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Abstract

A variety of techniques such as light field, structured il-
lumination, and time-of-flight (TOF) are commonly used for
depth acquisition in consumer imaging, robotics and many
other applications. Unfortunately, each technique suffers
from its individual limitations preventing robust depth sens-
ing. In this paper, we explore the strengths and weaknesses
of combining light field and time-of-flight imaging, particu-
larly the feasibility of an on-chip implementation as a single
hybrid depth sensor. We refer to this combination as depth
field imaging. Depth fields combine light field advantages
such as synthetic aperture refocusing with TOF imaging ad-
vantages such as high depth resolution and coded signal
processing to resolve multipath interference. We show ap-
plications including synthesizing virtual apertures for TOF
imaging, improved depth mapping through partial and scat-
tering occluders, and single frequency TOF phase unwrap-
ping. Utilizing space, angle, and temporal coding, depth
fields can improve depth sensing in the wild and generate
new insights into the dimensions of light’s plenoptic func-
tion.

1. Introduction
The introduction of depth sensing to capture 3D infor-

mation has led to its ubiquitous use in imaging and camera
systems, and has been a major focus of research in com-
puter vision and graphics. Depth values enable easier scene
understanding and modeling which in turn can realize new
computer vision systems and human-computer interaction.
Many methods have been proposed to capture depth infor-
mation such as stereo, photometric stereo, structured illu-
mination, light field, RGB-D, and TOF imaging.

However depth cameras typically support only one depth
sensing technology at a time which limits their robustness
and flexibility. Each imaging modality has its own advan-

Feature	   Stereo	   Photometric	  
Stereo	  

Structured	  
Illumina3on	   Light	  Field	   Time-‐of-‐

Flight	  

Depth	  
Fields	  

(proposed)	  

On-‐chip	  pixel	  
implementa3on	   No	   No	   No	   Yes	   Yes	   Yes	  

Illumina3on	  source	   Passive	   Ac3ve	   Ac3ve	   Passive	   Ac3ve	   Ac3ve	  

High	  resolu3on	  
depth	  maps	   No	   Yes	   Yes	   No	   Yes	   Yes	  

Texture	  needed	  for	  
depth	   Yes	   No	   No	   Yes	   No	   No	  

Ambiguity	  in	  depth	  
measurement	   No	   Yes	   No	   No	   Yes	   No	  

Table 1. Table that summarizes the relative advantages and disad-
vantages of different depth sensing modalities including the pro-
posed depth fields.

tages and disadvantages for attributes such as on-chip im-
plementation, cost, depth resolution, etc that are summa-
rized in Table 1. We argue that hybrid 3D imaging sys-
tems which utilize two or more depth sensing techniques
can overcome these individual limitations. Furthermore,
a system that combines modalities with an on-chip imple-
mentation would be cost effective and mass producible, al-
lowing ubiquitous robust depth sensing.

We propose combining light field and TOF imaging into
a hybrid 3D imaging system. This system inherits light
field advantages such as post-capture digital refocusing with
TOF advantages of high resolution depth information and
the mitigated multipath interference using coded signals.
Further, light field and TOF imaging both have been im-
plemented on-chip [10, 28], and we can design hybrid pixel
structures to combine both modalities on-chip as well. Each
modality has its relative disadvantages: depth from light
fields require textured surfaces and is dependent on object
distance for disparity, and single frequency TOF imaging
suffers from phase wrapping and is limited to small aper-
ture cameras with low shutter speeds. However, we show
that combining light field and TOF imaging can alleviate all
of these limitations.
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We call this extension of spatio-angular information cap-
tured traditionally by light fields to TOF depth maps as
depth field imaging. Our main contributions include:

• Formulation of depth field imaging as an extension of
the light field framework for TOF imaging

• Methods to capture depth fields using camera arrays
and single-shot camera systems.

We show that capturing depth fields leads to many new ap-
plications that improve robust depth sensing in the wild in-
cluding:

• Digital refocusing of depth images and extended depth
of field.

• Phase unwrapping for single frequency TOF imaging.

• Depth imaging through partial occluders.

• Depth imaging and refocusing past scattering media.

