlier
RTT of 75 ms.
Camera I/O Latency: There is a non-deterministic latency from the time
the software issues a command to take a picture and the time the hardware
captures a frame due to the variables in mobile OS resource management. In
our measurements, we found that the average camera I/O latency is specific to
particular device models.

3 Camera Characterization

We reduce the problem of synchronizing frame capture to that of the I/O camera
latency associated with triggering frame capture and delivery. This is achieved
by using network clock synchronization and requiring that requests for frame
capture reach each mobile device before the capture event.



6 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

3.1 Camera Timestamps

To characterize the latency through the system, we define the following:

– Frame Capture TC(i): The time image exposure ends for the ith frame.
– Frame Delivery TD(i): The time the application receives the ith frame.
– Camera Setup Latency TC(0): The setup time to capture the 0th frame.
– Frame Rate (TC(i)−TC(i-1))−1: The rate of capturing consecutive frames.
– Frame Delay TD(i)− TC(i): System delay when delivering the ith frame.

We use the mobile system timestamp on the preview callback to obtain TD(i),
since preview frames in Android do not contain EXIF millisecond meta data
timestamps. As the capture timestamp is not accessible through the mobile
operating system, we build a characterization setup to measure TC(i).

3.2 Camera Characterization Setup

We capture the frame latency with an experimental setup. This allows us to
recover the frame capture timestamps precisely. For further details regarding our
smartphone app implementation and rolling shutter measurements, we direct the
interested reader to our supplementary material [12].

Characterization Smartphone App: The camera object runs on a dedicated
background thread to prevent resource conflicts with the foreground activity.
Auto exposure and white balance are locked, putting the camera system in a
mode that enables rapid capture. To streamline memory allocation, the applica-
tion pre-allocates preview frames into a circular buffer queue. The focus of each
camera is fixed at infinity.

Image Timestamp from Visible Clock: To obtain a timestamp of a frame
capture TC(i), we use a camera scene that includes a visible clock. For accuracy,
we built an 8×8 array of LEDs, sequentially triggered at precise time intervals by
a Raspberry Pi (RPi). The RPi sequentially lights each column of LEDs on the
array for 1 ms. When the camera takes an image of the LED clock, the position of
the illuminated LEDs on the image serve as a timestamp for the image. Because
rows of pixels are read out at different times due to the rolling shutter, TC(i)
indicates the time when reading the 1st row from the image sensor. Further
details regarding our measurement setup for calculating rolling shutter speed
and TC(i) are described in [12].

Timing Precision of the Visible Clock: The RPi acts as a global refer-
ence clock. It is synchronized via a wired GPS clock to minimize clock drift.
loopstats in the NTP protocol reports the resulting clock jitter of the RPi as 5
µs. The pre-synchronization clock drifts for the smartphones were small enough
for characterization purposes, drifting less than 60 µs after 1 second of elapsed
time. The smartphones wirelessly synchronizes their clocks with the RPi, repeat-
ing synchronization attempts until the RTT is less than 2 ms and clock error is
less than 1 ms.



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 7

270 280 290 300
0

2

4

6

8

Time (ms)

F
re
q
u
en

cy

TC(0) initialization time

0 200 400 600 800 1000
0

200

400

600

800

1000

TC (ms)

T
D

(m
s)

TD vs. TC

Nexus 5
HTC One

Fig. 4. (Left) Camera Setup: Android phones require an activated preview image se-
quence prior to capturing a photo. Therefore, frame synchronization between devices
is based on the offset between setting up the camera and capture the first frame TC(0).
We show that for Nexus 5 camera, simultaneous launches of the camera have a setup
time with a mean of µ = 283 ms and a standard deviation of σ = 9.4 ms; (Right) The
delivery time TD of a frame to an application is highly correlated with its capture time
TC . This relationship is the basis for estimating TC(0)

3.3 Characterization Measurements

We characterize the camera setup latency, frame rate, and delay when delivering
preview frames for a Nexus 5 and HTC One.

