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Abstract

Mirrors have been used to enable wide field-of-view

(FOV) catadioptric imaging. The mapping between the in-

coming and reflected light rays depends non-linearly on the

mirror shape and has been well-studied using caustics. We

analyze this mapping using two-plane light field parameter-

ization, which provides valuable insight into the geometric

structure of reflected rays. Using this analysis, we study the

problem of generating a single-viewpoint virtual perspec-

tive image for catadioptric systems, which is unachievable

for several common configurations.

Instead of minimizing distortions appearing in a single

image, we propose to capture all the rays required to gen-

erate a virtual perspective by capturing a light field. We

consider rotationally symmetric mirrors and show that a

traditional planar light field results in significant aliasing

artifacts. We propose axial light field, captured by mov-

ing the camera along the mirror rotation axis, for efficient

sampling and to remove aliasing artifacts. This allows us

to computationally generate wide FOV virtual perspectives

using a wider class of mirrors than before, without using

scene priors or depth estimation. We analyze the rela-

tionship between the axial light field parameters and the

FOV/resolution of the resulting virtual perspective. Real re-

sults using a spherical mirror demonstrate generating 140◦

FOV virtual perspective using multiple 30◦ FOV images.

1. Introduction

Image distortions from a curved mirror have been ex-

ploited to enable wide FOV catadioptric imaging. Baker

and Nayar [1] presented the complete class of single-

viewpoint catadioptric systems (SVCS). Theoretically,

SVCS is achievable using only specific camera-mirror pairs.

Some of these configurations such as a perspective camera

with a sphere is not practical, since it requires the viewpoint

and the center of the sphere to coincide. Previous efforts

have mainly focused on removing image distortions in the

resulting non-single viewpoint image, by designing mirror

shapes or using scene priors/3D estimation.

Figure 1. (Left) 3 out of 25 images captured by moving a camera

towards a mirror ball. (Right) Cube map output depicting a 140◦

FOV perspective image from a viewpoint inside the ball.

In this paper, we propose to computationally achieve a

single-viewpoint catadioptric system, by capturing all the

required rays to generate a virtual perspective from a view-

point inside the mirror. We refer to these set of rays as a

virtual light field. The virtual light field can be acquired by

capturing multiple images by moving the camera. A brute

force approach would be to capture the entire 4D light field

(LF) by a dense sampling and choose the necessary rays to

generate the virtual perspective. However, this is impracti-

cal and inefficient. Thus, it is important to understand the

geometric structure of the reflected light rays from a mirror

to devise an efficient sampling scheme, which reduces the

number of required images.

The structure of the reflected light rays from a mirror

has been well-studied using caustics/catacaustics, which de-

scribe the envelope of reflected rays or a surface tangent to

all the rays. Instead, we formulate and analyze the map-

ping of incoming and reflected light rays for a mirror using

two-plane light field parameterization, which has been ex-

tensively used to study Lambertian surfaces and their asso-

ciated light fields. We show that this analysis provides novel

insight into the geometry of reflected rays from a mirror.

Using this analysis, we show that for rotationally symmet-
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ric mirrors, the rays in the virtual light field are concentrated

on certain 3D slices of the 4D light field when the virtual

viewpoint is on the mirror rotation axis. Conventionally, a

4D light field is captured by placing the viewpoints on a 2D

plane. We refer to it as planar light field. We show that

for rotationally symmetric mirrors, a planar light field does

not efficiently capture the virtual light field. We then pro-

pose axial light field, captured by placing the optical center

of a perspective camera on the rotation axis of the mirror

and moving the camera along it. The axial light field in-fact

captures the same 3D slices of the 4D light field on which

the information in the virtual light field is concentrated, re-

sulting in an efficient sampling.

1.1. Contributions

• We analyze mirror reflection using two-plane light

field parameterization, which provides valuable insight

into the geometric structure of reflected rays.

• We show that a single-viewpoint catadioptric system

can be computationally achieved by capturing all the

required rays to generate a virtual perspective.

