

Distributed Smart Cameras

Prof. Bernhard Rinner

Pervasive Computing Institut für Vernetzte und Eingebettete Systeme Alpen-Adria Universität Klagenfurt http://pervasive.uni-klu.ac.at

B.Rinner

Distributed Smart Cameras

1

Cameras are ubiquitous ...

... and are important for many Applications

- Entertainment
- Security
- Production
- Medical application
- Environment
- Automation
- Robotics
- Multimedia
- Biometric

B.Rinner

Agenda

1. Traditional Camera Networks Advantages & Challenges

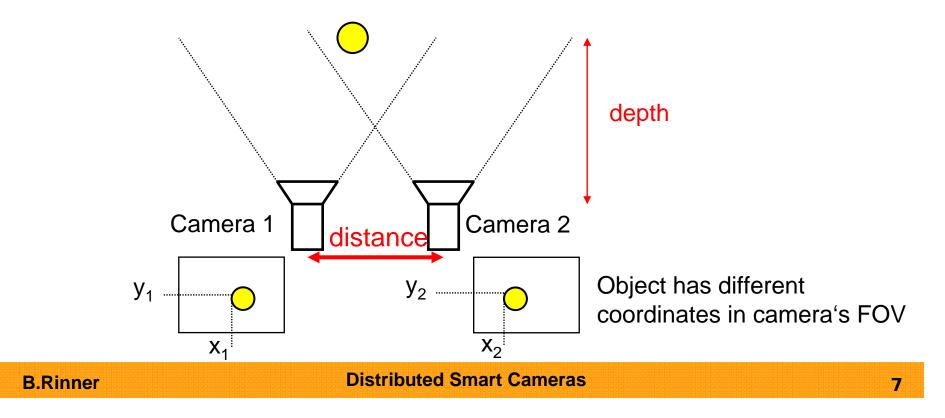
2. Smart Cameras Principle & Architecture

