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FlatCam is a thin form-factor lensless camera that consists of a coded mask placed on top of a bare, conventional sensor array.
Unlike a traditional, lens-based camera where an image of the scene is directly recorded on the sensor pixels, each pixel in FlatCam
records a linear combination of light from multiple scene elements. A computational algorithm is then used to demultiplex the
recorded measurements and reconstruct an image of the scene. FlatCam is an instance of a coded aperture imaging system; however,
unlike the vast majority of related work, we place the coded mask extremely close to the image sensor that can enable a thin system.
We employ a separable mask to ensure that both calibration and image reconstruction are scalable in terms of memory requirements
and computational complexity. We demonstrate the potential of the FlatCam design using two prototypes: one at visible wavelengths
and one at infrared wavelengths.

I. INTRODUCTION

A range of new imaging applications is driving the minia-
turization of cameras. As a consequence, significant progress
has been made towards minimizing the total volume of the
camera, which has enabled new applications in endoscopy, pill
cameras, and in vivo microscopy. Unfortunately, this strategy
of miniaturization has an important shortcoming: the amount
of light collected at the sensor decreases dramatically as
the lens aperture and the sensor size become smaller. As a
consequence, ultra-miniature imagers built simply by scaling
down the optics and sensors suffer from extremely low light
collection.

In this paper, we present a camera architecture that we
call FlatCam, which is inspired by coded aperture imaging
principles pioneered in astronomical x-ray and gamma-ray
imaging [1]–[4]. Our proposed FlatCam design uses a very
large photosensitive area with a very thin form factor. The
FlatCam achieves thin form factor by dispensing with a lens
and replacing it with a coded, binary mask placed almost
immediately atop a bare conventional sensor array. The image
formed on the sensor can be viewed as a superposition of many
pinhole images. Thus, the light collection ability of such a
coded aperture system is proportional to the size of the sensor
and the transparent regions (pinholes) in the mask. In contrast,
the light collection ability of a miniature, lens-based camera
is limited by the lens aperture size, which is restricted by the
requirements on the device thickness.

An illustration of the FlatCam design is presented in Fig. 1.
Light from a scene passes through a coded mask and lands on
a conventional image sensor. The mask consists of opaque and
transparent features (to block and transmit light, respectively);
each transparent feature can be viewed as a pinhole. Light
from the scene gets diffracted by the mask features such that
light from each scene location casts a unique mask shadow on
the sensor, and this mapping can be represented using a linear
operator. A computational algorithm then inverts this linear
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operator to recover the original light distribution of the scene
from the sensor measurements.

Our FlatCam design has many attractive properties besides
its slim profile. First, since it reduces the thickness of the
camera but not the area of the sensor, it collects more light than
miniature, lens-based cameras with same thickness. Second,
the mask can be created from inexpensive materials that
operate over a broad range of wavelengths. Third, the mask can
be fabricated simultaneously with the sensor array, creating
new manufacturing efficiencies. The mask can be fabricated
either directly in one of the metal interconnect layers on top
of the photosensitive layer or on a separate wafer thermal
compression that is bonded to the back side of the sensor,
as is typical for back-side illuminated image sensors [5].

We demonstrate the potential of the FlatCam using two
prototypes built in our laboratory with commercially available
sensors and masks: a visible prototype in which the mask-
sensor spacing is about 0.5mm and a short-wave infrared
(SWIR) prototype in which the spacing is about 5mm. Figures
4 and 8 illustrate sensor measurements and reconstructed
images using our prototype FlatCams.

II. RELATED WORK

Pinhole cameras. Imaging without a lens is not a new idea.
Pinhole cameras, the progenitor of lens-based cameras, have
been well known since Alhazen (965–1039AD) and Mozi
(c. 370BCE). However, a tiny pinhole drastically reduces the
amount of light reaching the sensor, resulting in noisy, low-
quality images. Indeed, lenses were introduced into cameras
for precisely the purpose of increasing the size of the aperture,
and thus the light throughput, without degrading the sharpness
of the acquired image.

Coded apertures. Coded aperture cameras extend the idea of
a pinhole camera by using masks with multiple pinholes [1]–
[3]. The primary goal of coded aperture cameras is to increase
the light throughput compared to a pinhole camera. Figure 2
summarizes some salient features of pinhole, lens-based, and
FlatCam (coded mask-based) architectures.
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Fig. 1: FlatCam architecture. (a) Every light source within the camera field-of-view contributes to every pixel in the multiplexed image
formed on the sensor. A computational algorithm reconstructs the image of the scene. Inset shows the mask-sensor assembly of our prototype
in which a binary, coded mask is placed 0.5mm away from an off-the-shelf digital image sensor. (b) An example of sensor measurements
and the image reconstructed by solving a computational inverse problem.

