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Abstract

We study the beneficial effect of side information on the
Structure from Motion (SfM) estimation problem. The side
information that we consider is measurement of a ‘reference
vector’ and distance from fixed plane perpendicular to that
reference vector. Firstly, we show that in the presence of
this information, the SfM equations can be rewritten similar
to a bilinear form in its unknowns. Secondly, we describe
a fast iterative estimation procedure to recover the struc-
ture of both stationary scenes and moving objects that cap-
italizes on this information. We also provide a refinement
procedure in order to tackle incomplete or noisy side infor-
mation. We characterize the algorithm with respect to its
reconstruction accuracy, memory requirements and stabil-
ity. Finally, we describe two classes of commonly occurring
real-world scenarios in which this algorithm will be effec-
tive: (a) presence of a dominant ground plane in the scene
and (b) presence of an inertial measurement unit on board.
Experiments using both real data and rigorous simulations
show the efficacy of the algorithm.

1. Introduction

Structure from Motion (SfM) refers to the task of recov-
ering the 3D structure of a scene and the motion of a cam-
era from a video sequence. SfM has been an active area of
research since Longuet-Higgins [8] eight-point algorithm.
There have been several different approaches to the SfM
problem and we refer the reader to [4, 9] for a comprehen-
sive survey of the various approaches. Nevertheless, SfM is
a very hard ill-posed inverse problem and very few of these
algorithms provide satisfactory performance in real-world
scenarios. Therefore, recent research has focused on de-
veloping SfM algorithms in the presence of additional con-
straints like positional information from Global Positioning
System(GPS) sensors [2].

In this paper, we study the effect of additional informa-
tion, in the form of measurements of a direction vector and
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the height of the camera center from a plane perpendicular
to this vector. This type of side information is frequently
available in several real-world scenarios such as when on-
board inertial measurements are available or when a domi-
nant plane is present. Inertial sensors like the inclinometer
or gravitational sensors can provide sensing of a certain di-
rection while altimeters frequently found on UAVSs can pro-
vide the required height information. For example, when
there is negligible camera acceleration, an accelerometer
measures the gravity and we can filter out Inertial Measure-
ment Unit (IMU) measurements to get good estimates of the
gravity vector. In the case where we do not have side infor-
mation but we observe a dominant plane in the scene, we
can use the homographies between multiple views to obtain
estimates of the ground plane normal and height using a de-
composition technique. In either case, we will show that
this side information constrains the ill-posed SfM problem
in such a manner that the SfM equations become similar to
a bilinear form in its unknowns. We then describe a fast iter-
ative procedure much like bilinear solvers that can robustly
solve for the STM unknowns by minimizing the reprojection
error.

1.1. Prior Work

This paper is related to prior work in SfM literature that
assume a visible dominant plane in the scene. An impor-
tant algorithm in this class is the use of the plane-plus-
parallax model for the recovery of 3D depth maps [5]. The
multi-view constraints imposed by a plane were used by
Rother [11] and Kaucic [6] to simplify the projective recon-
struction problem into a linear system of equations. Bar-
toli [1] derive a linear algorithm for estimating the struc-
ture of objects moving on a plane in straight lines with-
out rotating. Reconstruction of objects moving in an un-
constrained fashion was studied in detail by Fitzgibbon and
Zisserman [3].

Our algorithm assumes approximate knowledge of a cer-
tain direction vector in each image of the sequence and also
the altitude from a plane perpendicular to this vector. These
quantities are well defined when we observe a dominant
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Figure 1. An illustration of the problem setting and the main computational steps. The image shows a typical scene with a ground plane
and some static and moving objects on it. The gravity field is shown, which can be assumed perpendicular to the ground plane. A camera
moves over the scene and gives an image sequence. We may also have measurements of the gravity vector from an IMU or sensing of the
plane normal by additional means. We use these additional measurements to simplify the structure and motion computations.

plane in the scene, but the algorithm does not require the
visibility of a plane (for stationary scenes). In this respect,
it is quite different from all other previous approaches.