3. Distributed Smart Cameras

Research Challenges Distributed Computing Applications

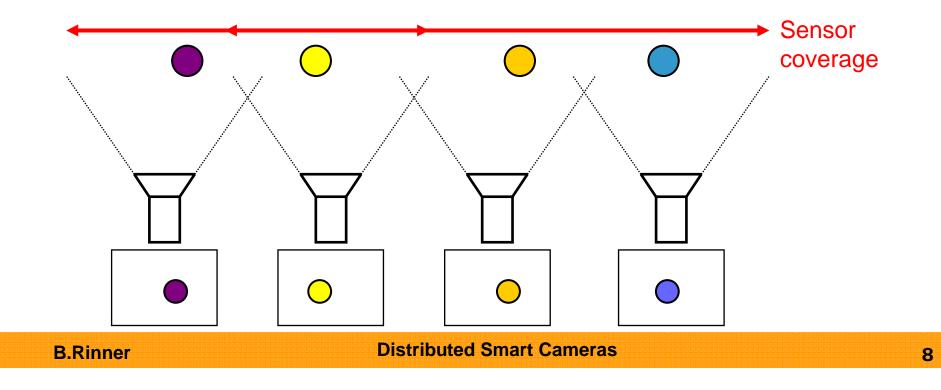
Traditional Camera Networks

Camera Networks

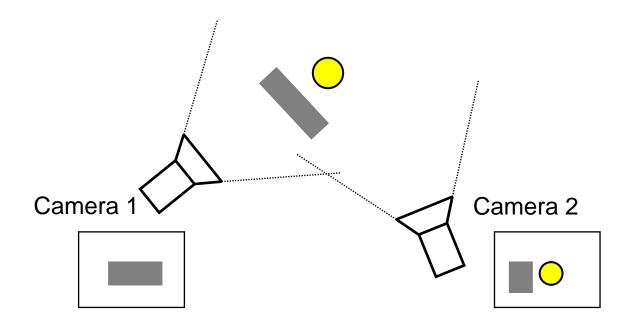


Advantages and challenges of multiple cameras

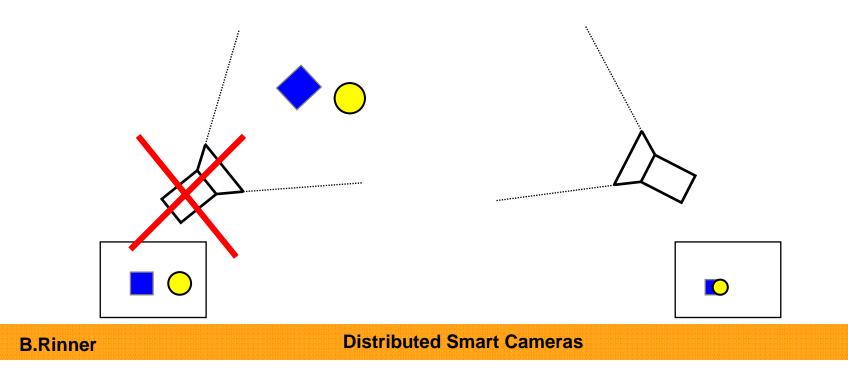
Advantage: 3D Information


- When we know the camera geometry
 - compute depth information based on different perspectives
 - stereo camera setup

Advantage: Enlarged Field of View (FOW)


- Enlarge the sensor coverage
 - setup with overlapping or non-overlapping FOVs
 - at "constant" resolution

Advantage: Resolve Occlusions

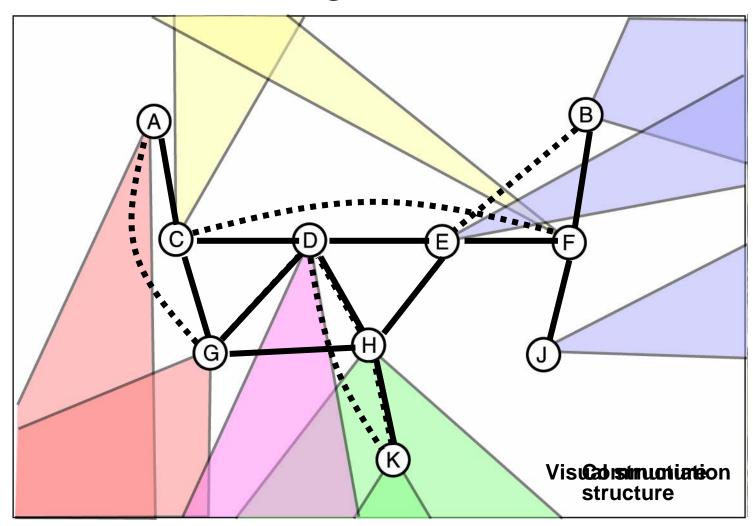

- Alternate FOV may help to resolve occlusions
 - often in dynamic environments with moving objects

Advantage: Redundancy

- If a camera breaks down we may get useful information from another camera, typically with
 - different FOV
 - different resolution