• We propose axial light field to efficiently sample the

rays in the virtual light field for rotationally symmetric

mirrors.

• We show that resolution properties of such a catadiop-

tric system can be modified by varying the focal length

of captured images.

1.2. Benefits and limitations

By capturing a light field instead of a single image with a

mirror, wide FOV single-viewpoint perspective images can

be generated for a wider class of mirrors. This enables com-

mon configurations such as a sphere/parabola with perspec-

tive cameras. Capturing a light field allows virtual perspec-

tive generation without any scene priors, 3D reconstruction,

distortion correction, or non-linear optimization. In fact,

the virtual viewpoint can also be varied inside the mirror

to generate multiple virtual perspective images. However,

axial light field requires precise camera motion along the

rotation axis and the scene to be static during capture time.

A multiple camera configuration similar to camera arrays is

difficult since the cameras would occlude each other.

1.3. Related work

Single-viewpoint catadioptric systems: Baker and Na-

yar [1] presented the complete class of single-viewpoint

catadioptric configurations with detailed solutions and de-

generate cases. Nalwa [14] produced a 360◦ × 50◦ FOV

single-viewpoint camera using four planar mirrors in a pyra-

midal configuration along with four perspective cameras.

SVCS can be achieved by placing the optical center of a

perspective camera at the (a) center of a spherical mirror

or (b) foci of an elliptical/hyperbolic mirror [17, 25], and

by placing an orthographic camera parallel to the axis of

a parabolic mirror. A spherical mirror with a perspective
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Figure 2. (Left) Parameterization of mirror reflection in 2D.

(Right) A point light source on x plane leads to a vertical line

in x-u light field space. If the light source is moved by a distance

z, the light field gets sheared according to z as shown in bottom.

camera is unpractical and leads to a non-single viewpoint

or multi-viewpoint image (MVI) when the camera is placed

outside the sphere. We show how to generate a perspective

image using multiple MVI’s.

Distortions in catadioptric systems: Several researches

have studied image distortions in wide-angle lenses and

catadioptric systems [23, 21, 20, 18]. Swaminathan et al.

[23] proposed to use the cusp of the caustic of rotation-

ally symmetric catadioptric systems as the virtual viewpoint

to minimize distortions. In [22], authors proposed to de-

sign mirror shapes to minimize image distortions. Yu and

McMillan [26] proposed a framework based on general lin-

ear cameras to assist mirror design and characterize dis-

tortions in catadioptric systems. In [21], authors derived

a metric to quantify caustic distortions and presented an ap-

proach to compute minimally distorted views using priors

on scene structure. It was argued that a perspective im-

age without distortions cannot be achieved from a single

MVI without knowing the scene structure. In contrast, we

show that a perspective image can be generated from mul-

tiple MVI’s without the knowledge of scene structure for

rotationally symmetric catadioptric systems, by moving the

camera along the rotation axis.

Axial cameras: In an axial camera, all the projection

rays pass through a single line in space [15]. Cameras

falling into this class include (a) stereo systems consisting

of multiple perspective cameras with collinear optical cen-

ters, (b) non-central catadioptric cameras with a rotation-

ally symmetric mirror and a pinhole camera placed on the

axis of symmetry, and (c) x-slit cameras [6] and their spe-

cial case of linear pushbroom cameras [9]. Our axial light

field is similar to these axial cameras: we capture multiple

perspective images by moving the camera along the rota-

tion axis of a rotationally symmetric mirror. In contrast to

a radial imaging system [11], the camera does not view the

scene directly and the mirror is not hollow (scene is on same

side of the mirror as the camera).

Light fields: The concept of light field as a represen-

tation of all rays of light in free-space was proposed by

Levoy and Hanrahan [13] and Gortler et al. [8]. Chai et

al. [3] presented frequency domain analysis for sampling

and interpolation of light fields. Isaksen et al. [10] pro-
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posed dynamic reparameterization of light fields for inter-

active rendering. Light fields captured using camera arrays

have been used for synthetic aperture photography and dig-

ital refocusing [12, 24]. Frequency domain analysis of light

transport has been presented in [5], which was extended to

gradients [16] for efficient rendering. Ray-space analysis

for mirrors has been studied using path perturbation for fast

rendering [4]. We use similar light field analysis and show

novel insight into wide FOV virtual perspective generation.

