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Gabor Jets
Gabor jets are a set of filters that are used to extract the

local frequency information from the face images.

These filters are generally linear filter with impulse

responses defined by a harmonic function and a

Gaussian function. The Fourier transform of a Gabor

filter’s impulse response is the convolution of the

Fourier transform of the harmonic function and

the Fourier transform of the Gaussian function.

▶ Face Recognition, Component-Based
Gabor Transform
A complete representation of a signal or image in terms

of coefficients on Gabor wavelets, such that the original

data can be reconstructed exactly by combining togeth-

er those wavelets using their computed coefficients. A

complication is that the necessary coefficients cannot

be obtained simply by operations of filtering or by the

inner product projections of the data with the wavelets,

since they do not constitute an orthogonal basis. More

complex methods are required (biorthogonal bases;

relaxation networks) to obtain the needed expansion

coefficients from projection coefficients. Once

obtained, a Gabor Transform is a powerful tool for

signal or image encoding, analysis, and compression.

▶ Iris Encoding and Recognition using Gabor

Wavelets
# 2009 Springer Science+Business Media, LLC
Gabor Wavelets
Complex exponentials (Fourier components) multi-

plied by Gaussian envelopes. Although they fail to

satisfy some parts of the stricter mathematical defini-

tions of wavelets, such as orthogonality and compact

support, these elementary functions can constitute a

powerful basis for signal or image encoding, represen-

tation, compression, and analysis. They are increas-

ingly used today in computer vision and in pattern

recognition, particularly in biometrics, where they

are the basis of iris recognition and have also been

used for several other biometric modalities. Among

their advantages (besides forming a complete basis

for signal or image encoding) are; their optimality

under the Heisenberg Uncertainty Principle for simul-

taneous resolution in time/space and in frequency;

their closed analytical form; their self-Fourier property

and closure under convolution and multiplication;

and their neurobiological basis in the receptive field

profiles of neurons in the mammalian visual cortex.

Their chief disadvantage is that they are not mutually

orthogonal, and so the projection coefficients obtained

by computing their inner product with an image are

not the same as the expansion coefficients that would

be needed to reconstruct the same image exactly

from them.

▶ Face Recognition, Component Based

▶ Iris Encoding and Recognition using Gabor

Wavelets

▶ Local Image Features

▶ Local Image Filters
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Gait
The manner of a person’s movement, specifically dur-

ing walking is called gait. The human gait cycle consists

of two main phases: during stance phase, the foot is on

the ground, and during the swing phase, the leg is

swinging forward in preparation for the next ground

contact.

▶Gait, Forensic Evidence of
Gait Analysis
▶Gait, Forensic Evidence of
Gait Biometrics, Overview
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Synonym

Gait recognition
Definition

Gait is defined as the style or manner of walking. Studies

in physchophysics suggest that people can identify famil-

iar individuals using just their gait. This has led to a

number of automated vision based algorithms that use

gait as a biometric. Such a system usually consists of a

video camera capturing images of a personwalking with-

in its field of view. Appropriate features such as joint

angles or silhouettes are extracted from this video and are

then used to compare with the stored gait signatures of

known individuals. As with any other biometric system,

the system can operate in both the identification and

the verification mode. Gait as a biometric has several
advantages compared to traditional biometrics such as

fingerprint in that gait is non-intrusive, does not require

cooperation from the individual, and can function at

moderate distances from the subject.
Introduction

The study of human gait has gathered pace in recent

years driven primarily by its potential as a biometric.

Gait-based person authentication has several signifi-

cant advantages compared to traditional biometrics

such as fingerprint or iris. Firstly, gait based biometric

systems do not require the individuals to be cooperative

since the input of these systems is the video feed cap-

tured by passive cameras. Secondly, gait is a non-intru-

sive biometric – it does not require the individuals to

wear any special equipment in order to be recognized.