Camera Setup Latency TC(0): On Android, before capturing an image, the
camera must first be activated by starting the preview image sequence. The
variability in setting up the camera service, sensor, and then launch the preview
sequence limits the ability to synchronize frames. By measuring the latency from
launching the preview sequence to the capture of the first frame TC(0), we see
launching the camera preview sequence at the same time is insufficient to achieve
accurate synchronization because of the randomness in the latency. The camera
setup time for a Nexus 5 has a sample mean of µ = 283.3 ms and may deviate
with a standard deviation of σ = 9.4 ms. The distribution shown in Fig. 4 (left)
is representative of the variability in setting up image capture on a mobile de-
vice.3

Frame Rate (TC(i) − TC(i-1))−1: Although the capture time of a frame is
stochastic, the time between frames is deterministic. By knowing the time in-
terval between image capture timestamps, all frame capture timestamps can be
determined as long as one timestamp is known. The difference between subse-
quent capture timestamps is inversely proportional to the frame rate of the image
sequence. Because Android devices provide various ranges for setting frame rates,
in our setup we locked the frame rate to a valid range supported by the Android

3 TC(0) will vary between devices.



8 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

devices and then measured the frame rate using our LED clock. Upon locking
the auto exposure, the frame rate became constant at f = 29.8497± 0.0001 fps
for a Nexus 5 and f = 24.1513± 0.0002 fps for an HTC One.

Frame Delay TD(i) − TC(i): For a fixed frame rate image sequence, TC(i) is
highly correlated with TD(i), the time for delivering a frame to the application
as shown in Fig. 4(b). By measuring latency between capturing a frame and de-
livering a frame, we will be able to build a model for estimating TC(i). The frame
delay can be represented as a stationary stochastic variable with a normal dis-
tribution NF whose mean µF = 36.83 ms and standard deviation σF = 4.68 ms
for an HTC One and µF = 66.67 ms and σF = 4.48 ms for a Nexus 5.4 The large
difference between the two data sets is because the Nexus 5 passes two frames
before delivering the captured frame, while the HTC One delivers the captured
frame after only one frame has passed.

4 SocialSync Protocol

SocialSync achieves highly accurate synchronization across a diverse range of
Android devices in a network by (1) estimating capture timestamps based on
the delivery timestamps of previously delivered frames and (2) using repeated at-
tempts at launching the preview image sequence until a set of frames is obtained
for which the computed timestamps align (frames are in sync).5

4.1 Capture Timestamp Estimation

In single camera tasks, frames recorded by the camera are sequential and evenly
spaced, specified by the frame rate. In multi-camera tasks, knowing the exact
capture timestamp is required to align frames from different cameras, as the
relative position of a frame from one camera is unknown with respect to the
frame from a second camera. If the camera frame rates are known, then the
calibration task is simplified by providing a common time origin and measuring
the offset to each camera’s first frame. Therefore, the precision in estimating the
capture timestamp of a frame is based strictly on the estimation of TC(0), the
setup capture timestamp.

For a fixed frame rate f , the time the ith frame is captured is related to the
camera setup latency TC(0) according to

TC(i) = TC(0) + (1/f) ∗ i. (1)

Let TN be a random variable representing the frame delay following the
normal distribution NF . TC(i) = TD(i)− TN (i), where TD(i) provides a sample
for estimating TC(0). Therefore, TC(0) can be expressed as Gaussian random
variable such that

TC(0) ≈ TD(i)− 1/f ∗ i− TN (i), (2)

which has distribution of NF .

4 Assumption of normal distribution is valid because σF � µF .
5 In the protocol, we assume a global reference clock, such as one obtained using NTP.



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 9

Camera setup latency TC(0) is estimated by taking multiple measurements
of TD(i), determining the distribution of the frame delay, and calculating the
average. The timestamp of TC(0) is the center of the Gaussian frame delay dis-
tribution. A standard error calculation of TC(0) provides a method for estimating
the sample mean within a desired confidence interval. Therefore, to obtain a 95%
confidence interval of less than δms with the number of samples frames n is

σF√
n
∗ 1.96 ≤ δ. (3)

Therefore, an estimate of TC(0) at a 95% confidence interval, and all sub-
sequent capture timestamps, to within 2 ms requires the delivery of at least 22
preview frames and to within 1 ms requires the delivery of at least 85 frames for
both an HTC One and Nexus 5.