Coded-aperture cameras have traditionally been used for
imaging wavelengths beyond the visible spectrum (e.g., x-
ray and gamma-ray imaging), for which lenses or mirrors are
expensive or infeasible [1]–[4], [6]. In recent years, coded
aperture-based systems using compressive sensing principles
[7]–[9] have been studied for image super-resolution [10],
spectral imaging [11], and video capture [12]. Mask-based
lens-free designs have also been proposed for flexible field-
of-view selection in [13], compressive single-pixel imaging
using a transmissive LCD panel [14], and for separable coded
masks [15].

Existing coded aperture-based lensless systems have two
main limitations: First, the large body of work devoted to
coded apertures invariably place the mask significantly far
away from the sensor (e.g., 65mm distance in [15]). In
contrast, our FlatCam design offers a thin form factor. For
instance, in our prototype with a visible sensor, the spacing
between the sensor and the mask is only 0.5mm. Second, the
masks employed in some designs have transparent features
only in a small central region whose area is invariably much
smaller than the area of the sensor. In contrast, almost half
of the features (spread across the entire surface) in our mask
are transparent. As a consequence, the light throughput of our
designs are many orders of magnitude larger as compared to
previous designs. Furthermore, the lensless cameras proposed
in [14], [15] use programmable spatial light modulators (SLM)
and capture multiple images while changing the mask patterns.
In contrast, we use a static mask in our design, which can
potentially be fixed on the sensor during fabrication or the
assembly process.

Camera arrays. A number of thin imaging systems have
been developed over the last few decades. The TOMBO
architecture [16], inspired by insect compound eyes, reduces
the camera thickness by replacing a single, large focal-length
lens with multiple, small focal-length microlenses. Each mi-
crolens and the sensor area underneath it can be viewed as
a separate low-resolution, lens-based camera, and a single
high-resolution image can be computationally reconstructed
by fusing all of the sensor measurements. Similar architectures
have been used for designing thin infrared cameras [17]. The

camera thickness in this design is dictated by the geometry
of the microlenses; reducing the camera thickness requires
a proportional reduction in the sizes of the microlenses and
sensor pixels. As a result, microlens-based cameras currently
offer only up to a four-fold reduction in the camera thickness
[18], [19].

Folded optics. An alternate approach for achieving thin
form factors relies on folded optics, where light manipulation
similar to that of a traditional lens is achieved using multi-fold
reflective optics [20]. However, folded optics based systems
have low light collection efficiencies.

Ultra-miniature lensless imaging with diffraction gratings.
Recently, miniature cameras with integrated diffraction grat-
ings and CMOS image sensors have been developed [21]–
[24]. These cameras have been successfully demonstrated on
tasks such as motion estimation and face detection. While
these cameras are indeed ultra-miniature in total volume (100
micron sensor width by 200 micron thickness), they retain
the large thickness-to-width ratio of conventional lens-based
cameras. Because of the small sensor size, they suffer from
reduced light collection ability. In contrast, in our visible
prototype below, we used a 6.7mm wide square sensor, which
increases the amount of light collection by about three orders
of magnitude, while the device thickness remains approxi-
mately similar (500 micron).

Lensfree microscopy and shadow imaging. Lensfree cameras
have been successfully demonstrated for several microscopy
and lab-on chip application, wherein the subject to be imaged
is close to the image sensor. An on-chip, lens-free microscopy
design that uses amplitude masks to cast a shadow of point
illumination sources onto a microscopic tissue sample has
shown significant promise for microscopy and related appli-
cations, where the sample being imaged is very close to the
sensor (less than 1mm) [25], [26]. Unfortunately, this tech-
nique cannot be directly extended to traditional photography
and other applications that require larger standoff distances
and do not provide control over illumination.
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Fig. 2: Comparison of pinhole, lens-based, and coded mask-based cameras. Pinhole cameras and lens-based cameras provide one-to-one
mapping between light from a focal plane and the sensor plane (note that light from three different directions is mapped to three distinct
locations on the sensor), but the coded mask-based cameras provide a multiplexed image that must be resolved using computation. The table
highlights some salient properties of the three camera designs. Pinholes cameras suffer from very low light throughput, while lens-based
cameras are bulky and rigid because of their optics. In contrast, the FlatCam design offers thin, light-efficient cameras with the potential for
direct fabrication.

III. FLATCAM DESIGN

A. Replacing lenses with computation

Our FlatCam design places an amplitude mask almost
immediately in front of the sensor array (see Fig. 1). While we
focus on a single mask for exposition purposes, the concept ex-
tends to multiple amplitude masks in a straightforward manner.
We assume that the sensor and the mask are planar, parallel
to each other, and separated by distance d. For simplicity of
explanation, we also assume (without loss of generality) that
the mask modulates the impinging light in a binary fashion;
that is, it consists of transparent features that transmit light
and opaque features that block light. We denote the size of the
transparent/opaque features by ∆ and assume that the mask
covers the entire sensor array.