A larger vision for introducing depth fields is to have a
layer of post-capture control for depth sensing which can
combine synergistically with higher level algorithms such
as structure from motion (SfM) [5], Simultaneous Localiza-
tion and Mapping (SLAM) [35], and reconstructions from
collections of online images [32] used for 3D reconstruction
and scene modeling/understanding.

2. Related Work
We survey related work in light field, TOF, and fusion

algorithms for depth imaging to show the context of depth
sensing technologies that depth field imaging relates to.

Light Field Imaging captures 4D representations of the
plenoptic function parametrized by two spatial coordinates
and two angular coordinates, or equivalently as the space
of non-occluded rays in a scene [11, 27]. Light fields are
used for image-based rendering and modeling, synthesizing
new viewpoints from a scene, and estimating depth from
epipolar geometry. In the context of cameras, light fields
have been captured by using mechanical gantries [26] or
large dense camera arrays [40], or by single-shot methods
including microlenses [1, 28], coded apertures [25], trans-
mission masks [38], or diffraction gratings [15]. Light fields
can extend the depth of field and use digital refocusing to
synthesize different apertures in post-processing [28], thus
enabling a level of software control after the photograph has
been taken. We will exploit this control in depth field imag-
ing.

Time-of-Flight Imaging works by encoding optical path
length traveled by amplitude modulated light which is re-
covered by various devices including photogates and pho-
tonic mixer devices [2, 10, 23, 30]. While yielding high

resolution depth maps, single frequency TOF suffers from
limitations including phase wrapping ambiguity and multi-
path interference caused by translucent objects and scatter-
ing media. Proposed techniques to overcome these limita-
tions include phase unwrapping with multifrequency meth-
ods [29], global/direct illumination separation [19, 41], de-
blurring and superresolution [42], and mitigating multipath
interference with post-processing algorithms [3, 4]. Re-
cently, new temporal coding patterns for these sensors help
resolve multiple optical paths to enable seeing light in flight
and looking through turbid media [12, 13, 21]. Similar to
this paper, camera systems have been proposed to fuse to-
gether TOF + stereo [44], TOF + photometric stereo [36],
and TOF + polarization [20].

Fusion of depth maps and intensity images has been
used to enable 3D reconstruction by explicit feature detec-
tion [14, 16]. Real-time interaction for camera tracking and
3D reconstruction have been demonstrated via KinectFu-
sion [17]. While conceptually similar to depth fields by ac-
quiring per-pixel values of depth and intensity, these fusion
methods do not systematically control the spatio-angular
sampling or transcend the traditional capture tradeoffs be-
tween aperture and depth of field for depth imaging. In
this way, we hope that depth field algorithms can serve
as the foundation upon which fusion algorithms can im-
prove their reconstruction quality, leading vertical integra-
tion from camera control all the way to high level scene
modeling and understanding.

3. Depth Fields

In this section, we combine the mathematical formula-
tions of light field and TOF imaging into the concept of a
depth field. We show both how to capture these fields and
how to invert the forward model to recover light albedo, de-
fined as the reflectance value of an object with respect to
the active illumination, and depth as a function of 2D spa-
tial coordinates and 2D angular coordinates. This approach
is similar to Kim et al. [22] who capture depth maps for
different perspective views, but they do not use TOF imag-
ing or show applications such as digital refocusing or depth
mapping through partial/scattering occluders.

To describe the forward model for capturing depth fields,
we first briefly discuss the forward models for light field and
TOF imaging.

3.1. Light Fields

Light fields are commonly parameterized by the two
plane model l(u, v, x, y) where (u, v) is the angular coor-
dinates at the lens plane, and (x, y) are the spatial coordi-
nates of the sensor plane [27]. The output of this function
represents the radiance of the ray parametrized by its inter-
section with the two planes. The forward model for light
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Figure 1. (a) Capturing a depth field conceptually using an array of TOF cameras, (b) albedo as 4D function of (u,v,x,y), (c) phase
corresponding to TOF depth values as a 4D function of (u,v,x,y)

field capture has been modeled in [39] as follows:

iLF (x, y) =

∫
u

∫
v

m(u, v, x, y) · l(u, v, x, y)dudv (1)

where iLF (x, y) is the intensity measured by the detec-
tor and m(u, v, x, y) is the modulation/multiplexing func-
tion that encodes the incoming light rays. The modula-
tion function represents the different optical elements that
could be used to sense the light field including pinholes
(m(u, v, x, y) = δ(u, v, x, y)), Fourier masks, random
codes/masks, or diffraction gratings where the modulation
functions are Gabor wavelets [15]. Discretizing the above
equation, iLF = Ml where iLF , l are the vectorized images
and light fields, and M is the modulation matrix, and both
linear and nonlinear inversions can recover back the light
field [39].