2. Light fields for curved mirrors

We first formulate mirror reflection of light field using

two-plane parameterization and understand its properties in

flatland. Consider a mirror surface in 2D given by z = f(x)
(Figure 2). We parameterize the light field by x-u with the

x plane at a distance l from the mirror. Similar to [3], the

u plane is set parallel to the x plane at unit distance and its

coordinate is expressed in the local frame of x. Consider a

ray in direction ~rin = (uin,−1) originating from xin. This

ray intersects the mirror surface at f(x0) with the normal

vector ~n = (−fx(x0), 1). The reflected ray ~rout intersects

the outgoing LF planes at (xout, uout). Using normalized

vectors (~̂v = ~v/|~v|), the reflection is described as

~̂rout = 2(~̂n · ~̂rin)~̂n − ~̂rin , (1)

which gives

uout =
2fx(x0) − (1 − fx(x0)

2)uin

1 − fx(x0)2 + 2fx(x0)uin

(2)

xout = xin + (l − f(x0))(uin − uout). (3)

Note that the above mapping includes the unknown point of

reflection x0, which needs to be solved for using the follow-

ing constraint: x0 = xin + (l − f(x0))uin.

2.1. LF visualization for common configurations

We first consider reflected light fields due to real scene

points outside the mirror. Consider a point source at xin,

emitting rays in different directions. The incoming light

field is a vertical line in x-u space. For a point light source

on a plane at distance z from the x plane, the light field gets

sheared [5] according to z (Figure 2). This incoming light

field gets reflected by the mirror.

For a flat mirror, f(x) = fx(x) = 0 for all x. Thus,

uout = −uin and xout = xin + 2luin. The incoming light

field therefore gets sheared (Figure 3(a)), showing that flat

mirror shifts the viewpoint. In contrast, for a curved mirror,

the reflection of a scene point traces a curve in the output

light field, as shown in Figure 3(a) for a sphere.

Light rays for a virtual viewpoint: Now consider all

the rays reflected from a radiant point inside the mirror.

This scenario is similar to having a virtual viewpoint inside

the mirror. All the rays which would pass through the vir-

tual viewpoint after getting reflected by the mirror should be

captured to generate a virtual perspective. We refer to these

set of rays as a virtual light field. A SVCS enforces the
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Figure 3. (a) Reflected light fields, (b) planar LF sampling and (c)

axial LF sampling in flatland.
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Figure 4. The set of all rays which pass through the virtual view-

point (within a FOV) after reflecting by the mirror is termed as

virtual LF L(x, y, u, v). Each camera in a planar LF captures a

u-v slice P at spatial location (n, m). In an axial LF, each camera

captures a sheared 2D slice Q depending on its distance z.

constraint that all these reflected rays should pass through

a single viewpoint outside the mirror, at which a pinhole

camera is placed. Thus, it enforces the virtual light field to

be a line in x-u space. As expected, this is a hard geometric

constraint. Figure 3(a) shows the virtual light field for a vir-

tual viewpoint inside a sphere. In general, the virtual light

field for a curved mirror will form a curve, which cannot be

captured by a single viewpoint. This curve, however, could

be sampled by capturing multiple images.

2.2. Capturing the virtual light field

Let L(x, u) be the virtual light field in flatland. In a

planar light field, the viewpoint is changed along the x
axis. Thus, a camera placed at x = xi produces an image

i(u) = L(xi, u), which samples a vertical slice of the light

field (Figure 3(b)). In an axial light field, the viewpoint is

changed perpendicular to the x axis. Here, each image cor-

responds to a sheared slice i(u) = L(uzi, u), where zi is

the distance of the viewpoint from the x plane (Figure 3(c)).