Light from the scene is modulated and diffracted by the
mask pattern and recorded on the image sensor. By assuming
that the image formed on the sensor is a superposition of light
sources in the scene, we can describe the transfer function
between the scene image and the sensor measurements as

y = Φx+ e. (1)

Here, vector x denotes pixelated scene image, vector y denotes
the sensor measurements, Φ denotes the transfer matrix, and
e denotes the sensor noise and any model mismatch. Since
the sensor pixels do not have a one-to-one mapping with
the scene pixels, the matrix Φ will not resemble the identity
matrix. Instead, each sensor pixel measures multiplexed light
from multiple scene pixels, and each row of Φ indicates how
strongly each scene pixel contributes to the intensity measured
at a particular sensor pixel. In other words, any column in Φ
denotes the image formed on the sensor if the scene contains
a single, point light source at the respective location.

Multiplexing generally results in an ill-conditioned system.
Our goal is to design a mask that produces a matrix Φ

that is well conditioned and hence can be stably inverted
without excessive noise amplification. We now discuss how
we navigate among three inter-related design decisions: the
placement d and feature size ∆ of the mask, the mask pattern,
and the image recovery (demultiplexing) algorithm.

B. Mask pattern

Three issues need to be considered in the design of the
mask pattern: the light throughput, the complexity of system
calibration and inversion, and the conditioning of the resulting
multiplexing matrix Φ.

Light throughput. In the absence of the mask, the amount of
light that can be sensed by the bare sensor is limited only by
its CRA. Since the photosensitive element in a CMOS/CCD
sensor array is situated in a small cavity, a micro-lens array
directly on top of the sensor is used to increase the light
collection efficiency. In spite of this, only light rays up to
a certain angle of incidence reach the sensor, and this is
the fundamental light collection limit of that sensor. Placing
an amplitude-modulating mask very close to (and completely
covering) the sensor results in a light-collection efficiency that
is a fraction of the fundamental light collection limit of the
sensor. In our designs, half of the binary mask features are
transparent, which halves our light collection ability compared
to the maximum limit. As described above, while it is true
that the light collection ability of our FlatCam design is one-
half of the maximum achievable with a particular sensor, the
main advantage of the FlatCam design is that it allows us to
use much larger sensor arrays for a given device thickness
constraint, thereby significantly increasing the light collection
capabilities of devices under thickness constraints.

Computational complexity. The (linear) relationship be-
tween the scene irradiance x and the sensor measurements
y is contained in the multiplexing matrix Φ. Discretizing the
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unknown scene irradiance into N×N pixel units and assuming
an M × M sensor array, Φ is an M2 × N2 matrix. Given
a mask and sensor, we can obtain the entries of Φ either by
modeling the transmission of light from the scene to the sensor
or through a calibration process. Clearly, even for moderately
sized systems, Φ is prohibitively large to either estimate
(calibration) or invert (image reconstruction), in general. For
example, to describe a system with a megapixel resolution
scene and a megapixel sensor array, Φ will contain on the
order of 106 × 106 = 1012 elements.

One way to reduce the complexity of Φ is to use a separable
mask for the FlatCam system. If the mask pattern is separable
(i.e., an outer product of two one-dimensional patterns), then
the imaging system in (1) can be rewritten as

Y = ΦLXΦT
R + E, (2)

where ΦL,ΦR denote matrices that correspond to one-
dimensional convolution along the rows and columns of the
scene, respectively, X is an N × N matrix containing the
scene radiance, Y in an M ×M matrix containing the sensor
measurements, and E denotes the sensor noise and any model
mismatch. For a megapixel scene and a megapixel sensor,
ΦL and ΦR have only 106 elements each, as opposed to
1012 elements in Φ. Similar idea has been recently proposed
in [15] with the design of doubly toeplitz mask. In our
implementation, we also estimate the system matrices using
a separate calibration procedure (see Sec. III-D), which also
becomes significantly simpler for a separable system.

Conditioning. The mask pattern should be chosen to make
the multiplexing matrices ΦL and ΦR as numerically stable as
possible, which ensures a stable recovery of the image X from
the sensor measurements Y . Such ΦL and ΦR should have
low condition numbers, i.e., a flat singular value spectrum.
For Toeplitz matrices, it is well known that, of all binary
sequences, the so-called maximum length sequences, or M-
sequences, have maximally flat spectral properties [27]. There-
fore, we use a separable mask pattern that is the outer product
of two one-dimensional M-sequence patterns. However, be-
cause of the inevitable non-idealities in our implementation,
such as the limited sensor CRA and the larger than optimal
sensor-mask distance due to the hot mirror, the actual ΦL and
ΦR we obtain using a separable M-sequence based mask do
not achieve a perfectly flat spectral profile. Nevertheless, as
we demonstrate in our prototypes, the resulting multiplexing
matrices enable stable image reconstruction in the presence of
sensor noise and other non-idealities. All of the visible wave-
length, color image results shown in this paper were obtained
using normal, indoor ambient lighting and exposure times in
10–20ms range, demonstrating that robust reconstruction is
possible.

