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Abstract. This paper presents a method to recover the 3D configura-
tion of a face in each frame of a video. The 3D configuration consists of
the 3 translational parameters and the 3 orientation parameters which
correspond to the yaw, pitch and roll of the face, which is important for
applications like face modeling, recognition, expression analysis, etc. The
approach combines the structural advantages of geometric modeling with
the statistical advantages of a particle-filter based inference. The face is
modeled as the curved surface of a cylinder which is free to translate
and rotate arbitrarily. The geometric modeling takes care of pose and
self-occlusion while the statistical modeling handles moderate occlusion
and illumination variations. Experimental results on multiple datasets
are provided to show the efficacy of the approach. The insensitivity of
our approach to calibration parameters (focal length) is also shown.

1 Introduction

Face tracking is a crucial task for several applications like face recognition, hu-
man computer interaction, etc. Most of these applications require actual 3D
parameters of the location of the head. In this paper, we propose an approach
based on a cylindrical model for the head for reliable tracking of position and
orientation of the head under illumination changes, occlusion and extreme poses.

There has been significant work on facial tracking using 2D appearance based
models[1][2][3][4]. Quite clearly, such 2D approaches do not explicitly provide the
3D configuration of the head. Recently, several methods have been developed
for 3D face tracking. [5] uses a closed loop approach that utilizes a structure
from motion algorithm to generate a 3D model of the face. In [6], techniques in
continuous optimization are applied to a linear combination of 3D face models.
[7] proposes a hybrid sampling solution using both RANSAC and particle filters
to track the pose of a face. [8] shows examples of head tracking by posing it as
a nonlinear state estimation problem. A cylindrical face model for face tracking
has been used in [9]. In their formulation, they assume that the inter-frame
warping function is locally linear and that the inter-frame pose change occurs
only in one of the six degrees of freedom of the rigid cylindrical model. In our
approach, we do not make any such assumptions. This improves both tracking
accuracy and robustness. Moreover, unlike [9] we do not use information about
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the camera calibration parameters. Instead we analytically show the insensitivity
of our approach to errors in focal length.

2 The Geometric Model

The choice of the model to represent the facial structure is very crucial for the
problem of face tracking. There are several algorithms that do not assume an
explicit structural model but track salient points, features or 2D patches [10]
[11][4][2]. On the other extreme, there are algorithms like [5] that use a set of 3D
laser-scanned heads. Though a planar model will probably be the simplest one
to use, it does not have the capability to estimate the 3D configuration of the
face. On the other hand, using a complicated face model makes the initialization
and registration process difficult.

Similar to [9], we use a cylindrical model, though with an elliptical cross-
section, to represent a face. Assuming that our cylindrical model reasonably
approximates the 3D structure of a face, the problems related to pose and
self-occlusion get automatically taken care of. Due to the absence of the cali-
bration parameters, people usually assume orthographic projection. The use of
orthographic projection is restrictive and introduces confusion between scale and
pitch. These reasons motivate us to use perspective projection model. Since we
do not know the camera focal length for un-calibrated videos, we show that our
approach for pose recovery is robust to the errors in focal length assignment.

Let us assume that the true focal length of the camera imaging a cylinder
centered at (X0, Y0, Z0) with height H and radius R be f0. Let us assume that
we erroneously set the focal length to kf0 (without loss of generality k ≥ 1). The
true projections of feature points on the cylinder are given by

xf =
f0Xf

Z0 + zf

yf =
f0Yf

Z0 + zf

where, Zf = Z0 + zf (1)

The projection of feature points of another cylinder with same dimensions
but placed at (X0, Y0, kZ0) and imaged by a camera of focal length kf0 are

x̂f =
kf0Xf

kZ0 + zf

= xf

[

1 +
(k − 1)zf

kZ0 + zf

]

= xf [1 + δf ] (2)

ŷf =
kf0Yf

kZ0 + zf

= yf

[

1 +
(k − 1)zf

kZ0 + zf

]

= yf [1 + δf ] (3)

If δf � 1, the feature positions for the cylinder at (X0, Y0, Z0) imaged by
camera f0 is equivalent to a cylinder at (X0, Y0, kZ0) imaged by a camera with
focal length kf0. Therefore, when δf is small, our estimates of yaw, pitch and
roll are reasonably accurate.

If the depth variations in the object (cylinder in our case) are smaller than
the distance of the object from the camera center (i.e., zf � Z0) and the field
of view is reasonably small, then

δf =
(k − 1)zf

kZ0 + zf

<
kzf

kZ0 + zf

<

zf

Z0

1 +
zf

kZ0

� 1 (4)



The choice of features is extremely important for the task of 3D pose estima-
tion of a moving face. The features should be easy to detect, robust to occlusions,
changes in pose, expression and illumination. In this paper, we propose a hybrid
approach which makes use of the advantages of a purely geometric approach
and the power of statistical inference. We use an extremely simple and easily
computable feature to stress-test the approach. We superimpose a rectangular
grid all around the curved surface of our elliptical cylinder. The mean intensity
for each of the visible grids forms the feature vector. Robust statistics makes the
feature robust to moderate illumination changes, expressions and occlusions.