Next, we analyze the sampling in 4D and show that the ax-

ial sampling is aligned with the structure in the virtual light

field for rotationally symmetric mirrors.

3. Light field based SVCS

As explained earlier, a traditional SVCS requires all rays

in the virtual light field to pass through a single viewpoint.

This restricts the mirror-camera configuration to those pre-

sented in [1]. Theoretically, by capturing multiple images

(light field), single-viewpoint virtual perspectives can be

obtained for any mirror by sampling all the required rays.

This in practice would be inefficient and for a general mir-

ror, such a sampling pattern will not have any regular struc-

ture. Our goal is to achieve a middle ground, i.e., signifi-

cantly enlarge the family of mirrors, while keeping the sam-

pling overhead minimal.
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Figure 5. Planar LF sampling. (a) x-u-v slices of virtual LF and 2D

camera slices (planes) at various x for y = 0. Only the camera on

the axis captures a cone of rays. (b) Similar plot for y > 0 shows

that information in other slices is sparse. (c) A planar LF samples

vertical segments in x-u space.

-0.2 -0.1 0 0.1 0.2
-0.20
-0.15
-0.10
-0.05

0
0.05
0.10
0.15
0.20

u

v

-0.2 -0.1 0 0.1 0.2-0.2 -0.1 0 0.1 0.2
-0.20
-0.15
-0.10
-0.05

0
0.05
0.10
0.15
0.20

-0.20
-0.15
-0.10
-0.05

0
0.05
0.10
0.15
0.20

u

v

-15 -10 -5 0 5 10 15

-0.20
-0.15
-0.10
-0.05

0

0.05
0.10
0.15
0.20

x

u

-15 -10 -5 0 5 10 15

-0.20
-0.15
-0.10
-0.05

0

0.05
0.10
0.15
0.20

-0.20
-0.15
-0.10
-0.05

0

0.05
0.10
0.15
0.20

x

u

-15 -10 -5 0 5 10 15
-0.2

0

0.2
-0.2

-0.1

0

0.1

0.2

x

u

v

-15 -10 -5 0 5 10 15
-0.2

0

0.2
-0.2

-0.1

0

0.1

0.2

x

u

v

(a) x-u-v slices (b) x-u slices (c) u-v slices

Figure 6. Axial LF sampling. (a) x-u-v slices of virtual LF and

2D camera slices (planes) for various z. The camera planes align

with the circle in each slice and thus each camera captures a cone

of rays. (b) Information in virtual LF is along slanted lines in x-u

space, which is captured by moving the camera along the rotation

axis. (c) Each camera in axial LF captures a cone of rays, which

contributes to a circle of pixels in the virtual perspective image.

Consider the class of mirrors which are rotationally sym-

metric. These mirrors can be obtained by rotating a 2D

curve along an axis. For such mirrors, if the virtual view-

point is on the rotation axis, all the rays in the virtual light

field pass through a line (the rotation axis). Thus, this con-

figuration relaxes the fixed viewpoint constraint in SVCS

to a line. The virtual light field now has structure, which

can be exploited for efficient sampling. We show that for

rotationally symmetric mirrors, an axial light field provides

efficient sampling of the virtual light field. Such a sampling

allows generation of perspective images from virtual view-

points on the rotation axis inside the mirror, without any

scene priors, 3D estimation, or distortion correction.

3.1. Rotationally symmetric mirrors

To understand such sampling, consider a sphere of ra-

dius r centered at origin and a desired virtual viewpoint at

distance d inside the mirror. Consider LF planes at a fi-

nite distance as shown in Figure 4. Let L(x, y, u, v) be the

4D virtual LF. Note that the virtual LF only contains the

rays that pass through the virtual viewpoint, not all the rays.

While catacaustic with radiant point inside the mirror de-

scribes the envelope of all the reflected rays, the virtual LF

describes the intersection of reflected rays with LF planes.