C. Mask placement and feature size

The multiplexing matrices ΦL,ΦR describe the mapping of
light emanating from the points in the scene to the pixels on
the sensor. Consider light from a point source passing through
one of the mask openings; its intensity distribution recorded
at the sensor forms a point-spread function (PSF) that is due

to both diffraction and geometric blurs. The PSF acts as a
low-pass filter that limits the frequency content that can be
recovered from the sensor measurements. The choice of the
feature size and mask placement is dictated by the tradeoff
between two factors: reducing the size of the PSF to minimize
the total blur and enabling sufficient multiplexing to obtain a
well-conditioned linear system.

The total size of the PSF depends on the diffraction and
geometric blurs, which in turn depend on the distance between
the sensor and the mask, d, and the mask feature size, ∆. The
size of the diffraction blur is directly proportional to d and
inversely proportional to ∆. The size of the geometric blur,
however, is equal to the feature size ∆. This implies that the
minimum blur radius is achieved when the two blur sizes are
approximately equal. One possible way to reduce the size of
the combined PSF is to move the mask closer to the sensor.
However, the extent of multiplexing within the scene pixels
shrinks as the mask moves closer to the sensor. Therefore,
if we aim to keep the amount of multiplexing constant, then
the mask feature size ∆ should shrink proportionally to the
mask-sensor distance d.

In practice, physical limits on the sensor-mask distance d
or the mask feature size ∆ can dictate the design choices. In
our visible FlatCam prototype, for example, we use a Sony
ICX285 sensor. The sensor has a 0.5mm thick hot mirror
attached to the top of the sensor, which restricts the potential
spacing between the mask and sensor surface. Therefore, we
place the mask immediately atop the hot mirror, resulting
in d ≈ 500µm (distance between the mask and the sensor
surface). We achieved the smallest total blur size using a mask
feature size of approximately ∆ = 30µm. Of course, in future
implementations, where the mask pattern is directly etched on
top of the image sensor (direct fabrication) such a thickness
constraint does not exist and we can achieve much higher
resolution images by moving the mask closer to the sensor
and reducing the mask feature size proportionally.

D. Camera calibration

We now provide the details of our calibration procedure
for the separable imaging system modeled in (2). Instead of
modeling the convolution shifts and diffraction effects for a
particular mask-sensor arrangement, we directly estimate the
system matrices.

To align the mask and sensor, we adjust their relative
orientation such that a separable scene in front of the camera
yields a separable image on the sensor. For a coarse alignment,
we use a point light source, which projects a shadow of the
mask onto the sensor, and align the horizontal and vertical
edges on the sensor image with the image axes. For a fine
alignment, we align the sensor with the mask while projecting
horizontal and vertical stripes on a monitor or screen in the
front of the camera.

To calibrate a system that can recover N×N images X , we
estimate the left and right matrices ΦL,ΦR using the sensor
measurements of 2N known calibration patterns projected on
a screen as depicted in Fig. 3. Our calibration procedure relies
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on an important observation. If the scene X is separable, i.e.,
X = abT where a,b ∈ RN , then

Y = ΦLab
T ΦT

R = (ΦLa)(ΦRb)T .

In essence, the image formed on the sensor is a rank-1 matrix,
and by using a truncated singular value decomposition (SVD),
we can obtain ΦLa and ΦRb up to a signed, scalar constant.
We take N separable pattern measurements for calibrating
each of ΦL and ΦR.

Specifically, to calibrate ΦL, we capture N images
{Y1, . . . , YN} corresponding to the separable patterns
{X1, . . . , XN} displayed on a monitor or screen. Each Xk is
of the form Xk = hk1

T , where hk ∈ RN is a column of the
orthogonal Hadamard matrix H of size N×N and 1 is an all-
ones vector of length N . Since the Hadamard matrix consists
of ±1 entries, we record two images for each Hadamard
pattern; one with hk1

T and one with −hk1
T while setting

the negative entries to zero in both cases. We then subtract the
two sensor images to obtain the measurements corresponding
to Xk. Let Ỹk = ukv

T be the rank-1 approximation of the
measurements Yk obtained via SVD, where the underlying
assumption is that v ≈ ΦR1, upto a signed, scalar constant.
Then, we have

[u1 u2 · · ·uN ] = ΦL[h1 h2 · · ·hN ] ≡ ΦLH, (3)

and we compute ΦL as

ΦL = [u1 u2 · · ·uN ]H−1, (4)

where H−1 = 1
NH

T . Similarly, we estimate ΦR by projecting
N patterns of the form 1hT

k .
Figure 3 depicts the calibration procedure in which we

projected separable patterns on a screen and recorded sensor
measurements; the sensor measurements recorded from these
patterns are re-ordered to form the left and right multiplexing
operators shown in (b).