We show that using the side information, we can simplify
the SfM problem and derive a fast iterative algorithm. We
analyze the properties of this algorithm and show its per-
formance with quantitative and qualitative evaluations on
several real and simulated datasets. In the same framework,
we provide a technique to compute the structure of moving
objects on a plane.

1.2. Outline

Section 2 formulates the problem and derives the new
SfM equations in the presence of additional information.
In Section 3, we propose a fast iterative algorithm using
the special form of the equations. Section 4 analyzes the
computational complexity and memory requirements of the
algorithm. Experimental results in several real scenes and
quantitative comparisons with competing approaches are
provided in Section 5.

2. Problem Formulation

We assume that we have measurements of a certain di-
rection in the Camera Coordinate System (CCS) corre-
sponding to every image in the sequence. This direction
could be the gravity vector which can be sensed using in-
clinometers, or the normal vector to a ground plane which
can be obtained using the homographies. We also assume
that we have measurements or estimates of the heights of
the camera along the direction of the reference vector from
a plane perpendicular to the vector. We can estimate this

quantity from the azimuth and the slant range of the cam-
era, that can be measured by other sensors.

We choose a World Coordinate System (WCS) with the
7 axis along the reference direction vector, and the X and
Y axes perpendicular to this vector. The CCS is chosen
with the Z axis along the optical camera axis and the X
and Y axes along the usual image axes. The transformation
between these two coordinate systems at any instant can be
written as P, = Rcou P: + Te2w. Here, P is a point whose
coordinates are represented in the WCS by FP,,, and in the
CCS by P..

A known reference vector in an unknown camera coor-
dinate camera system fixes two degrees of freedom of the
rotation matrix R.2,,. The unknown component is the rota-
tion of the CCS about an axis parallel to the reference direc-
tion vector. The full rotation matrix can be shown to be split
uniquely as R.o,, = R, R, where IR, is the rotation along
the direction vector, and R, is along an axis perpendicular
to this vector. We are now concerned with the estimation of
the rotation along the direction vector (12,,), and the trans-
lations along a plane perpendicular to this vector (x and y
components of T.9,,) in addition to the 3D locations of the
world points. In the following, we refer to in-plane motion
as the component of translation parallel to the X —Y world
plane and rotation about the Z-axis ([2,). The out-of-plane
motion is the Z-axis translation (z component of T.2,,), and
the rotation R, that changes the reference vector orientation
in the local coordinate system (CCS). We write the transfor-
mation between the WCS and the CCS as:
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where the camera-to-world rotation matrix has been fac-
torized into its two components as Ré;)w = R,(f)R!(f). Here
T8 = 1, 7 7] where T is the height of the

camera. [r;,y;,1]7 is the image feature in homogeneous
coordinates, which has been normalized for the calibration
matrix. From the side information, we have estimates (ini-
tial values) of R_S,t) and Tz(t). Using this information, we can
rewrite (1) as:
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where [ug;, Vg, wii]T = Rét) (%4, i, 1], and Rét) is com-

puted from the reference vector in the side information.
R!(]t) is the rotation matrix that rotates the reference vector
expressed in the CCS to the reference vector expressed in
the WCS. We rearrange (2) to get (3):
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We eliminate the projective depth \¢; by taking ratios of the
quantities as shown in (4)
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We accumulate (4) for all the feature points in all views and
write it in the factorization format as shown in (5).
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In (5), m denotes the number of views, and n is the num-
ber of points. We denote the measurement matrix as A, the
diagonal matrix of camera heights as 7T’,, and the product
T, A = B. We denote the diagonal matrix of heights of fea-
ture points from the ground plane as Z. The motion matrix
on the right hand side is M and the shape matrix is S. We
can rewrite (5) concisely as: AZ — B = MS. Each col-
umn of this matrix equation specifies the relation between
the projections of a single point in all the views. Each pair
of rows specifies the relation between the projections of all
the the points in a single view. In (4), the quantities é“
and Ty(t) refer to the x and y components of translation
measured along the WCS axes. In (5), the variables tgf) =
—cosb; £t> +sin6‘tTZSt) and tl(,t) = —sinb, é“ —cos@tTét)
refer to the same quantities measured in the CCS axes. This
change of variables is done to enable a factorization into
the motion and shape matrices as shown. Note that our un-
knowns are the matrices { M, S, Z} and (5) looks similar to
a bilinear system in the elements of these matrices.