Planar LF sampling: A camera located at x = n,

y = m on the xy LF plane captures a planar 2D slice

P (u, v) = L(n,m, u, v) of the virtual LF. Since it is not

possible to show the resulting LF in 4D, Figure 5(a) shows

the x-u-v slice of L(x, y, u, v) at y = 0. Figure 5(a) also

shows the rays captured by each camera (shown as planes)

at various x locations for y = 0. Note that only when the

location of the camera coincides with the axis, the camera

captures a cone of rays as a circle in the image plane. Oth-

erwise, it captures few rays (a maximum of three rays for

sphere as derived in supplementary materials). Figure 5(b)

shows a different 3D slice L(x, y = 5, u, v) for non-zero

y. Notice that this slice contains only a few rays (denoted

by ×). Thus, the information in slices L(x, y, :, :) of the vir-

tual LF is sparse, unless x, y lie on the mirror axis. Next

we show that information is concentrated in different kind

of slices and an axial LF captures it.

Axial LF sampling: Consider a camera located on the

axis at a distance z from the xy LF plane. This camera cap-

tures a planar 2D slice Q(u, v) = L(uz, vz, u, v) of the vir-

tual LF. Notice that this 2D slice (image) is different from

the one in the planar LF case. Figure 6(a) plots the slices

L(uz, vz, u, v) of the virtual LF for several z along with

the rays captured by each camera (shown as planes). No-

tice that for each slice of L(uz, vz, u, v), the central cone

of rays can be captured by the corresponding camera. The

x-u slices of L(x, y, u, v) show that the information in vir-

tual LF is concentrated along lines passing through the cen-

ter (axis). Each camera in a planar LF captures a vertical

segment in x-u slice. In contrast, each camera in an axial

LF captures a titled line segment, which is in-fact aligned

with the structures in the virtual LF and is a better sampling

strategy. The u-v slices show how each camera captures a

cone of rays as a circle in the image plane.

In summary, the information in the virtual LF for a rota-

tionally symmetric mirror is concentrated in a 3D subset of

rays L(uz, vz, u, v), which is captured efficiently by an ax-

ial LF. In contrast, a planar LF captures a 4D subset of rays.

Thus, an axial LF provides better sampling than a planar LF

to generate a virtual perspective using the same number of

images.

Interpretation using caustics: A caustic [2, 20] repre-

sents a surface that is tangent to all the rays passing from a

real viewpoint and reflected by the mirror. Only if the caus-

tic is a point, the camera+mirror system becomes a SVCS.

Thus, the common rays shared by a real camera and a virtual

camera are those that pass through the virtual viewpoint and

are tangent to the caustic. Since the incoming ray, normal

of the reflection point, and the reflected ray should lie on

a single plane, the rotation axis and real and virtual view-

points define a plane of reflection (Figure 7). Note that only

the rays on this plane that are tangent to the caustic can be

captured at the real viewpoint. When the virtual and real

viewpoints are both on the rotation axis, the plane of reflec-

tion degenerates into the mirror rotation axis. Thus, there

is an infinite family of planes that contain the rotation axis,

and all rays on all these planes (a cone of rays) can be cap-

tured at the real viewpoint. Since in axial LF, all the real

viewpoints lie on the rotation axis and capture a cone of

rays, it is more efficient than planar LF sampling.
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4. Virtual perspective image from axial LF

We derive the parameters of the axial LF for a sphere

of radius r and virtual viewpoint at a distance d inside the

sphere (Figure 8(a)). Let θv be the angle of ray from the

virtual viewpoint, intersecting the sphere at an angle φ as

shown. Then,

tan θv =
r cos φ

r sin φ − r + d
. (4)

After reflection, the ray passes through (0, r + z), which

gives

r + z − r sin φ = −r cos φ tan(2φ − α) (5)

sin φ =
r(z + 2r − d)

2(r − d)(z + r)
. (6)

For a given θv, one can compute φ using (4) and z using

(6). If a real perspective camera is placed at distance z from

the top of the sphere, then a cone of rays corresponding to

θv can be captured as a cone of rays corresponding to θr,

where θr = arctan( r cos φ
z+r−r sin φ ). Figure 9 depicts how to

generate a virtual perspective image from axial LF images.