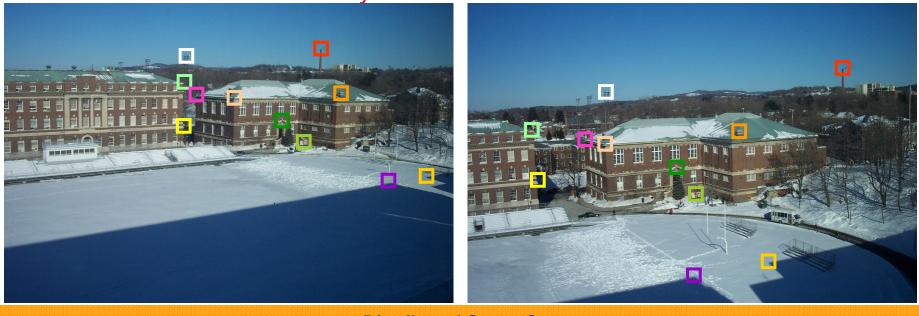
Challenge: Amount of Data

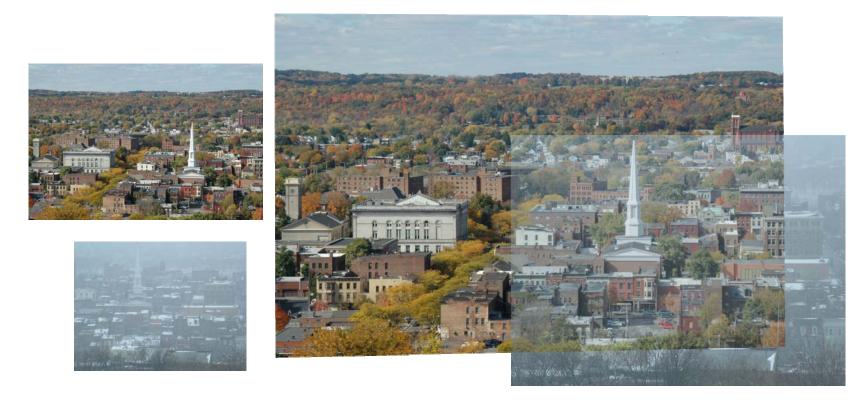
- A camera network produces a huge amount of data which has to be
 - transferred
 - stored
 - analyzed, processed, and "observed", respectively
- Example: Subway in London with 40.000 cameras
 - single camera "generates" approx. 260 Mbit/s (uncompressed)
 - requires extremely powerful network, storage and server!
- Video compression does not really help
 - compression rates in the range of 10 100
 - loss of image quality and large computational effort at camera



Challenge: Energy and Data Distribution

- Each camera requires energy and delivers data. Setting up the infrastructure for energy & data distribution is
 - tedious
 - expensive
 - and limits the applicability of multi-camera networks
- Reducing energy consumption and data transfer
 - battery-powered, energy harvesting
 - local processing, reduced bandwidth in wireless networks
- Dependency between energy consumption and data transfer
 - transferring data (much) more expensive than processing it


Challenge: Structure

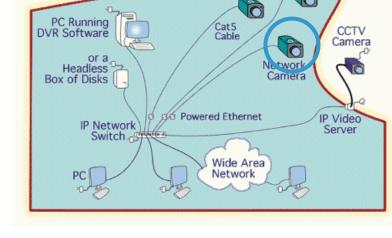

Challenge: Spatial & Temporal Calibration

- Images of (overlapping) cameras must be "calibrated" in space and time
 - complex procedure only required during initialization (stationary cameras)
 - at different accuracy

Herausforderung: Registrierung (2)

G. Yang, C.V. Stewart, M. Sofka, C. Tsai, PAMI 2007; http://www.vision.cs.rpi.edu/gdbicp/

B.Rinner


Example: Surveillance Systems

- Large, complex system
 - many (wide spread) sensors/cameras
 - visualization at central monitoring station
 - 24/7 operation
- Characteristics
 - provides varied degrees of assistance to humans/operators, main focus: display & record
 - centralized system: computation takes place at monitoring station
 - static configuration: physical sensors & functionality
- Challenges for "intelligent" surveillance systems
 - increased functionality & flexibility; autonomous operation
 - standards, sensor integration, open systems
 - many non-technical issues, eg, privacy

Example: Video Surveillance Systems

- Ist and 2nd generation
 - primarily analog frontends
 - backend systems are digital
- 3rd generation
 - all-digital systems
- 3⁺ generation
 - smart cameras
 - surveillance tasks run on-site on smart cameras, e.g.,
 - video compression
 - accident detection
 - stationary vehicles (tunnels)

- traffic statistics
- wrong-way drivers

The Digital Wave

vehicle tracking

Smart Cameras

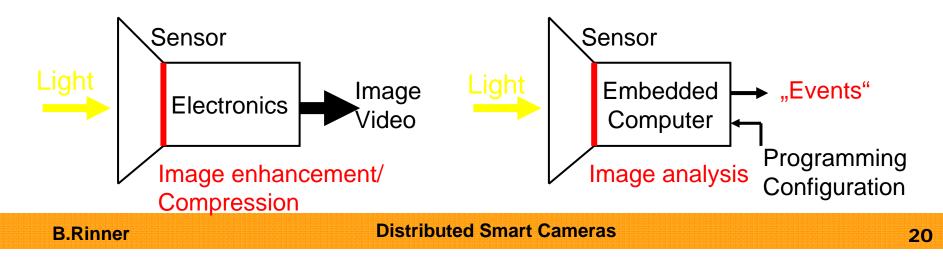
Basic Principle of Smart Cameras

- Smart cameras combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Differences to traditional Cameras