3. Fast Bilinear Estimation of SfM

In this section we will first consider some special cases
which simplify (5) such that it is amenable to factoriza-
tion or linearization. These two special cases are similar
in essence to our approach and we will highlight the differ-
ences from these. Later, we will consider the general case
and detail our solution which is very much like the iterative
solution for solving bilinear equations and is therefore fast,
accurate and stable.

3.1. Structure from Planar Motion

Let us consider a surveillance scenario where a static
camera is overlooking a scene with objects (like vehicles
etc.) moving on a ground plane and rotating w.r.t the plane
normal. In this case, if we study (5), we notice that the
matrix 7, has the constant value of the camera height A all
through its diagonal and this reduces (5) to A(Z — h) =
M S. Li and Chellappa [7] note that the measurement equa-
tion in this case is of rank-3 and show how a rank-3 fac-
torization of the measurement matrix can be used to solve
for the structure and planar motion. The algorithm cannot
be directly extended to tackle non-planar motion while our
FBSfM algorithm is capable of tackling arbitrary motion.

3.2. Linear Multi-View Reconstruction

Rother [11] stabilizes the images using the homogra-
phies, and chooses a projective basis where the problem
becomes one of computing structure and motion of cali-
brated translating cameras. They derive linear equations for
the camera centers and points, and solve the resulting lin-
ear system for all cameras and points simultaneously using
SVD based techniques. The performance of their algorithm



is heavily dependent on the estimate of the homographies.
In addition, the memory and computational requirements of
the algorithm become infeasible in the case where we have
a large number of frames and points.

3.3. Bilinear Algorithm for the General Case

We observe that (5) is similar to a bilinear form in the
structure and in-plane motion. It is not strictly bilinear be-
cause the variables in the motion matrix are not indepen-
dent (due to the presence of common cosine and sine terms
in the first two columns). Our approach is to solve for the
unknowns in an iterative manner, holding one set of param-
eters fixed while solving for the others and vice versa. We
start the iterations by solving for the unknown structure.

3.3.1 Depth Iterations

For each feature point i, we pick the i** column of the ma-
trix equation (5) and write it as follows:
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We rearrange (6) to obtain equations of the form:

Xz
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In (7), M(:,1) and M (:, 2) are the first and second columns
of the motion matrix, containing the cosine and sine terms.
M (:,3) contains the in-plane components of translation.
A(:,i) and B(:, 1) are the i*" columns of the matrices A and
B respectively. Recall that B is the product of the heights
matrix 7>, and the measurement matrix A. The above is a
linear system, and we obtain a least squares solution for the
unknown 3D locations.

3.3.2 Motion Iterations

We solve for the in-plane motion parameters of each view k
given the 3D coordinates of the world points (obtained from
the previous step). We extract the (2k — 1)** and (2k)*"
rows from the matrix equation (5):
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where, the C' = AZ — B denotes the left hand side of (5).
We need to solve for {0y, ", t’;} from (8). We rearrange (8)
as follows:
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Here, X and Y represent the column vectors containing
the X and Y coordinates of all the world points, and Tisa
vector of ones. First, we eliminate the translations by aver-
aging the two sets of N equations in (9,10), and subtracting
the mean from each component. This gives us new equa-
tions where the translation component has been eliminated.
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w1 and po are the means of C(2k — 1,:)T and C(2k,:)T.
Equations (11) can be rewritten as:
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We can solve (12) using standard techniques. We find the
singular vector of the system matrix with the lowest singular
value, and then normalize it to make the third component as
—1. Then we assign the first two components to the cosine
and sine of the angle 0 and then normalize them for consis-
tency. After we obtain the rotation angle 6y, the translations
can be obtained as follows:

th = p1 — cos Oppix + sin O pry (13)
t]; = o — cos Oy — sinOgpx (14)

‘We have described a technique to iteratively estimate the 3D
locations, and the in-plane components of motion. Each of
the individual steps only involves solving a linear system.
In practice, we iterate these two steps a certain number of
times, or until a termination criterion is satisfied.