Thirdly, gait based biometric systems have an extended

range compared to traditional biometrics – they can

operate reliably even when the subjects are tens of

meters away from the camera. Finally, such a system

harnesses the potential of thousands of surveillance

video cameras installed in public locations into a bio-

metric authentication system.
Operation of a Gait Based Biometric
System

The sensor for a gait-based biometric system is a video

camera capturing videos of human subjects walking

within its field-of view. The raw sensor video is then

processed to extract relevant features which can then be

used for recognition. If the acquisition conditions are

expected to be controlled and favorable, then the quality

of the video will enable the extraction of features such as

joint angles from the individual video frames. In more

typical uncontrolled settings, the features extracted could

either be background subtracted binary images, silhou-

ettes, shapes or width vectors – all examples of features

capturing the extent of the human body to differing

amounts of detail. During the training phase, several

such sequences of each individual in the gallery are col-

lected and the appropriate features are then stored in the

database. During the test phase, each test sequence is

compared with the training sequences available in the

database and the similarity is used to perform person

authentication.
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Challenges for Gait Based Biometrics
Systems

The discriminative information in gait is present in

both the shape of the individual and also in the manner

of his/her gait. This means that gait based biometric

systems must be able to model gait as a time series of

features or as a dynamical model in order to perform

accurate recognition. Static template based methods

which have been used for most other biometric systems

need to be adapted to a temporal sequence in order to

achieve robust performance. In this regard, another

challenge is time alignment of two sequences so that

critical events during gait like ‘‘mid-stance’’, ‘‘toe-off ’’

etc. are time aligned accurately so that recognition per-

formance is not affected by inaccurate time alignment

between postures that occur during gait. Since, gait

based person identification often occurs without any

particular viewpoint, view-invariance of the feature

extracted from the video is another important challenge.

This will ensure that recognition performance is robust

to changes in the viewpoint of the camera. In scenarios

with moderate amounts of acquisition control, one can

set up multiple video cameras so as to ensure that the

best possible viewpoint which happens to be the fronto-

parallel gait is captured on atleast one of the cameras.

Another challenge for automated gait-based biometrics

is that of changing illumination conditions in the scene.

In order to be robust to changing illumination condi-

tions, background subtraction is typically performed on

the raw videos before the video data is used in a recogni-

tion algorithm. Finally, another important challenge is

the variability in the clothing, shoe type and the surface

onwhich the individuals walk. Obviously, the clothing of

the subject especially their type of footwear has signifi-

cant impact on the gait features observed and it is im-

portant to bear this in mind while developing gait-based

biometric systems.
Features for Gait Based Biometrics

Silhouette: In most gait-based biometric systems the

cameras can be assumed to be static during the short

duration of time that they capture the gait of a single

individual for verification. This allows simple back-

ground models to be built for each of these cameras.

Background subtraction then identifies the set of

all pixels in the image that belong to the moving
individual. Figure 1 shows a sequence of color images

captured by a video camera as a person walks through

its field of view. Shown below are the binary back-

ground subtracted images in which all pixels belonging

to the individual are white, while the background is

black. This binary image is then scaled to a uniform

size so that the feature extracted is independent of the

distance of the camera from the subject. Several algo-

rithms for gait based person identification use this

binary silhouette as a feature [1–5].

Shape: ‘‘Shape is all the geometric information

that remains when location, scale, and rotational

effects are filtered out from the object’’[6]. Kendall’s

statistical shape is a sparse descriptor of the shape that

describes the shape configuration of k landmark points

in an m-dimensional space as a k�m matrix contain-

ing the coordinates of the landmarks. Image space is

2-dimensional and therefore it is convenient to de-

scribe the shape vector as a k dimensional complex

vector. First, a binarized silhouette denoting the extent

of the object in an image is obtained. A shape feature

is then extracted from this binarized silhouette. This

feature vector must be invariant to translation and

scaling since the object’s identity should not depend

on the distance of the object from the camera. So any

feature vector that we obtain must be invariant to

translation and scale. This yields the pre-shape of the

object in each frame. Pre-shape is the geometric infor-

mation that remains when location and scale effects are

filtered out. Let the configuration of a set of k landmark

points be given by a k-dimensional complex vector

containing the positions of landmarks. Let us denote

this configuration as X. Centered pre-shape is obtained

by subtracting the mean from the configuration and

then scaling to norm one. The centered pre-shape is

given by

Zc ¼ CX

k CX k ; where C ¼ Ik � 1

k
1k1

T
k ; ð1Þ

where Ik is a k � k identity matrix and 1k is a

k dimensional vector of ones.