3 Tracking Framework

Once the structural model and feature vector have been fixed, the goal is to
estimate the configuration (or pose) of the moving face in each frame of a given
video. This can be viewed as a dynamic state estimation problem. Here the state
consists of the six 3D configuration parameters. Particle filtering [12][13] is an
inference technique for estimating the unknown dynamic state θ of a system from
a collection of noisy observations y1:t. The two components of this approach are
the state transition model which models the state evolution, and the observation
model which specifies the state-observation dependence:

State transition model: θt = f(θt−1, ut), (5)

Observation model: yt = g(θt, vt), (6)

where ut is the system noise while vt is the observation noise. In general, the
functions f and g can also be time-dependent. The particle filter approximates

the desired posterior pdf p(θt|y1:t) by a set of weighted particles {θ
(j)
t , w

(j)
t }N

j=1,

where N denotes the number of particles. The state estimate θ̂t is recovered
from the pdf as the maximum likelihood (ML) estimate. To keep the tracker as
generic as possible, we use a random-walk model as the motion model:

θt = θt−1 + ut, (7)

where ut is normally distributed about zero. Based on the domain knowledge,
one can come up with a motion model that will be capable of estimating the pdf
better with lesser number of particles.

The observation model involves the feature vector described in the previous
section. In our framework, we can rewrite the observation equation as:

zt = Γ{yt; θt} = Ft + vt, (8)

where yt is the current frame (the gray scale image), Γ is the mapping that
computes the feature vector given an image yt and a configuration θt, zt is the
computed feature vector and Ft is the feature model. The feature model is used to
compute the likelihood of the particles (which correspond to different proposed
configurations of the face). For each particle the likelihood is computed using



the average sum of squared differences (SSD) between the feature model and the
mean vector zt corresponding to the particle.

On one extreme, the feature model can be a fixed template, while on the other
hand one can use a dynamic template e.g, Ft = ẑt−1. Similar to [14], we refer to
the fixed template Ft = F0 as the lost model while the dynamic component Ft =
ẑt−1 as the wander model. It is worthwhile to note that the wander component
is capable of handling appearance changes due to illumination, expression, etc.
as the face translates/rotates in the real world, while the lost component is
resistant against drifts. In the current implementation, the likelihood of a particle
is computed as the maximum of the likelihoods using the lost and the wander
model. This gives us the capability both to handle appearance changes and to
correct the estimation if the wander model drifts. The tracker performs well
with as few as 200 particles. The performance does not show any appreciable
improvement as we increased this number.

We use robust statistics in our likelihood model in order to make the feature
robust to changes in illumination, expression and occlusions. We trust only the
top half of the means and treat the rest as outliers as follows:

p(yt|θ
(j)
t ) = e−λdist where, dist =

∑

m,n η(m, n)d(m, n)
∑

m,n η(m, n)
(9)

where η(m, n) is the visibility indicator variable, while d(m, n) is computed as:

d(m, n) =

{

(Ft(m, n) − z
(j)
t (m, n))2 if d(m, n) < c

c otherwise

where, c = median({d(m, n)}) (10)

4 Experimental Results and Conclusion

Tracking under extreme poses: We conducted tracking experiments on 3
datasets (Honda/UCSD dataset [15], BU dataset [9] and Li dataset [16]). These
datasets have numerous sequences in which there are significant illumination
changes, expression variation and people are free to move their heads arbitrarily.
Figure 1 shows few of the frames from three videos with grid points on the esti-
mated cylinder overlaid on the image frame. The first and second columns show
the ability of the tracker to maintain tracks in spite of considerable occlusion.
The tracker does well even when confronted with extreme poses as shown in
the third column. Moderate expressions do not affect the feature since it is the
mean intensity within a small surface patch on the face. During certain severe
expression changes robust statistics helps maintain the track. The tracker is able
to maintain the track all along the sequences.

Ground Truth Comparison: The BU dataset [9] provides the ground
truth for the pose of the face in each frame. We conducted tracking experiments
on the BU dataset and compared the yaw, pitch and roll estimated by the tracker



Frame # 20    −   (0, −1, 3) 

Frame # 32   −   (2, 0, −4) 

Frame # 114   −   (5, −17, −1) 

Frame # 433   −   (4, −2, −3) Frame # 73    −   (−5, −70, −5) 

Frame # 93    −   (5, 9, −37 ) 

Frame # 127    −   (−3, −2, 32) 

Frame # 445   −   (7, −4, 16) 

Frame # 448   −   (4, 1, 6) 

Frame # 73    −   (−5, −70, −5) 

Frame # 93    −   (5, 9, −37 ) 

Frame # 127    −   (−3, −2, 32) 

Fig. 1. Tracking results under severe occlusion, extreme poses and different illumi-
nation conditions. The cylindrical grid is overlaid on the image plane to display the
results. The 3-tuple shows the estimated orientation (roll, yaw, pitch). The last column
shows the cylindrical model in the pose estimated for the sequence in the third column.

to the ground truth. Figure 2 shows the comparison for three sequences. We see
that the tracker accurately estimates the pose of the face in most frames.

Recognition with non-overlapping poses: Most recognition methods re-
quire the gallery and probe images to be in similar pose. Since the tracking
method maintains explicit pose for each frame, we do not need this. We show
this by performing recognition on non-overlapping poses. The closest poses in
the gallery and the probe differ by at least 30 degrees. We used 10 subjects from
the Honda/UCSD dataset [15] for this experiment. For each frame we build a
texture mapped cylinder using the tracked pose. We used the minimum sum of
squared distance between a gallery model and a probe model as the distance
between two videos. This is a very challenging experiment since the poses ex-
hibited by the gallery videos and those exhibited by the probe videos are very
different. In spite of this, we obtained 100% recognition rate in this experiment.

Fig. 2. Each row shows the 3 orientation parameters. The red/dashed curve depicts
the ground truth while the blue/solid curve depicts the estimated values.

Conclusions: We have proposed a method for tracking the facial pose in
a video. The tracker is robust to moderate occlusions and illumination changes



and maintains track even during extreme poses. We have also shown, how such
3D pose tracking can help in problems like face recognition from videos.
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