4.1. Axial LF viewpoints

For a given virtual FOV, the positions at which the cam-

era should be placed along the axis can be obtained from

the above equations (for sphere). Figure 10(a) plots the ax-

ial LF viewpoints with respect to θv for several rotationally

symmetric mirrors. Each mirror was generated by revolv-

ing a 2D curve along the rotation axis, which is shown in

Figure 8(c). For mirrors other than sphere, θr and z were

computed numerically for each θv. Notice that for a sphere,

the virtual viewpoint location increases rapidly after 140◦

FOV compared to a parabola. For a conical mirror, smaller

θv cannot be captured since it leads to negative z, which is

physically impossible.

4.2. Angular samples of axial LF

Figure 10(b) plots θr with respect to θv for the above

mirrors. Note that each θr is associated with corresponding

z shown in Figure 10(a). Some interesting observations can

be made here. For a sphere, the maximum FOV required

in any input image is less than 20◦ and an output FOV of
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140◦ can be easily achieved. However, note that θr starts

decreasing after a certain extent as θv increases. This im-

plies that large angles (circles) in virtual image are obtained

from smaller angles (circles) as θv increases. Therefore,

it would lead to blurring of the virtual image in periphery

and z dependent angular resolution. We analyze the reso-

lution properties in detail in Section 4.3. A parabolic mir-

ror reduces blurring compared to sphere since θr does not

decrease with increasing θv. Interestingly, for a concave

sphere, θr increases with θv and thus it would provide even

better angular resolution in periphery. However, concave

mirrors restrict the virtual FOV, because θr keeps increasing

and exceeds the FOV of the real camera. The simulations

shown in Section 5 confirm these observations.

4.3. Resolution analysis

Consider an infinitesimal area dA on the image plane,

which images an infinitesimal solid angle dν of the scene.

The resolution of an imaging system is then defined as dA
dν .

For a perspective camera with focal length fr, the resolution

equals
f2

r

cos3 θr
, where θr is the angle between the optical axis

and line joining the optical center to the center of dA. For

a catadioptric system, the resolution at angle θv is a factor
s2

v

s2
r

of the real camera resolution [1], where sv and sr are

the length of rays as shown in Figure 8(b). For a sphere, we

analytically derive the factor as follows:

s2
v

s2
r

=
(r cos φ)2 + (r sinφ − r + d)2

(r cos φ)2 + (z + r − r sinφ)2
=

(r − d)2

(z + r)2
. (7)

503



0 20 40 60 80
0

100

200

300

400

500

Angle of ray in virtual image: θv [°]

L
o

c
a

ti
o

n
 o

f 
c
a

m
e

ra
: 
z
 [
m

m
]

 

 

Sphere

Parabola

Concave
Sphere

Cone

(a)

0 50 100 150 200

1

2

3

4

5

Location of camera: z [mm]

M
a

g
n

if
ic

a
ti
o

n
 f
a

c
to

r 
o

f 
fo

c
a

l 
le

n
g

th
: 
β

 

 

Sphere

Concave
Sphere

(c)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Radius in virtual image [pixels]

R
a

d
iu

s
 i
n

 c
a

p
tu

re
d

 i
m

a
g

e
s
 [
p

ix
e

ls
]

 

 

Constant focal length

Variable focal length

(d)

Sphere

Parabola

Concave
Sphere

Cone

0 20 40 60 80
0

10

20

30

40

Angle of ray in virtual image: θv [°]

A
n

g
le

 o
f 
ra

y
 i
n

 c
a

p
tu

re
d

 i
m

a
g

e
: 
θ

r 
[°

]

 

 

(b)

Input FOV limit

Figure 10. (a) Plot of axial LF viewpoint z for each θv for various mirrors. (b) Corresponding plot of θr . Note that θv and θr are half-angle

of FOV. The horizontal line depicts the FOV of input images and restricts the FOV of virtual image. (c) Change in focal length β required

to maintain angular resolution similar to a perspective camera. (d) By changing the focal length of the captured images, input circle sizes

can be modified to change virtual image resolution characteristics.