4.2 Frame Synchronization Upper Bound

Camera I/O latency ∆TC(i) is the delay between a request for a frame capture
and the execution of the event at TC(i). Because each frame’s capture timestamp
can be estimated precisely using the results of Sec. 4.1, a mobile app can deliver
the most recently captured frame TC(i) for each request. Because a periodic
sequence of images has a fixed frame rate f , a captured frame TC(i) closest to
the time of an arbitrary request will result in ∆TC(i) being uniformly distributed
between 0 and τ = 1/f seconds. Therefore, the upper bound synchronization
error between frames from multiple devices is the frame sequence with the longest
interval τ , i.e. the inverse of the lowest frame rate.

4.3 Obtaining Sub-Frame Synchronization

By estimating capture timestamps, the SocialSync protocol achieves sub-frame
image capture through launching the smartphone preview image sequence stream
repeatedly until frame sequences are aligned6. Under the hood, synchronization
is achieved by estimating capture timestamps to successfully predict the image
sequence frame setup time, thereby capturing a frame at a desired request time
within a specified tolerance.

Suppose a user requires that the camera I/O latency ∆TC(i) for frame cap-
ture is within the range (0, t), where t ≤ τ . The probability the phone will fail
(pf ) to capture a frame at a time within the range (0, t) is pf = 1− t/τ .

Repeated attempts at starting the image sequence would improve the odds of
starting within the desired synchronization range. Using our capture timestamp
estimation technique described in Sec. 4.1, we can determine whether an image
sequence is in the desired synchronization range. This knowledge completes the
second half of the SocialSync sub-frame synchronization protocol, based on the
following equations:
Single Camera Sync Probability: The probability that a single phone will
start the continuous image sequence in the range (0, t) after k attempts is Pk =
1− (pf )k.

6 With a large number of smartphones a subset of synchronized cameras could be used
without the need to restart the preview streams



10 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

NaiveSync SocialSync

4 Cameras 23ms 5ms
8 Cameras 35ms 6ms

Maximum difference in capture times for
synchronized smartphone cameras

Fig. 5. Camera array setup used for evaluation. (Left) Up to 9 cameras are placed in
an rigid array to minimize errors not associated with scene motion. (Right) Camera
synchronization timings measured in evaluation for NaiveSync (i.e. timestamp compar-
ison) and SocialSync. SocialSync offers tighter synchronization than NaiveSync

Multiple Cameras Sync Probability: The probability that n phones will
start the continuous image sequence in the range (0, t) after k attempts is (Pk)n.
Expected Number of Sync Cameras: The expected number of phones to
start the continuous image sequence in the range (0, t) after k attempts of n
phones is nPk.

5 Evaluation

To demonstrate the advantages of the SocialSync sub-frame synchronization
protocol, we capture images of dynamic scenes and demonstrate improvements
in recovering the light field by reducing motion artifacts. To reduce errors not
associated with synchronization misalignment, we constrain our evaluation to
a structured camera array consisting of Nexus 5 devices shown in Fig. 5. The
cameras are calibrated using the Caltech calibration toolbox [2] and further
refined using bundle adjustment [13].

5.1 Recovering the Light Field

We use the SocialSync protocol to synchronize cameras within 6 milliseconds
(shown in Fig. 5). We compare our results against a naive frame synchroniza-
tion implementation (called NaiveSync), which only saves the frame with the
closest delivery timestamp. We collect indoor and outdoor datasets using 8- and
4-camera arrays respectively. Depth maps recovered from the disparate views
allow for post-capture refocusing. Point correspondences are computed using a
plane sweep algorithm and a window-based normalized cross correlation cost
function. We use the graph cuts implementation of [3, 4, 11] to impose a smooth-
ness penalty between neighboring pixels and recover our depth estimates.