3.2. Time-of-Flight Imaging

In contrast, TOF is typically modeled using a cross-
correlation between the incoming light signal and the refer-
ence code sent to the sensor. Given that incoming light is of
the form: 1+α cos(fM t+φ(x, y)) where φ is the phase ac-
cumulated due to the optical path traveled from light source
to object to camera and α is the albedo, the intensity at the
sensor (normalized to integration time) is:

iTOF (τ, x, y) = (1+α(x, y) cos(fM t+φ(x, y)))⊗cos(fM t)

≈ α(x, y)

2
cos(fMτ + φ(x, y)). (2)

Here, τ is the cross-correlation parameter which controls
the phase shift of the reference signal. By choosing different
τ such that fMτ = 0, π/2, π, 3π/2, we can recover both the
albedo α and the phase φ at each spatial location (x,y) using
quadrature inversion:

φ(x, y) = tan−1((iTOF (
3π

2
)−iTOF (

π

2
))/(iTOF (π)−iTOF (0))),

α =

√
(iTOF (

3π

2
)− iTOF (

π

2
))2 + (iTOF (π)− iTOF (0))2.

(3)
Note that d = c·φ

4πfM
can directly recover depth d from

phase φ for TOF imaging.

3.3. Depth Fields

We now introduce the concept of the depth field as the
ordered pair of albedo and depth (encoded in phase) (α, φ)
that occurs at every (u, v, x, y) spatio-angular coordinate,
i.e. α = α(u, v, x, y), φ = φ(u, v, x, y). Note that depth
fields are not recoverable from TOF measurements alone
since TOF assumes a pinhole camera model, which sample
φ and α at a particular fixed (u, v). We now describe the
forward model of depth field imaging as follows:

i(τ, x, y) =

∫
u

∫
v

m(u, v, x, y)·

(1 + α(u, v, x, y) cos(fM t+ φ(u, v, x, y)))dudv

⊗ cos(fM t) (4)

which is approximately

i(τ, x, y) ≈
∫
u

∫
v

m(u, v, x, y)·

α(u, v, x, y)

2
· cos(fMτ + φ(u, v, x, y))dudv. (5)

To invert this model, we take four measurements fMτ =
0, π2 , π,

3π
2 to get images i(0), i(90), i(180), i(270) at each

spatial location. Then we calculate M−1i(τ) to invert the
light field matrix for each of these images (Note: this in-
verse can be either done at lower spatial resolution or using
sparse priors or modeling assumptions to retain resolution).
Thus we recover albedo and phase mixed together at every
(u, v, x, y):

D′ =
α(u, v, x, y)

2
· cos(fMτ + φ(u, v, x, y)). (6)



To unmix the albedo and phase, we can perform quadra-
ture inversion on D′ for fMτ = 0, π2 , π,

3π
2 as before in

TOF to recover the depth field.

4. Methods to Capture Depth Fields
We describe the potential for single-shot capture of depth

fields (Note: single-shot is a misnomer since 4 phase mea-
surements are performed per shot, however such functional-
ity can be built into hardware to work in a single exposure).
As in most light field sensors, we can align microlenses
above CMOS TOF sensors such as photogates, photonic
mixer devices, etc. Doing so allows sampling the angular
plane by sacrificing spatial resolution at the sensor plane.
The main lens can widen its aperture, allowing more light
transmission while each of the sub-aperture views under-
neath the microlenses maintains a large depth of field [28].
This is advantageous since existing TOF cameras sacrifice
exposure time to keep a small aperture and large depth of
field. One limitation is the need for fine optical alignment
of the microlenses at the conjugate image plane in the cam-
era body.

Another depth field sensor can use amplitude masks be-
tween the main lens and the sensor plane of photogates to
filter incoming angular rays [38]. While allowing less light
transmission as microlenses, masks can be designed with
different coding patterns for improved reconstruction of the
depth field and can be flexibly interchanged within the cam-
era body unlike fixed optical elements. We note a similar
technique from [9] which uses a coded aperture in front of
LIDAR system to extend the system’s depth of field.