Traditional Camera

- Optics and sensor
- Electronics
- Interfaces


delivers data in form of (encoded) images and videos, respectively

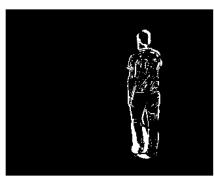
Smart Camera

- Optics and sensor
- onboard computer
- Interfaces

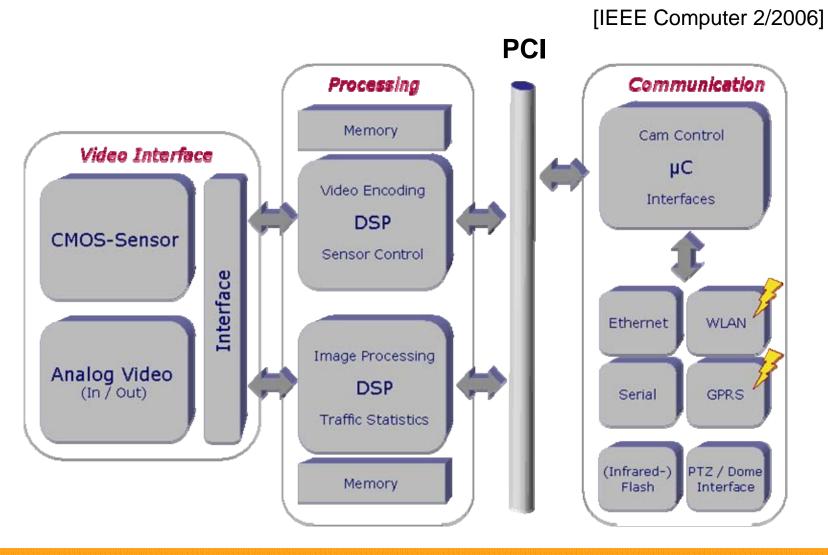
delivers abstracted image data is configurable and programmable

UNIVERSITÄT KLAGENFURT

Smart Cameras look for important things


- Examples for abstracted image data
 - compressed images and videos
 - features
 - detected events

© CMU



B.Rinner

Scalable SmartCam Architecture

SmartCam Prototypes

- 1. generation (single DSP)
 - COTS (NVDK, Ateme)

- 2. generation (multi-DSP & processor)
 - COTS (Intel baseboard, NVDKs)
 - 3 variations (different host processors) XScale PXA, XScale IXP, P4M
- 3. generation
 - PCB (10 x 25 cm), IXP+C6415+C6455
 - Spartan II for sensor interface&preprocessing
 - currently under development

Prototypes with different Performance

- Prototypes differ in various aspects
 - computing power, energy consumption
 - wired and wireless communication
 - optics and sensors

Rinner et al. (multi-DSP) 10 GOPS @ 10Watt

WiCa/NXP (Xetal SIMD) 50 GOPS @ 600mWatt

CMUcam3 (ARM7) 60 MIPS @ 650mW

(Selected) Smart Camera Systems

System	Year	Platform	Distribution/Proc.	Autonomy
[Moorhead&Binni]	1999	ASIC	local	static
VISoc [Albani]	2002	SOC	local	static
[Wolf et al.]	2002	DPS (PC)	local	static
[Bramberger&Rinner]	2004	DSP	local	rem. conf.
[Dias&Berry]	2007	FPGA	local	active vis.
[Bauer]	2007	DSP	local	static
GestureCam [Shi]	2007	FPGA	local	static
[Bramberger et al.]	2006	multi-DSP	cooper. tracking	dyn. conf.
[Micheloni et al.]	2005	(PC)	MC-tracking	PTZ
[Fleck&Strasser]	2007	PowerPC	MC-tracking	static

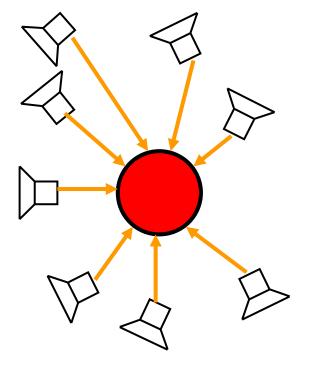
(Selected) Smart Camera "Sensors"