Note that as θv changes, the position of the real camera z at

which the corresponding cone of rays is captured changes,

thereby changing the resolution.

Typically, the resolution of a catadioptric system can be

changed only by changing the mirror shape. Mirror shapes

have been proposed to achieve constant resolution in space

or angle [7]. However, capturing multiple images gives an

extra degree of flexibility, since each image can have dif-

ferent camera parameters. The angular resolution of virtual

image can be made similar to a conventional perspective

image (not a constant angular resolution) by varying its res-

olution according to (kfv)2/cos3 θv, where k is the change

in focal length to achieve wider FOV for the same number

of pixels. Thus, for all θv ,

(kfv)2

cos3 θv
=

s2
v

s2
r

f2
r

cos3 θr
=

(r − d)2

(z + r)2
f2

r

cos3 θr
(8)

should be satisfied. We define

β(z) =
fr

kfv
=

(z + r) cos3/2 θr

(r − d) cos3/2 θv
(9)

as the required change in the focal length of the real camera

with respect to the viewpoint z. Note that β(z) = 1 implies

same focal length fr for all images. Thus, the axial LF

should be captured by moving the camera away from the

sphere while increasing its focal length.

Effect in image space: Note that the virtual image is

obtained by copying a resized circle of pixels from each

captured image. The circle size and its resizing depends on

θr and θv. For viewpoints away from the sphere, the inner

circle of the captured image is resized to the outer circle of

the virtual image. This explains the blurring for larger θv

in the virtual image. This is also evident from Figure 10(b)

as θr decreased with θv for large θv, when focal length fr

is not changed. By changing fr based on (9), the size of

each captured circle can be made larger to achieve a desired

resolution as shown in Figure 10(d).

Concave mirrors reverse the above relationship (θr does

not decrease as θv increases). Thus, concave mirrors offer

less blurring in image periphery. Figure 10(c) shows that

the required change in focal length β is small for a concave

sphere compared to a convex sphere. For convex sphere, β
could become physically impractical for large θv.

5. Simulations and real results

Simulations: We simulated axial LF images for several

mirrors using POV-Ray software. The mirror is placed in-

side a cube whose walls are painted with checkerboard of

different colors. The axial LF was generated by moving the

camera non-uniformly in z to maintain equal increments in

θv . Figure 11 shows a near and a far image for each axial

LF, along with the generated virtual perspective image. In

each case, the virtual image was generated in the same man-

ner as depicted in Figure 9, with z and θr depending on mir-

ror shape for each θv. We did not use any image/scene pri-

ors, non-linear optimization, or distortion correction. While

the captured images show severe distortions, the resulting

virtual image is close to ground truth (shown in Figure 12).

All straight lines on all scene planes are mapped as straight

lines in the image. As discussed previously, for a sphere,

the virtual image has more blur in periphery compared to a

parabola and concave mirror.

Ray interpolation: In practice, the camera cannot be

placed at all z corresponding to each θv . This requires to

interpolate rays using images from neighboring axial view-

points. In traditional LF, appropriate ray interpolation is

performed by assuming scene depths to be within zmin and

zmax and defining a constant depth plane at zopt, where
1

zopt
= ( 1

zmin
+ 1

zmax
)/2 [3]. For a spherical mirror, all

the scene depths lie within a virtual depth range inside the

mirror [19]. We therefore use a virtual depth plane passing

through the virtual viewpoint, which is a good approxima-

tion of the constant depth plane, and compute rays using bi-

linear interpolation (Figure 9). This gives better results than

using an infinite depth assumption as shown in Figure 12.