A mask modulates light only by non-negative values. M-
sequences are defined in terms of ±1 values and hence cannot
be directly implemented in a mask. The masks we use in our
prototype cameras are constructed by computing the outer-
product of two M-sequences and then setting the resulting −1
entries to 0. This produces a mask that is optically feasible
but no longer mathematically separable. We can resolve this
issue in post-processing, since the difference between the
measurements using the theoretical ±1 separable mask and
the optically feasible 0/1 mask is simply a constant bias term.
In practice, once we acquire a sensor image, we correct it to
correspond to a ±1 separable mask (described as Y in (2))
simply by forcing the column and row sums to zero.

IV. IMAGE RECONSTRUCTION

Given a set of M ×M sensor measurements Y , our ability
to invert the system (2) to recover the desired N ×N image
X primarily depends on the rank and the condition number of
the system matrices ΦL, ΦR.

If both ΦL and ΦR are well-conditioned, then we can
estimate X by solving a simple least-squares problem

X̂LS = arg min
X
‖ΦLXΦT

R − Y ‖22, (5)

(b)!
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Fig. 3: Calibration for measuring the left and right multiplexing
matrices ΦL and ΦR corresponding to a separable mask. (a) Display
separable patterns on a screen. The patterns are orthogonal, one-
dimensional Hadamard codes that are repeated along either the
horizontal or vertical direction. (b) Estimated left and right system
matrices.

which has the closed form solution: X̂LS = Φ+
LY Φ+

R, where
Φ+

L and Φ+
R denote the pseudoinverse of ΦL and ΦR, re-

spectively. Consider the SVD of ΦL = ULΣLV
T
L , where UL

and VL are orthogonal matrices that contain the left and right
singular vectors and ΣL is a diagonal matrix that contains the
singular values. Note that this SVD need only be computed
once for each calibrated system. The pseudoinverse can then
be efficiently pre-computed as Φ+

L = VLΣ−1
L UT

L .
When the matrices ΦL, ΦR are not well-conditioned or are

under-determined (e.g., when we have fewer measurements
M than the desired dimensionality of the scene N , as in
compressive sensing [7]–[9]), some of the singular values
are either very small or equal to zero. In these cases, the
least-squares estimate X̂LS suffers from noise amplification.
A simple approach to reduce noise amplification is to add an
`2 regularization term in the least-squares problem in (5)

X̂Tik = arg min
X
‖ΦLXΦT

R − Y ‖22 + τ‖X‖22, (6)

where τ > 0 is a regularization parameter. The solution of (6)
can also be explicitly written using the SVD of ΦL and ΦR

as we describe below.
The solution of (6) can be computed by setting the gradient

of the objective in (6) equal to zero and simplifying the
resulting equation:

ΦT
L(ΦLXΦT

R − Y )ΦR + τX = 0

ΦT
LΦLXΦT

RΦR + τX = ΦT
LY ΦR.

Replacing ΦL and ΦR with their SVD decompositions yields

VLΣ2
LV

T
L XVRΣ2

RV
T
R + τX = VLΣLU

T
L Y URΣRV

T
R .

Multiplying both sides of the equation with V T
L from the left

and VR from the right yields

Σ2
LV

T
L XVRΣ2

R + τV T
L XVR = ΣLU

T
L Y URΣR.
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Denote the diagonal entries of Σ2
L and Σ2

R using the vectors
σL and σR, respectively, to simplify the equations to

V T
L XVR � (σLσ

T
R) + τV T

L XVR = ΣLU
T
L Y URΣR

V T
L XVR � (σLσ

T
R + τ11T ) = ΣLU

T
L Y URΣR

V T
L XVR = (ΣLU

T
L Y URΣR)./(σLσ

T
R + τ11T ),

where A � B and A./B denote element-wise multiplication
and division of matrices A and B, respectively. The solution
of (6) can finally be written as

X̂Tik = VL[(ΣLU
T
L Y URΣR)./(σLσ

T
R + τ11T )]V T

R . (7)

Thus, once the SVDs of ΦL and ΦR are computed and stored,
reconstruction of an N × N image from M × M sensor
measurements involves a fixed cost of two M × N matrix
multiplications, two N ×N matrix multiplications, and three
N ×N diagonal matrix multiplications.

In many cases, exploiting the sparse or low-dimensional
structure of the unknown image significantly enhances re-
construction performance. Natural images and videos exhibit
a host of geometric properties, including sparse gradients
and sparse coefficients in certain transform domains. Wavelet
sparse models and total variation (TV) are widely used regu-
larization methods for natural images [28], [29]. By enforcing
these geometric properties, we can suppress noise amplifica-
tion as well as obtain unique solutions. A pertinent example
for image reconstruction is the sparse gradient model, which
can be represented in the form of the following total-variation
(TV) minimization problem:

X̂TV = arg min
X
‖ΦLXΦT

R − Y ‖2 + λ‖X‖TV. (8)

The term ‖X‖TV denotes the TV of the image X given by the
sum of magnitudes of the image gradients. Given the scene
X as a 2D image, i.e., X(u, v), we can define Gu = DuX
and Gv = DvX as the spatial gradients of the image along
the horizontal and vertical directions, respectively. The total
variation of the image is then defined as

‖X‖TV =
∑

u,v

√
Gu(u, v)2 +Gv(u, v)2.