System	Year	Platform	Distribution	Autonomy
Cyclops [Rahimi]	2005	ATmega128	coll. tracking	static
CMUcam 3 [Rowe]	2007	ARM7	local proc.	static
Meerkats [Margi]	2006	StrongARM	coll. tracking	static
MeshEye [Hengstler]	2006	ARM7	local	rem. conf.
WiCa [Kleihorst]	2006	Xetal (SIMD)	coll. gesture rec	static

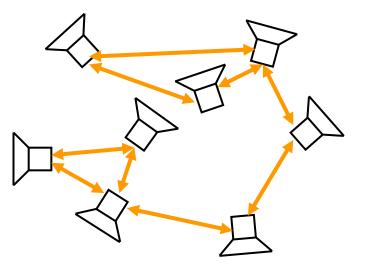
Smart Cameras collaborate

- Autonomous cameras connected in a network
 - no central server
 - collaborative analysis among multiple cameras
 - dynamic configuration (structure and functionality)
- Challenges for such collaborative DSC
 - camera selection and placement
 - calibration & synchronization
 - distributed processing
 - data distribution and control, protocols and middleware
 - distributed computer vision (distributed signal processing)
 - real-time, energy-awareness, ...

(Potential) Advantages of DSC


- Scalability
 - no central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment?
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR

B.Rinner

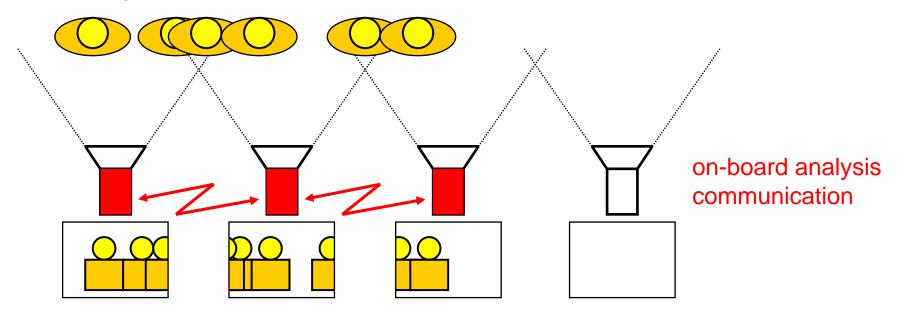

. . .

Networking

Traditional Camera Networks

Smart Camera Networks

Cameras stream images/ videos to "server" Cameras collaborate directly (spontaneous, p2p, ad-hoc)


B.Rinner

UNIVERSITÄT KLAGENFURT

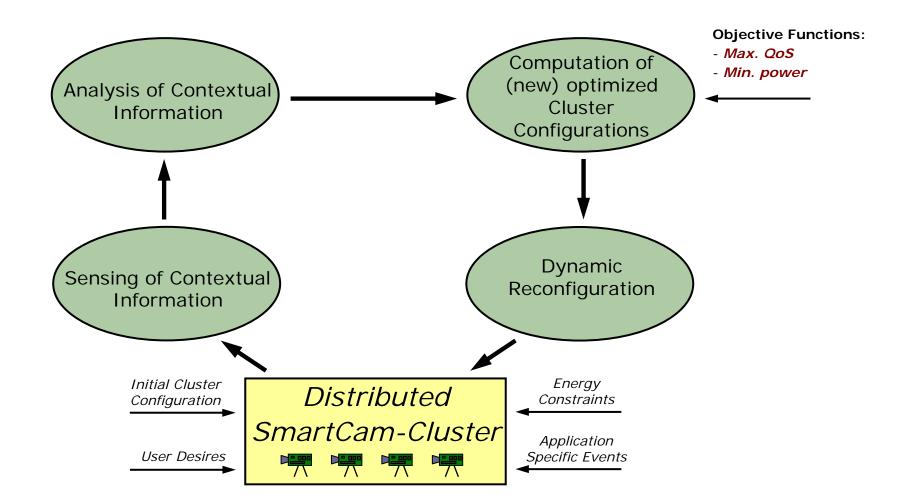
Distributed Processing in Network

 Example: autonomous tracking of mobile objects among multiple cameras

- Computation follows (physical) object
 - requires spontaneous communication; distributed control & data