We also propose a fully integrated CMOS pixel design
that does not require alignment of external optical elements:
integrated diffraction gratings over interleaved photogates
similar to [31]. This sensor works by diffracting the in-
coming light to form a Talbot pattern that is imaged by
the photogates underneath similar to other diffractive sen-
sors [15]. Note that this pixel can achieve better light ef-
ficiency with phase gratings and reduce its pixel size with
interleaved photogates while maintaining the advantages of
CMOS integration for cost and mass-production.

We outline the design of these concept pixels in Fig-
ure 2. The only image sensor fabricated to date capable
of capturing depth fields in a single shot (that we know
of) integrates metal diffraction gratings over single photon
avalanche diodes [24], however this sensor is used for lens-
less fluorescence imaging. All these single-shot methods
sacrifice spatial resolution to multiplex the incoming depth
field.

Since fabricating a CMOS sensor takes significant time
and resources, in this paper we motivate the need for depth
field imaging using a custom acquisition setup. This acqui-
sition setup captures depth fields at high spatial resolution
by moving a TOF camera on a two axis stage sequentially

Figure 2. Pixel designs for single-shot camera systems for cap-
turing depth fields. Microlenses, amplitude masks, or diffraction
gratings are placed over top of photogates to capture light field and
TOF information simultaneously.

FPGA 

LED 

PMD 
Sensor 

a) b) 

Kinect Sensor Scene 

Figure 3. Setup to capture depth fields in practice. (a) A Kinect
is placed on a XY translation stage on an optical bench, and a
representative imaging scene, (b) PMD sensor with FPGA for code
generation and LED setup as in [21]

in the (u, v) plane, as if having an array of TOF cameras, to
scan a depth field. See Figure 1 for a schematic depiction
of depth field capture.

5. Experimental Setup

In this section, we describe the depth field acquis-
tion setup that scans a TOF sensor. We choose this ap-
proach since existing TOF sensors have limited resolution
so single-shot methods would result in even smaller spatial
resolution and the need of precise alignment of microlenses
or masks. Our system has some limitations including a
bulky setup and static scene acquisition, but we still demon-
strate advantages of depth field imaging.

We move a TOF sensor on a two axis stage at different
(u, v) positions. We utilize both the Microsoft Kinect One
which has a 424 x 512 depth resolution (see Figure 3), and a
custom PMD sensor of 160 x 120 resolution which enables
us to send custom modulation codes directly to the silicon.
The PMD sensor setup is the same as that described in [21].
All depth fields were captured with 1” spacing in the (u, v)
plane at the coarse resolution of 5x5.
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Figure 4. a) Captured scene, b-e) Digital refocusing on different focal planes for the depth map of the scene, showing how depth field
imaging can break the tradeoff between aperture and depth of field for range imaging

6. Applications of Depth Fields

In this section, we highlight new applications of depth
field imaging.

6.1. Synthetic Aperture Refocusing

One main disadvantage of TOF imaging is the necessity
of a small aperture for large depth of field to yield accu-
rate depth values. Having a shallow depth of field or wide
aperture causes optical blur which corrupts TOF depth val-
ues. However, a small aperture limits the shutter speed and
increases the acquisition time for these systems. In con-
trast, light field imaging breaks this tradeoff between depth
of field and aperture size by using synthetic aperture re-
focusing. A plenoptic sensor with microlenses above its
pixels can open its aperture and allow more light transmis-
sion while keeping the sub-aperture images beneath the mi-
crolenses in-focus, albeit at the loss of spatial resolution.
After capture, one can digitally refocus the image, thus ex-
tending the depth of field by shearing the 4D light field and
then summing over (u, v) to synthesize images with differ-
ent focal planes [28].

Similarly, we show that the same techniques can be ap-
plied to depth fields. In Figure 4, we show digital refocus-
ing of the 4D φ(u, v, x, y) information by applying the same
shear and then average operation [28]. We are able to syn-
thesize capture through a large virtual aperture for the scene
which has not been shown in depth maps before, and may
be combined with wide aperture light intensity images for
enhanced artistic/photographic effect. In addition, this vali-
dates that single-shot depth field sensors such as TOF sensor
with microlenses can allow more light through the aperture,
thus increasing exposure while maintaining the same depth
of field. This enables decreased acquisition time for TOF
sensors at the expense of computationally recovering the
lost spatial resolution and depth of field in post-processing
algorithms. We note that [9] also showed extended depth of
field for a LIDAR system using a coded aperture, but they
don’t extend their framework to show applications such as
digital refocusing.