Minimizing the TV as in (8) produces images with sparse
gradients. The optimization problem (8) is convex and can be
efficiently solved using a variety of methods. Many extensions
and performance analyses are possible following the recently
developed theory of compressive sensing.

In addition to simplifying the calibration task, separability
of the coded mask also significantly reduces the computational
burden of image reconstruction. Iterative methods for solving
the optimization problems described above require the re-
peated application of the multiplexing matrix and its transpose.
Continuing our numerical example from above, for a non-
separable, dense mask, both of these operations would require
on the order of 1012 multiplications and additions for mega-
pixel images. With a separable mask, however, the application
of the forward and transpose operators requires only on the
order of 2 × 109 scalar multiplications and additions—a
tremendous reduction in computational complexity.

V. EXPERIMENTAL RESULTS

We present results on two prototypes. The first uses a
Silcon-based sensor to sense in visible wavelengths and the
second uses an InGaAs sensor for sensing in short-wave
infrared.

A. Visible wavelength FlatCam prototype

We built this FlatCam prototype as follows.
Image sensor: We used a Sony ICX285 CCD color sensor
that came inside a Point Grey Grasshopper 3 camera (model
GS3-U3-14S5C-C). The sensor has 1036× 1384 pixels, each
6.45µm wide, arranged in an RGB Bayer pattern. The physical
size of the sensor array is approximately 6.7mm × 8.9mm.
Mask material: We used a custom-made chrome-on-quartz
photomask that consists of a fused quartz plate, one side of
which is covered with a pattern defined using a thin chrome
film. The transparent regions of the mask transmit light, while
the chrome film regions of the mask block light.
Mask pattern and resolution: We created the binary mask
pattern as follows. We first generated a length-255 M-sequence
consisting of ±1 entries. The actual 255-length M-sequence is
shown in Fig. 5. We repeated the M-sequence twice to create
a 510-length sequence and computed the outer product with
itself to create a 510 × 510 matrix. Since the resulting outer
product consist of ±1 entries, we replaced every −1 with a 0
to create a binary matrix that is optically feasible. An image
showing the final 510× 510 mask pattern is shown in Fig. 5.
We printed a mask from the 510 × 510 binary matrix such
that each element corresponds to a ∆ = 30µm square box
(transparent, if 1; opaque, if 0) on the printed mask. Images
of the pattern that we used for the mask and the printed mask
are presented in Fig. 5. The final printed mask is a square
approximately 15.3mm on a side and covers the entire sensor
area. Even though the binary mask is not separable as is, we
can represent the sensor image using the separable system
described in (2) by subtracting the row and column mean from
the sensor images (see Sec. III-D for details on calibration).
Mask placement: We opened the camera body to expose the
sensor surface and placed the quartz mask on top of it using
mechanical posts such that the mask touches the protective
glass (hot mirror) on top of the sensor. Thus the distance
between the mask and the sensor d is determined by thickness
of the glass, which for this sensor is 0.5mm.
Data readout and processing: We adjusted the white balance
of the sensor using Point Grey FlyCapture software and
recorded images in 8-bit RGB format using suitable exposure
and frame rate settings. In most of our experiments, the
exposure time was fixed at 10ms, but we adjusted it according
to the scene intensity to avoid excessively bright or dark
sensor images. For the static scenes we averaged 20 sensor
images to create a single set of measurements to be used for
reconstruction.

We reconstructed 512×512 RGB images from our prototype
using 512× 512 RGB sensor measurements. Since the sensor
has 1086 × 1384 pixels, we first cropped and uniformly
subsampled the sensor image to create an effective 512× 512
color sensor image; then we subtracted the row and column
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Fig. 4: Visible FlatCam prototype and results. (a) Prototype consists of a Sony ICX285 sensor with a separable M-sequence mask placed
approximately 0.5mm from the sensor surface. (b) The sensor measurements are different linear combinations of the light from different
points in the scene. (c) Reconstructed 512 × 512 color images by processing each color channel independently.
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Fig. 5: Masks used in both our visible and SWIR FlatCam
prototypes. M-sequences with ±1 entries that we used to create the
binary masks for (a) the visible camera and (b) the SWIR camera.
Binary masks created from the M-sequences for (c) the visible camera
and (d) the SWIR camera.

means from that image. The resulting image corresponds
to the measurements described by (2), which we used to
reconstruct the desired image X . Some example sensor images
and corresponding reconstruction results are shown in Fig. 4.
In these experiments, we solved an `2-regularized least-squares
problem in (6), followed by BM3D denoising [30]. Solving the
least-squares recovery problem for a single 512× 512 image
using pre-computed SVD requires a fraction of a second on a
standard laptop computer.