Need for Dynamic Reconfiguration

- Dynamic communication among cameras
 - cameras may be included to or removed from network
 - communication pattern depends on observed scene
- Modification of functionality
 - adaptation/configuration of on-board image processing
 - "load" new algorithms
- Changes in available resources
 - hardware failures
 - different QoS requirements


ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Dynamic Reconfiguration

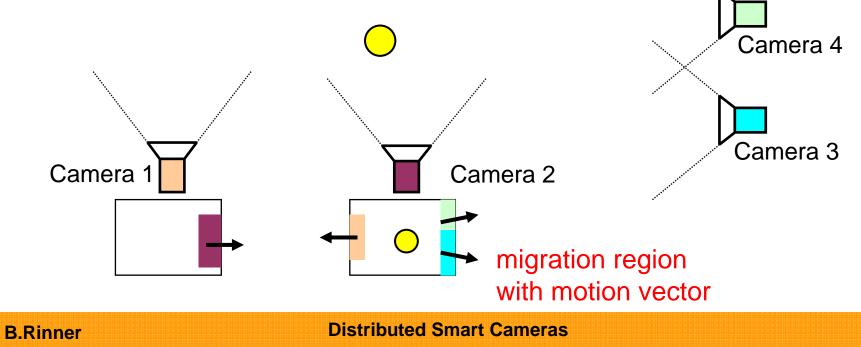
- What is a "configuration" ?
 - Executing services s at various QoS-levels q_s on different resources r
 - Configuration of single camera C_i = (s x q_s x r)
 - Configuration of network: $C = (C_1 \times ... \times C_i \times ... \times C_N)$
- Find optimal configuration of the network at runtime
- Various optimization parameters
 - QoS, power consumption, reliability,...
 - multi-criterion optimization
 - requires a "system model"

Dynamic Reconfiguration Loop

Dynamic Reconfiguration Applications

- Combined power and QoS optimization [IEEE AINA 2006]
 - exploiting dynamic power management
 - switching hardware components to different power levels
 - implemented on single- and multi-processor SmartCam
- Improving fault tolerance and service availability
 - requires onboard monitoring&diagnosis
 - in case of a detected fault, start a reconfiguration
- Application-specific reconfiguration
 - "download" services to cameras on demand
 - may overcome resource limitations on camera

Autonomous Multi-Camera Tracking


[EURASIP JES 1/2007]

- Assumptions for multi-camera tracking
 - implement on distributed embedded smart cameras
 - avoid accurate camera calibration
 - do not rely on central coordination
- Important design questions
 - What (single-camera) tracking algorithm to use?
 - How to coordinate the cameras?
 i.e., distributed control, exploit locality
 - How to hand over tracking from one camera to next?
- Treat questions independently
 - standard ("color-based") CamShift tracker
 - focus on hand over strategy

Spatial Relation among Cameras

- Camera neighborhood relation
 - important for determining "next camera(s)"
 - based on pre-defined "migration region" in camera's FOV (overlapping or non-overlapping FOVs)
 - no pixel correspondence required

Multi-Camera Handover Protocol

Master/Slave handover

- 1. camera A tracks object
- 2. whenever object enters migration region tracking agent is cloned on "next" camera (slave)
- 3. slave starts tracking when slave identifies object
 - master gets terminated

Tracker initialization

color histogram a initialization data

B.Rinner

UNIVERSITÄT

Implementation & Results

Visualization

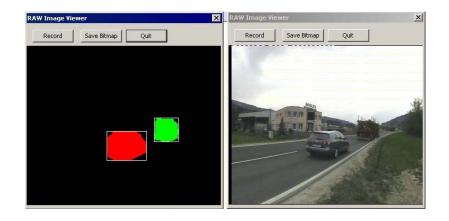
- migration region (magenta)
- tracked object (red rectangle)
- tracking agent (red box)

Code size	15 kB
Memory requirement	300 kB
Internal state	256 B
Init color histogram	< 10 ms
Identify object	< 1ms

CamShift (single camera)

Loading dynamic executable	8 ms
Initializing tracking algorithm	250 ms
Creating slave on next camera	18 ms
Reinitializing tracker on slave	2 ms
Total	278 ms

Multi-camera performance



Application: Traffic Monitoring

- Online traffic data
 - classification/counting
 - lane utilization
 - fusion of audio & video