6.2. Phase wrapping ambiguities

One main limitation for single frequency TOF is that the
phase has 2π periodicity, and thus depth estimates will wrap
around the modulation wavelength. For modulation fre-
quencies in the tens of MHz, this corresponds to a depth
range of a few meters, which can be extended further by
using multiple frequencies [6, 29] or phase unwrapping al-
gorithms [7]. However, as modulation frequencies scale
higher, phase wrapping becomes more severe.

We observe that capturing depth fields at a single modu-
lation frequency also allows us to unwrap the phase period-
icity by utilizing inherent epipolar geometry from different
viewpoints. We use the depth from correspondence algo-
rithm from [34] which is coarse and distance dependent, but
does not suffer from phase wrapping, and thus can unwrap
the depth measurements given by TOF.

In Figure 5, we simulate the Cornell Box scene and cap-
ture a depth field using the ray tracer Mitsuba [18]. We sim-
ulate phase wrapping and calculate depth from correspon-
dence. In order to perform phase unwrapping, we select a
continuous line in the image (the side wall in this scene)
to determine the number of times the TOF image wraps
upon itself in the scene. We use this mapping to match the
wrapped TOF depth values to the depth values from corre-
spondence, leading to unwrapped TOF depth values for the
entire image as shown in Figure 5d. We also use a median
filter to alleviate edge discontinuities in calculating depth
from correspondence.

In the Microsoft Kinect we use for capturing depth fields,
the maximum modulation frequency is 30MHz, which
makes showing phase wrapping difficult on a standard op-
tical bench. Thus we change the bit settings on the Kinect
TOF sensors from N bits to N-1 bits to simulate phase wrap-
ping for a real scene (identical to the wrapping caused by
periodicity at a higher modulation frequency of 60MHz).
We show the results of our phase unwrapping algorithm in
Figure 6. Note that the reconstruction quality is limited by
the lack of a good fiducial line in the scene that clearly cor-
responds light field depths to TOF wrapped depths. This is
a limitation of our method, and it would be interesting to
explore automatic calibration for phase unwrapping.
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Figure 5. Phase unwrapping algorithm on synthetic data. a) Cornell box scene with ground truth depth values, b) a phase wrapped scene
with red fiducial line for calibration marked, c) depth map given by light field correspondence algorithm. We identify the same calibration
line in this scene for phase unwrapping, d) we map the TOF wrapped values to the depth values from correspondence for the given
calibration line, e) unwrapped depth map.

6.3. Refocusing through partial occluders

The large synthetic aperture that can be synthesized by
capturing 4D depth fields allows us to image past partial oc-
cluders in the foreground. This technique, which blurs out
the foreground to reveal the background, has been shown
in light fields [37] to look through bushes and plants. Note
that in Figure 7, applying the same technique to the depth
field works correctly for the albedo (one can see the object
clearly while blurring out the foreground), but it does not
work for the phase. This is because while visually we can
perceptually tolerate some mixing of foreground and back-
ground color, this same mixing corrupts our phase measure-
ments, leading to inaccurate depth values.

To solve this mixing problem when refocusing light
fields, researchers have simply not added rays that are from
the foreground when averaging over the sheared light field.
A key assumption to their algorithm is that the foreground
object rays are identified either by shooting continuous
video [40] or by constructing an epipolar image, finding the
corresponding depths, and then separating foreground rela-
tive to the background [37]. These algorithms are computa-
tionally expensive to identify the occluding objects pixels.
We note that [43] use a combination of unstructured multi-
view stereo views and a depth sensor to refocus an intensity
image through a partial occluder, and use the depth infor-
mation to create a probabilistic model for occluders.