Indoor scene with an 8-Camera Array: In the scene shown in Fig. 6, dy-
namic scene elements (the angular motion of the drinking bird and translation
motion of the truck) require image synchronization to compute accurate depth
maps. Using NaiveSync, which saves the frames with the closest delivery time-
stamps, results in synchronization of 35 ms while our SocialSync protocol reduces



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 11

Reference View Depth Map

(a) NaiveSync

Reference View Depth Map

(b) SocialSync

Fig. 6. Eight cameras capture a dynamic indoor scene. A drinking bird provides angular
motion while a toy truck translates across the scene. (a) Depth estimates of scene using
the NaiveSync protocol exhibit artifacts for dynamic scene elements. (b) SocialSync
achieves accurate depth map recovery including dynamic regions such as the truck
window and drinking bird

(a) All in focus (b) Far Focus (c) Mid Focus (d) Near Focus

Fig. 7. Post-capture refocusing using the accurate depth map of Fig. 6(b) captured
using SocialSync. (a) The captured image is refocused in the (b) far, (c) middle, and
(d) near ground of the scene post-capture. Please view digitally to see details

the error to 6 ms. The two data sets are captured independently. Note that the
depth map recovered when using SocialSync, Fig. 6(b), is free of the artifacts
present when using NaiveSync, Fig. 6(a). In particular, dynamic scene elements
such as the drinking bird and the truck’s wheels and window remain blurred
when using NaiveSync.

The accurate depth map provided by using SocialSync in Fig. 6(b) allows
users greater artistic license when viewing captured images. Fig. 7 shows the
indoor scene refocused post-capture on the near, middle, and far planes.

Outdoor scene with a 4-Camera Array: Figure 8 shows a scene taken out-
doors of two people throwing a toy bird. Seven cameras captured the scene with
one chosen as a reference camera. Four cameras were synchronized using Social-
Sync (including the reference) while the remaining three are unsynchronized with
respect to each other and the reference. The four SocialSync cameras are syn-
chronized to within 5 ms while the four NaiveSync cameras have a 23 ms spread.
Note that the depth map recovered from the SocialSync cameras (Fig. 8(c)) ac-
curately captures the depth of the scene while the depth computed using the



12 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

(a) Reference (b) Depth
from NaiveSync

(c) Depth
from SocialSync

(d) Refocus
with NaiveSync

(e) Refocus
with SocialSync

Fig. 8. SocialSync provides advantages in dynamic outdoor scenes. Seven phones are
divided into two groups of 4 phones with one overlapping phone. One group uses our
SocialSync protocol and the other group uses with NaiveSync. (a) Reference view of
two people tossing a stuffed toy. (b) The depth recovered using NaiveSync has motion
artifacts not present when (c) computing the depth using SocialSync. (d) Proper post-
capture refocusing cannot be achieved with NaiveSync. Notice that the thrower’s face
and shorts are incorrectly blurred when focusing on the thrower’s body. (e) SocialSync
allows for accurate blurring for the thrower’s entire body

NaiveSync cameras (Fig. 8(b)) has many artifacts. Fig. 8(d) highlights the in-
ability to refocus on the thrower properly when using the NaiveSync depth map,
while refocusing using SocialSync (Fig. 8(e)) has no such limitation.

6 Conclusions

Our work highlights and addresses the sub-frame synchronization challenge when
using smartphones for multi-viewpoint light field recovery. Without sub-frame
synchronization between mobile devices, light field acquisition is limited to static
scenes due to motion artifacts caused by frame misalignment. As the first step to-
wards multi-viewpoint image capture of dynamic scenes using smartphone cam-
era networks, we characterized the camera setup, frame rate, and frame delay on
an HTC One and Nexus 5. Next, we introduced SocialSync, a sub-frame synchro-
nization protocol, based on an estimation of frame capture timestamps. Finally,
we evaluated the benefit of using SocialSync by comparing it to the best existing
smartphone camera synchronization method and demonstrating improvements
in depth map estimation and digital refocusing.