In both the depth and motion iterations, we solve linear
systems that are of much smaller size compared to the size
of systems that we need to solve in other techniques like
bundle adjustment etc. More details on the computational
requirements are given in section 4.1

3.3.3 Uncertainty in Side Information

In case the measurements of the direction vector and the
camera height are not accurate, we may refine these param-
eters to obtain a better SfM estimate. We describe a tech-
nique to refine these quantities. From (1), we have
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In this step, we hold the 3D locations PZ, and the in-plane
components of motion {0;, 7)Y, T/} fixed to their earlier es-
timates from the previous step. We perform a nonlinear re-
finement of the height th, and the normal vector at each
frame separately. Note that this implies that at any stage, we

px) (11)



only refine three parameters simultaneously (in comparison
to all the cameras and points for a full bundle adjustment).
We rearrange (15) by bringing the known terms on one

side to obtain:
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where X, = cos6;X; — sin6,Y; and Y; = sin0,X; +

cos0.Y;. We refine the normal vector and height param-

eters by minimizing the sum of the norms of the vectors

in the left hand side of (16) for all the feature points in a

particular frame. We use MATLAB’s implementation of

the Levenberg-Marquardt algorithm in order to perform this

minimization. This minimization involves only three pa-

rameters at any stage.
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3.4. Motion Estimation for Moving Objects

We can incorporate the estimation of structure and mo-
tion of objects moving on a plane, in the above framework.
The objects of interest can be translating and rotating on a
plane, and we assume that we can measure the ground plane
normal and height with respect to the same plane. We refor-
mulate the problem into one where the object is stationary,
and a separate camera is moving over each object. This
approach is similar to some earlier works [12]. The world
coordinate of a point on a moving object changes depending
on the motion of the object, and is therefore parameterized
by time along with the feature number.
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In (17), ¢, corresponds to the rotation of the object in frame
t with respect to its initial orientation. (DY, D!) denote
the displacement of the object in the WCS. The relation be-
tween image feature points and moving scene points is:
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We can rewrite (18) in the same form as for static points as
follows:
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Equations (19) say that the motion of the object can be
transferred to the camera, and the object can be consid-
ered to be stationary. We can solve for (19) in the same

framework as for static scene points, and the virtual camera
motions can be estimated. The object motion (¢, D%, Dy)
can be solved from the real and virtual camera motions
(0, TL, Tgf, Py, CF, C’;) using (19).

We initialize the iterations for a moving object by as-
suming a fixed height for all feature points. In practice, we
found that the technique was not very sensitive to this ini-
tialization in our sequences.

4. Analysis of FBSfM

4.1. Computational Complexity and Memory Re-
quirements

The main computations in our algorithm are in the solu-
tion of the linear systems in the depth and motion iterations,
and the refinement steps in the direction vector and height
refinements. Suppose there are m views of n points, and
that all points are visible in all views. To emphasize, this
assumption is not necessary for the purposes of the algo-
rithm but simplifies the process of quantifying the memory
requirements.

As mentioned in [6], let SV D(a,b) = 4ab* + 8b> be
the cost of carrying out a singular value decomposition of
a matrix with a rows and b columns. The following are the
main computational requirements:

e Depth Iterations: For each of the n points, this in-
volves solving a linear system of size 2m x 4 which is
equivalent to a total cost of n x SV D(2m,4).

e Motion Iterations: For each of the m views, this in-
volves solving a linear system of size 2n x 3 which is
equivalent to a total cost of m x SV D(2n, 3)

e Direction vector and height refinement: We need to
update only 4 parameters and hence this requires the
solution of a 4 x 4 linear system. For all the frames,
this comes at a cost of m x SV D(4,4) = 768m per
iteration.