In contrast, we utilize the depths directly captured via
TOF measurements to construct a histogram of depths ob-
served in the scene as shown in Figure 7. We then can
simply pick a foreground cluster using K-means or an-
other computationally efficient clustering algorithm, which
is faster than constructing an epipolar image, estimating line
slopes, and then forming a histogram to do clustering. In

a) b) 

Figure 6. a) Phase unwrapping on real data with synthetic phase
wrapping induced (due to prototype limitations). b) Recovered
depth map. Notice that the monkey in back is not recovered be-
cause there does not exist a calibration marker line in the scene
that extends all the way back in the TOF image.

Figure 7, you can see the results of our algorithm.

6.4. Refocusing past scattering media

While the previous subsection dealt with partial oc-
cluders that block the background for certain (u, v) view-
points, other occluders such as scattering media or translu-
cent objects are more difficult because they mix multiple
phase measurements corresponding to different optical path
lengths together at a single pixel. We approach the prob-
lem via coded TOF, specifically the depth selective codes
by [33]. Mainly, we show how coded TOF extends the
capabilities of our depth field camera systems by imaging
past scattering media, and then use spatial information to
perform digital refocusing. In Figure 8, we image through
backscattering nets to get a depth field past the scattering
media. We place nets in front of the camera to act as strong
backscatterers, notice how the depth values are corrupted
by the scattering. Using the depth selective codes, we can



image past the nets, and using multiple shots at different
(u, v) viewpoints, we can capture the depth field beyond
the nets and do digital refocusing. This demonstrates how
depth field imaging can leverage the advantages of coded
TOF techniques, and poses interesting questions of how to
design the best possible codes for single-shot depth field
imaging systems.

7. Discussion

Depth fields unify light field and TOF imaging as a sin-
gle function of spatio-angular coordinates, and are useful
for various applications. Besides the simple extensions of
adding two imaging modalities, they can inform each other
and make algorithms computationally more efficient and
conceptually simpler, particularly in solving the problem of
various occluders for light fields by using TOF information
and breaking tradeoffs between aperture and depth of field
for TOF cameras by adding light field capability. Improve-
ments in light field depth estimation such as in [34] can
also be applied for depth field cameras leading to improved
depth resolution.

A key question that concerns depth field cameras is their
pixel size which makes pixel multiplexing, including the
sensor designs outlined in this paper, problematic. We note
that TOF pixels have shrunk currently to 10um [2] which is
only 10x larger than regular pixels (1um), and that techno-
logical advances such as stacked image sensors may help
alleviate these multiplexing worries. However, the clear
advantages for depth field cameras are applications where
spatial resolution is not the limiting factor. This includes
imaging systems that are limited by aperture (as argued in
Section 6.1) and lensless imaging where spatial pixel layout
is not a factor [8].

7.1. Limitations

Some limitations include long computational algorithms
to recover lost spatial resolution for single-shot depth field
cameras, or increased acquisition time for large TOF cam-
era arrays or TOF cameras on mechanical gantries to scan-
line a depth field. Many applications provide partial ro-
bustness to depth sensing in the wild, but rely on modeling
assumptions (foreground vs. background separation, scat-
tering media is not immersing the object) that limits their
deployment in real autonomous systems.

7.2. Future directions

One main future direction is to fabricate CMOS pho-
togates with integrated diffraction gratings for an on-chip
depth field sensor. This chip would be a lensless depth
sensor for biomedical or 3D printing applications where a
physical lens is bulky and prevents deployment of the im-
age sensor in confined locations. Our analysis of a depth

field shows that one can invert a farfield image using angu-
lar resolution similar to lensless lightfield cameras [8].

8. Conclusion

We presented the depth field, a representation of light
albedo and phase from optical path length as function
of space and angle. We developed the forward model
to inform new ways to capture depth fields, and showed
a myriad of applications that having this information
possesess. We are inspired by the possibilitiy of image
sensors that can perform hybrid depth imaging in general.
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Figure 7. Refocusing in spite of foreground occlusions: (a) Scene containing a monkey toy being partially occluded by a plant in the
foreground, (b) traditional synthetic aperture refocusing on light field is partially effective in removing the effect of foreground plants, (c)
synthetic aperture refocusing of depth displays corruption due to occlusion, (d) histogram of depth clearly shows two clusters corresponding
to plant and monkey, (e) virtual aperture refocusing after removal of plant pixels shows sharp depth image of monkey, (f) Quantitative
comparison of indicated scan line of the monkey’s head for (c) and (e)
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