As a limitation, sub-frame synchronization of smartphone cameras is only
effective for capturing a single snapshot or a few frames, due to variability in
frame rates caused by clock drift and manufacturing quality limits. Furthermore,
due to the stochastic nature of synchronization, increasing the number of devices
requires more synchronization attempts. Therefore, as future work to address
scalability issues with large social events, we would explore methods for grouping
subsets of smartphones, which would be naturally synchronized within the group.
Acknowledgments: We would like to thank the LF4CV reviewers and Robert
LiKamWa for useful discussions regarding this work. The authors were partially
supported NSF Grants CNS 1012921, CNS 1161596, IIS 1116718, and CCF
1117939.



SocialSync: Sub-Frame Synchronization in a Smartphone Camera Network 13

References

1. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski,
R.: Building rome in a day. Communications of the ACM 54(10), 105–112 (2011)

2. Bouguet, J.Y.: Camera calibration toolbox for matlab. (2008)
3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on 26(9), 1124–1137 (2004)

4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on
23(11), 1222–1239 (2001)

5. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lu-
migraph rendering. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. pp. 425–432. ACM (2001)

6. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In: Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques. pp.
11–20. ACM (1996)

7. Facebook, Ericsson, Qualcomm: A focus on efficiency. Tech. rep. (September 2013),
internet.org, white paper

8. Georgiev, T., Yu, Z., Lumsdaine, A., Goma, S.: Lytro camera technology: theory,
algorithms, performance analysis. In: IS&T/SPIE Electronic Imaging. pp. 86671J–
86671J. International Society for Optics and Photonics (2013)

9. Gupta, A., Cozza, R., Lu, C.: Market share analysis: Mobile phones, worldwide,
4q13 and 2013. Tech. rep., Gartner, Inc (February 2014), white paper

10. Heptagon Advanced Micro Optics. http://www.hptg.com/products/imaging
(2014), [Online; accessed 31-March-2014]

11. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on 26(2),
147–159 (2004)

12. Latimer, R., Holloway, J., Veeraraghavan, A., Sabharwal, A.: Supplementary ma-
terial for SocialSync: Sub-frame synchronization in a smartphone camera network
(2014), Computer Vision–ECCV 2014. LF4CV submission. Supplied as additional
material.

13. Lourakis, M.A., Argyros, A.: SBA: A software package for generic sparse bundle
adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)

14. Marwah, K., Wetzstein, G., Bando, Y., Raskar, R.: Compressive light field pho-
tography using overcomplete dictionaries and optimized projections. ACM Trans-
actions on Graphics (TOG) 32(4), 46 (2013)

15. Mills, D.L.: Network time protocol (ntp). Network (1985)
16. Mills, D.L.: Computer Time Synchronization: The Network Time Protocol on

Earth and in Space, Second Edition. CRC Press (2010)
17. Naemura, T., Tago, J., Harashima, H.: Real-time video-based modeling and render-

ing of 3d scenes. Computer Graphics and Applications, IEEE 22(2), 66–73 (2002)
18. Nayar, S., Ben-Ezra, M.: Motion-based motion deblurring. Pattern Analysis and

Machine Intelligence, IEEE Transactions on 26(6), 689–698 (2004)
19. Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. Pattern Analysis

and Machine Intelligence, IEEE Transactions on 27(4), 531–545 (2005)
20. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in

3d. In: SIGGRAPH Conference Proceedings. pp. 835–846. ACM Press, New York,
NY, USA (2006)



14 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

21. Tanimoto, M.: Overview of free viewpoint television. Signal Processing: Image
Communication 21(6), 454–461 (2006)

22. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses. Robotics and Automa-
tion, IEEE Journal of 3(4), 323–344 (1987)

23. Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee,
P., Mullis, R., Nayar, S.: Picam: an ultra-thin high performance monolithic camera
array. ACM Transactions on Graphics (TOG) 32(6), 166 (2013)

24. Wilburn, B., Joshi, N., Vaish, V., Levoy, M., Horowitz, M.: High-speed videography
using a dense camera array. In: Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2,
pp. II–294. IEEE (2004)

25. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams,
A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays.
ACM Transactions on Graphics (TOG) 24(3), 765–776 (2005)

26. Zhang, C., Chen, T.: A self-reconfigurable camera array. In: ACM SIGGRAPH
2004 Sketches. p. 151. ACM (2004)