Totally, each iteration of FBSfM costs 200mn + 512n +
216m + 768m ~ O(mn). In comparison, one full bundle
adjustment takes up computations of the order of O(nm +
nm? + m3). Rother’s system involves solving a linear sys-
tem of size (3n+3m) x (3nm) whose computational cost is
SV D(3n+3m,3nm) = 108(m3n? +m2n3) +216m3n3.
We observe that the peak computation for our individual
steps increases only of the order of O(mn).

4.2. Experiments on Synthetic Sequences

The results of simulation experiments described here
show that FBSfM performs very consistently and advanta-
geously over a wide range of noise levels compared to two



other well-known techniques that we have compared with
i.e. Rother’s solution [11] and Bundle Adjustment (BA).

For FBSfM, the additional information comes from es-
timates of plane-normal vectors estimated from homogra-
phies. [10]. Random points were generated, some of which
were chosen to lie on a fixed plane which made possible the
estimates of these homographies. Random noise added to
the feature points leads to noisy estimates of homographies
and therefore noisy additional information.

Figs. (2a,2b) illustrate the mean reprojection error, and
the deviation of these reconstruction estimates at a range of
noise levels (with precise camera calibration). Over a wide
range of noise levels, we see that FBSfM performs consis-
tently and competitively. At very low noise levels, Rother’s
performs slightly better than FBSfM. But at realistic and
high pixel noise levels, FBSfM seems to perform the best.

The results are similar in the case of high calibration
errors (around 20% error in the focal lengths and camera
center estimates). Note that erroneous calibration leads
to erroneous initial estimates of the side information from
the homographies [10]. The mean reprojection error plots
(Fig. 2¢) are similar, and the deviations of the estimates are
lowest for FBSfM (Fig. 2d). The experiment was repeated
for 70 trials under scenarios with different pixel noise levels
and calibration errors as shown in Fig. (2e,2f, 2g,2h).

We observe that in different settings, both BA and
Rother’s give bad solutions in many cases. BA is considered
the gold standard in SfM algorithms because it minimizes
the reprojection error starting with a good initial solution.
But it involves a highly nonlinear iterative refinement and
is prone to getting stuck at local minima. The mean repro-
jection error of BA varies widely indicating that it may be
affected by local minima unlike FBSfM which is a lot more
consistent.

5. Experiments on Real Datasets

In this section we detail the experiments we performed to
study the efficacy of the FBSfM algorithm. The algorithm
was tested on several real datasets under both conditions -
a) Scenes with a dominant plane and b) Camera augmented
with inertial sensors.

5.1. Scenes with Dominant Plane

When a dominant plane is present in the scene, we can
use the plane normal and the height from the plane as side
information in our algorithm. We can accumulate the ho-
mographies induced by the plane from multiple views and
use a decomposition technique [10] to compute the plane
normals and the heights. The inter-image homographies are
robustly estimated using RANSAC.

Reprojection error
FBStM 2.79
Rother 3.40
BA 4.10

Table 1. Mean reprojection error of the reconstructions of FBStM,
BA, and Rother’s for the indoor toycar sequence.

Figure 3. This figure illustrates a texture mapped 3D model of the
car obtained by interpolating from the sparse structure estimates
generated by FBSfM. Manually assisted feature point matches
were also used to generate this result, to ensure display a full 3D
model

5.2. Experiments on an Indoor Handheld Sequence

We report reconstruction results on an indoor image se-
quence taken with a digital camera of a toy car resting on a
plane. SIFT features were extracted and matched across the
image sequence. Inter-image homographies were estimated
robustly using RANSAC, and planar points were separated
from those off the plane. The reprojection errors for the
three techniques FBSfM, Rothers’ and BA is shown in Ta-
ble 1. Figure 3 illustrates the texture mapped 3D model of
the car. This is an example of a short video sequence, with
the number of keyframes being 13 and the number of fea-
ture points around 60.