5.1. Real results

We demonstrate our technique by generating 140◦ FOV

virtual perspective images from inside a sphere using an ax-

ial LF. We use a stainless steel mirror ball of radius 38.1
mm, imaged with a Pointgrey Dragonfly camera mounted

on a robot arm that allows precise motion. The camera uses
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shapes assuming the same virtual FOV of 140◦. The green and

blue regions depict rays which cannot be captured due to limited

z positions and limited FOV of the input camera, respectively.
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Figure 12. (Top) Ground truth for Figure 11 and virtual images for

sphere using different interpolation methods. (Bottom) Incorrect

estimation of the center of sphere as a percentage of sphere radius

along x axis (perpendicular to camera motion direction) leads to

increased distortions.

an 8 mm computar lens, giving an input FOV of 32◦ × 24◦.

Calibration: The intrinsic camera parameters are com-

puted off-line using checkerboard images. The mirror ball

is placed on a checkerboard. We compute the pose of the

camera with respect to the checkerboard and move the cam-

era to make the sensor plane parallel to the checkerboard.

We then manually mark the sphere boundary in the image

to determine rays tangential to the sphere and their central

ray, which makes the same angle with all the tangential rays.

Using the fact that the sphere center lies on the central ray

at a distance of r from the checkerboard, its location can

be found in the camera coordinate system. The camera is

then positioned so that the sphere center lies on the optical

axis. The sphere center is estimated again to improve accu-

racy. Using the camera and the sphere centers, the direction

vector is obtained along which the camera is moved.

Figure 1 shows 3 out of 25 captured images. The dis-

tance z of the camera was changed non-uniformly from 41
mm to 334 mm using the θv-z relationship for equal incre-

ments in θv . The scene consists of several checkerboards on

ceiling, two books, a color Macbeth chart, a toy and a tex-

tured board on the sides close to the mirror ball. Figure 1

shows the synthesized cube map from a virtual viewpoint 13
mm inside the sphere, made by joining 5 images (center im-

age has 90◦× 90◦ FOV, while others have 90◦× 45◦ FOV).

Notice that straight lines in both orthogonal directions in all

(both near and far) scene planes are maintained as straight

lines in the virtual image. Figure 13 compares real results

on a different scene using axial and planar LF sampling. For

planar LF, we captured 5× 5 images at a constant height of

200 mm with a baseline interval of 13 mm. Blurring and

aliasing artifacts can be seen clearly in the planar LF re-

sult because of the inefficient sampling, while our axial LF

sampling generates a sharp result.

6. Discussions and conclusions

Off-the-shelf CCD cameras typically have more FOV in

x direction than y direction due to non-square sensor size.

However, the virtual perspective image will have the same

FOV in x and y directions due to mirror being rotationally

symmetric. Thus, at large enough angles, some rays in the

vertical direction may not be sampled although other rays

within the same cone in the horizontal direction can be sam-

pled. We assume that all captured images are in sharp focus,

but out-of-focus regions will blur the final image at corre-

sponding regions. We currently use a small aperture to get

sufficient depth of field in captured images. If the camera

motion is not along the rotation axis, it results in distortions

and blurring as shown in Figure 12. Non-linear process-

ing and higher level information such as ego-motion/depth

estimation may be utilized to remove such distortions and

blurring. While a complete frequency domain analysis of

light fields for general mirrors (similar to [3]) is beyond the

scope of the paper, it would provide further insights into

optimal sampling for virtual perspective generation.

Conclusions: Common mirror configurations with per-

spective cameras do not lead to a single-viewpoint catadiop-

tric system. Instead of minimizing distortions in the result-

ing image, we propose to capture all the required rays to

generate a virtual perspective image by moving the cam-

era. We analyzed these set of rays in terms of a virtual light

field. We showed that traditional planar light field does not

result in efficient sampling, but the proposed axial light field

samples the rays in the virtual light field efficiently for rota-

tionally symmetric mirrors. Real results using a mirror ball
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demonstrates that wide FOV virtual perspective can be gen-

erated from axial light field without using any scene priors

or distortion correction. We presented an extensive analy-

sis relating axial light field parameters and FOV/resolution

characteristics of the resulting virtual image.
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