We present a comparison of three different methods for

reconstructing static scenes in Fig. 6. We used MATLAB
for solving all the computational problems. For the results
presented in Fig. 6, we recorded sensor measurements while
displaying test images on an LCD monitor placed 28cm away
from the camera and by placing various objects in front of the
camera in ambient lighting.

We used three methods for reconstructing the scenes from
the sensor measurements:

1) We computed and stored the SVD of ΦL,ΦR and solved
the `2-regularized problem in (6) as described in (7).
The average computation time for the reconstruction of a
single 512× 512 image on a standard laptop was 75ms.
The results of SVD-based reconstruction are presented in
Fig. 6B. The reconstructed images are slightly noisy, with
details missing around the edges.

2) To reduce the noise in our SVD-estimated images, we
applied BM3D denoising to each reconstructed image.
The results of SVD/BM3D reconstruction are presented
in Fig. 6C. The average computation time for BM3D
denoising of a single image was 10s.

3) To improve our results further, we reconstructed by solv-
ing the TV minimization problem (8). While, as expected,
the TV method recovers more details around the edges,
the overall reconstruction quality is not appreciably very
different from SVD-based reconstruction. The computa-
tion time of TV, however, increases to 75s per image.

To demonstrate the flexibility of our FlatCam design, we
also captured and reconstructed dynamic scenes at typical
video rates. We present selected frames1 from two videos in

1Complete videos are available at http://bit.ly/FlatCam.



8

(a)!
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(c)!

Fig. 6: Images reconstructed at 512 × 512 resolution using the visible FlatCam prototype and three different reconstruction methods. (a)
SVD-based solution of (6); average computation time per image = 75ms. (b) SVD/BM3D reconstruction; average computation time per
image = 10s. (c) Total variation (TV) based reconstruction; average computation time per image = 75s.

Fig. 7. The images presented in Fig. 7A are reconstructed
frames from a video of a hand making counting gestures,
recorded at 30 frames per second. The images presented in
Fig. 7B are reconstructed frames from a video of a toy bird
dipping its head in water, recorded at 10 frames per second.
In both cases, we reconstructed each video frame at 512×512
pixel resolution by solving (6) using the SVD-based method
described in (7), followed by BM3D denoising.

B. SWIR FlatCam prototype

This FlatCam prototype consists of a Goodrich 320KTS-
1.7RT InGaAs sensor with a binary separable M-sequence
mask placed at distance d = 5mm. The sensor-mask distance
is large in this prototype because of the protective casing on
top of the sensor. We used a feature size of ∆ = 100µm for
the mask, which was constructed using the same photomask
process as for the visible camera. The sensor has 256 × 300
pixels, each of size w = 25µm, but because of the large
sensor-to-mask distance and mask feature size, the effective
system resolution is limited. Therefore, we binned 4×4 pixels
on the sensor (and cropped a square region of the sensor)
to produce sensor measurements of effective size 64 × 64.
We reconstructed images with the same 64 × 64 resolution;
example results are shown in Fig. 8.

(a)!

Binary mask!

Image sensor!Thickness ~ 5mm!

(b)!

64x64 Reconstructed images!

Fig. 8: Short wave infrared (SWIR) FlatCam prototype and results.
(a) Prototype consists of a Goodrich 320KTS-1.7RT sensor with a
separable M-sequence mask placed approximately 5mm from the
detector surface. (b) Reconstructed 64 × 64 images.

VI. DISCUSSIONS AND CONCLUSIONS

The mask-based, lens-free FlatCam design proposed here
can have a significant impact in an important emerging area of
imaging, since high-performance, broad-spectrum cameras can
be monolithically fabricated instead of requiring cumbersome
post-fabrication assembly. The thin form factor and low cost
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(a)!

(b)!

Fig. 7: Dynamic scenes captured by a FlatCam at video rates and reconstructed at 512× 512 resolution. (a) Frames from the video of hand
gestures captured at 30 frames per second. (b) Frames from the video of a toy bird captured at 10 frames per second.

of lens-free cameras makes them ideally suited for many
applications in surveillance, large surface cameras, flexible
or foldable cameras, disaster recovery, and beyond, where
cameras are either disposable resources or integrated in flat
or flexible surfaces and therefore have to satisfy strict thick-
ness constraints. Emerging applications like wearable devices,
internet-of-things, and in-vivo imaging could also benefit from
the FlatCam approach.

A. Advantages of FlatCam

We make key changes in our FlatCam design to move
away from the cube-like form-factor of traditional lens-based
and coded aperture cameras while retaining their high light
collection abilities. We move the coded mask extremely close
to the image sensor, which results in a thin, flat camera. We use
a binary mask pattern with 50% transparent features, which,
when combined with the large surface area sensor, enables
large light collection capabilities. We use a separable mask
pattern, similar to the prior work in coded aperture imaging
[15], which enables simpler calibration and reconstruction.
The result is a radically different form factor from previous
camera designs that can enable integration of FlatCams into
large surfaces and flexible materials such as wallpaper and
clothes that require thin, flat, and lightweight materials [31].