5.3. SfM on Static Points in Aerial Video - 1

The algorithm was tested on a long real aerial video se-
quence. The metadata associated with the sequence made
available the normal vector and the camera heights from
additional sensors on-board. This information was com-
puted from the measurements of the slant range and the az-
imuth, elevation and twist of the camera (which was part
of the metadata). Around 1700 feature points were tracked
through the sequence, which was 225 frames long. Around
30 keyframes were selected, which were the frames for
which timestamped metadata was available. This sequence
is a dense reconstruction problem because a large percent-
age of the feature points is observed in each view. Two
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Figure 2. Plots of statistics of mean reprojection error of the reconstructions on synthetic data at various noise levels. Fig. (2a) and (2b)
show the mean and variance of the estimates for the three techniques FBSfM, Rother’s and Bundle Adjustment at various noise levels
with precise calibration. Fig. (2c) and (2d) illustrate the same results but with a large error in calibration. Fig. (2e) and (2f) show the
reprojection error for the three techniques, for 70 trials at uniformly distributed noise levels of 4 4 and + 8 pixels respectively and for the
precise calibration case. Fig. (2g) and (2h) illustrate the same results as above but with a large calibration error.

versions of the algorithm were compared, one with the ini-
tial GPN and Tz estimates obtained from the homographies,
and another with estimates obtained from the metadata.

From table 2, we infer that FBSfM produces the best
reconstruction when used with the metadata. With the
homography-based estimates of GPN, the reprojection er-
ror was worse, and this was to a largely due to a high re-
projection error in one particular frame. We feel this is be-
cause of a bad initial estimate of the GPNs and heights. The
homography decomposition step is sensitive to the calibra-
tion matrix (although our algorithm is not very sensitive).
Rother’s requires the solution of a very large matrix equa-
tion which is highly time and memory consuming. Hence
we could perform a reconstruction for only a few of the
points. Bundle adjustment requires the inversion of a large
Jacobian matrix. Our technique performs faster than these

| FBSfM with metadata | FBSfM | Rother | BA |
| 2.83 | 10.5 | 24.32 |5.56|

Table 2. Mean reprojection error for the long aerial video sequence
in which we had a lot of frames and features.

techniques because at any iteration, the peak memory re-
quirement is very limited. From Fig. 4 we infer that most
features are reconstructed with low error. Some features are
reconstructed with a high error, but these feature tracks are
erroneous outliers (mismatched correspondences etc.).

5.4. STM on Moving Objects in Aerial Video - 2

We report experiments on reconstruction of moving ob-
jects on a planar scene. The theoretical derivations suggest



Figure 4. Detected and reprojected features in a single frame of the
long aerial video sequence

(@ (b)
Figure 5. Fig (5a) shows a snapshot of a moving car in the video
sequence, with the detected features shown in yellow dots. It also
shows the reprojected features shown as green squares. Fig. (5b)
shows the partially reconstructed 3D model of the car.

that the moving object is assumed stationary, and there is
a separate camera moving over it. We did not compute
the inter-image homographies, but obtained the GPN and
height from the metadata, and estimate the structure and in-
plane motion using the bilinear algorithm without direction
vector or height refinement. Fig. (5a) shows a snapshot
of a moving vehicle with detected and reprojected features
shown in yellow dots and green squares respectively. Fig.
(5b) shows the reconstructed 3D-model. The reprojection
error was around 0.7 pixels. This experiment illustrates how
we can use our technique to perform SfM on objects moving
on a plane, when these objects are rotating and translating
on the plane, in a general way. Earlier techniques [1, 3]
assume constrained object motion in order to compute the
structure.

6. Conclusion

We have studied the effect of side information such as
the height of the camera and the ground plane normal on the
StM estimation problem. We show that in the presence of
this information, the problem can be solved easily using an

iterative procedure much like bilinear solvers. Our solution
does not need any joint non-linear iterative minimization
and is therefore quicker than many existing techniques. We
also discussed extensions in order to tackle multiple mov-
ing objects. We provide extensive experimental results to
highlight the efficacy and robustness of the algorithm.
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