[IEEE ICDSC-07]

- Vehicle tracking
 - speed estimation
 - traffic jam detection

[Leistner et.al CVPRW 2007]

Application: Privacy Protection

- Security with privacy protection
 - automatic head detection and tracking
 - encryption of head area

Boult, Univ. Colorado

Application: Assisted Living

 Assist Living for DOOR CAM 1 elderly people detect and report dangerous situations example: Detect fallen CAM 2 person challenge: Privacy CAM 5 CAM 3 CAM 4 Aghajan, Stanford

(Potential) further Applications

- Entertainment (computer games)
 - in 3D environments
- "Smart Rooms / Smart Environments
 - detection gestures, sign language, room occupancy ...
- Environmental monitoring
 - sensor fusion, habitat monitoring
- Security
 - Safety enhancement (trains, cars), access control, surveillance
- "Virtual Reality"
 - augment real world with digital information

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Trends and Challenges

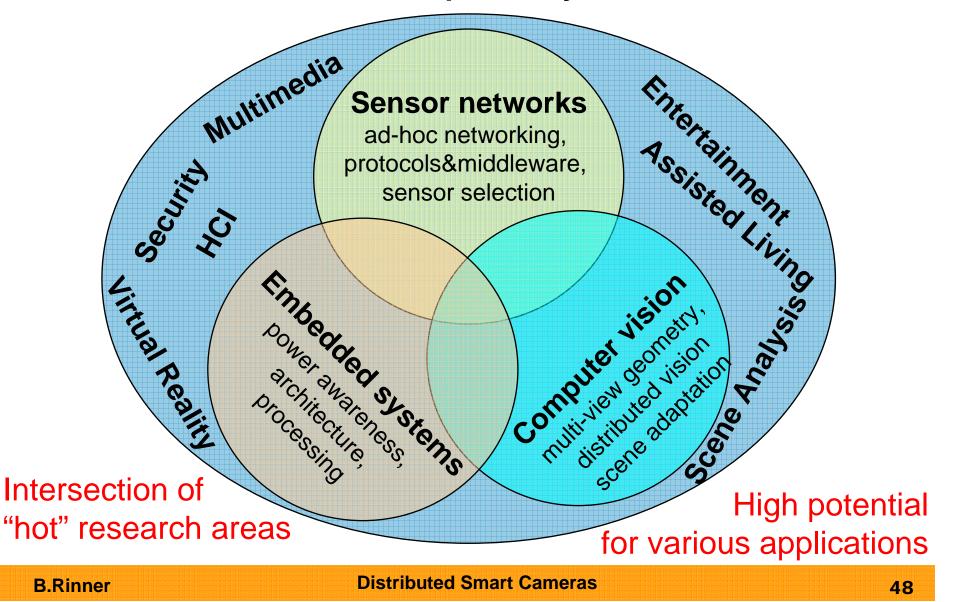
- From static to dynamic and adaptive
 - Adaptation & learning (networking, functionality, scene,...)
- From small to large camera sets
 - E.g., more interest in statistics on behavior (instead of individuals)
- From vision-only to multi-sensor systems
 - Fusion of data from multiple (heterogeneous) sensors
- Development process of DSC
 - How to model, develop, deploy, operate, maintain applications
- Privacy & Security
 - Important cross-layer topic for user acceptance

Conclusion

Smart Cameras

- combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)

UNIVERSITÄT KLAGENFURT


ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Smart Cameras as Key Technology

- For many applications including
 - Life Sciences
 - Security & Monitoring
 - Traffic
 - Entertainment
- Distributed cameras migrate to smart networks, which helps to overcome "hard problems"
 - occlusion
 - communication bandwidth
 - energy supply
 - reliability

DSC is Interdisciplinary Research

DSC-related Activities

ACM/IEEE Int. Conf. on Distributed Smart Cameras

Stanford (Sep. 7-11) www.icdsc.org

- Workshops, Tutorials, PhD-Forum, ...
- Special Issue on Distributed Smart Cameras (Oct 2008)
 Proceedings IEEE

Further Information

Mail

Pervasive Computing Lakeside B02b 9020 Klagenfurt

- P: +43 463 2700-3670
- F: +43 463 2700-3679
- W: pervasive.uni-klu.ac.at