Flat form factor. The flatness of a camera system can be
measured by its thickness-to-width ratio (TWR). The form
factor of most cameras, including lens-based cameras, conven-
tional coded-aperture systems, pinhole cameras, and miniature
diffraction grating-based cameras, is cube-like; that is, the
thickness of the device is of the same order of magnitude as
the sensor width, resulting in TWR ≈ 1. Cube-like camera
systems suffer from a significant limitation: if we reduce

the thickness of the camera by an order of magnitude while
preserving its TWR, then the area of the sensor drops by two
order of magnitude. This results in a two orders of magnitude
reduction in light collection ability. In contrast, FlatCams are
endowed with flat form factors; by design, the thickness of
the device is an order of magnitude smaller than the sensor
width. Thus, for a given a thickness constraint, a FlatCam
can utilize a large sensing surface for light collection. In
our visible FlatCam prototype, for example, the sensor-to-
mask distance is 0.5mm, while the sensor width is about
6.7mm, resulting in TWR ≈ 0.075. While on-chip lensless
microscopes can also achieve such low TWRs, such systems
require complete control of the illumination and the subject to
be less than 1mm from the camera. We are unaware of any
other far-field imaging system that has a comparable TWR
of the FlatCam while providing reasonable light capture and
imaging resolution.

High light collection. The light collection ability of an
imaging system depends on two factors: its sensor area and the
square of its numerical aperture. Conventional sensor pixels
typically have an angular response of 40–60 degrees, which
is referred to as the sensors chief ray angle (CRA). The total
amount of light that can be sensed by a sensor is often limited
by the CRA, which in turn determines the maximum allowable
numerical aperture of the system. Specifically, whether we
consider the best lens-based camera, or even a fully exposed
sensor, the cone of light that can enter a pixel is determined
by the CRA.

Consider an imaging system with a strict constraint on
the device thickness Tmax. The light collection L of such
an imaging device can be described as L ∝ W 2N2

A, where
W denotes the width of the (square) sensor and NA denotes
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the numerical aperture. Since Wmax = Tmax/TWR, we have
L ∝ W 2N2

A ≤ (NATmax/TWR)2. Thus, given a thickness
constraint Tmax, the light collection of an imaging system is
directly proportional to the square of the numerical aperture
and inversely proportional to the square of its TWR. Thus,
smaller TWR leads to better light collection.

The numerical aperture of our prototype FlatCams is limited
by the CRA of the sensors. Moreover, half of the features in
our mask are opaque and block one half of the light that would
have otherwise entered the sensor. Realizing that the numerical
aperture of such a FlatCam is reduced only by a factor of

√
2

compared to an open aperture, yet its TWR is reduced by an
order of magnitude leads to the conclusion that a FlatCam
collects approximately two orders of magnitude more light
than a cube-like miniature camera of the same thickness.

B. Limitations of FlatCam

FlatCam is a radical departure from centuries of research
and development in lens-based cameras, and as such this
radical departure has its own limitations.

Achievable image/angular resolution. Our current proto-
types have low spatial resolution which is attributed to two
factors. First, it is well known that angular resolution of
pinhole cameras and coded aperture cameras decreases when
the mask is moved closer to the sensor [6]. This results
in an implicit tradeoff between the achievable thickness and
the achievable resolution. Second, the image recorded on the
image sensor in a FlatCam is a linear combination of the
scene radiance, where the multiplexing matrix is controlled by
the mask pattern and distance between mask and sensor. This
means that recovering the scene from sensor measurements
requires demultiplexing. Noise amplification is an unfortunate
outcome of any linear demultiplexing based system. While
the magnitude of this noise amplification can be controlled by
careful design of the mask patterns, they cannot be completely
eliminated in FlatCam. In addition, the singular values of the
linear system are such that the noise amplification for higher
spatial frequencies is larger, which consequently limits the
spatial resolution of the recovered image. We are currently
working on several techniques to improve the spatial resolution
of the recovered images.

Direct-view and real-time operation. In traditional lens-
based cameras, the image sensed by the image sensor is
the photograph of the scene. In FlatCam, a computational
algorithm is required to convert the sensor measurements
into a photograph of the scene. This results in a time-lag
between the sensor acquisition and the image display, a time-
lag that depends on processing time. Currently, our SVD-
based reconstruction operates at near real-time (about 10 fps)
resulting in about a 100 ms delay between capture and display.
While this may be acceptable for certain applications, there
are many other applications such as augmented reality and
virtual reality, where such delays are unacceptable. Order
of magnitude improvements in processing times are required
before FlatCam becomes amenable to such applications.
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