The advantage of using shape feature is that the

differential geometric properties of the spherical man-

ifold in which the shapes lie are very well understood

and therefore, appropriate distance measures that can

account for translational, rotational and scale invar-

iances are well defined. For example, consider two

complex configurations X and Y with corresponding

preshapes a and b. The full Procrustes distance
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corresponding features – silhoeuette and shape. Courtesy [7].

630G Gait Biometrics, Overview
between the configurations X and Y is defined as the

Euclidean distance between the full Procrustes fit of

a and b and is chosen so as to minimize

dðY ;XÞ ¼ k b� ase j y � ða þ jbÞ1k k; ð2Þ
where s is a scale, y is the rotation and (aþ jb) is the

translation. The full Procrustes distance is the mini-

mum Full Procrustes fit i.e.,

dFðY ;XÞ ¼ inf
s;y;a;b

dðY ;XÞ: ð3Þ
The extracted shape sequence is shown in the bottom

row of Figure 1 with a graphical illustration of the

spherical manifold in which shapes lie. Shape is a

very popular feature for gait-based biometrics and

several state of the art algorithms perform gait match-

ing as a matching of a sequence of shapes [7–10].

Joint Angles: A very popular feature for gait analysis

in the medical and the psychophysics community

is the joint angles – i.e., the angles made at each of

the limb joints such as the knee, elbow ankle, wrist
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etc. There have been a few gait based biometrics

algorithms that use joint angles as the feature for

matching [11, 12]. The advantage of using joint angles

as a feature is the fact that view-invariance is automat-

ically achieved while using joint angles as a feature.

Nevertheless, the essential problem with using joint

angles is the fact that it is very challenging to robustly

estimate them from uncontrolled monocular video

sequences.
G

Algorithms for Matching

Most of the features described above have incorporated

modest forms of view-invariance (atleast scale and

translational invariance) as a part of the feature. There-

fore the essential task of the algorithm for matching

would be to model the dynamics of the feature during

gait and use this to perform matching in a manner that

is fairly insensitive to the speed of walking.

Dynamic Time Warping (DTW): Dynamic time

warping is an algorithm for estimating the non-linear

time synchronization between two sequences of fea-

tures. The two sequences could be of differing lengths.

Experiments indicate that the intra-personal variations

in gait of a single individual can be better captured by

non-linear warping rather than by linear warping [13].

The DTW algorithm which is based on dynamic

programming computes the best non-linear time nor-

malization of the test sequence in order to match

the template sequence, by performing a search over

the space of all allowed time normalizations. The

space of all time normalizations allowed is cleverly

constructed using certain temporal consistency con-

straints. Several gait-based biometrics algorithms

have used the Dynamic time warping algorithm in

order to time synchronize and match gait sequences

[7, 8]. Recently, the DTW algorithm has also been

extended so as to learn the warping constraints in a

class-specific manner in order to improve discrimina-

tion between individuals [9].

HiddenMarkovModel (HMM) The Hidden Markov

Model (HMM) is a statistical state space model in

which the observed shape sequence is modeled as out-

puts of a hidden states whose transitions are assumed

to be Markovian. The model parameters of the HMM

encode both the transition probabilities between the

hidden states and the outputs of hidden states. The

advantage of using a HMM is that there exists a wealth
of literature on learning the parameters of the HMM

and to perform inference using the HMM. Typically,

the model parameters for each individual in the gallery

is learnt and stored during the training phase. During

the test phase, the probability of the observation se-

quence conditioned on the model parameters is max-

imized in order to perform recognition. The HMM

[2, 3] and its many variants [14] have been successfully

used for gait based person identification.

Autoregressive Moving Average Model (ARMA):

Matching gait biometrics essentially is a problem of

matching time-series data where the feature at each

time instant is a silhouette or shape or joint angles.

Therefore traditional time series modeling approaches

such as the autoregressive model (AR) and the

autoregressive moving average (ARMA) model have

also been successfully used for gait based person iden-

tification. The model parameters of the ARMA model

are learnt from the training sequences and stored.

Given a test sequence, the model parameters for the

test sequence are learnt and the distance between

the model parameters is used in order to perform

recognition [7].
Model Based Approaches

Typical feature based approaches first compute a se-

quence of features from each video and then match the

sequence of features obtained in the test video to those

stored in the gallery. Model-based approaches are dif-

ferent in the sense that they fit the sequence of features

to a physical model of the human body and its inherent

dynamics. For example, a model-based feature extrac-

tion process guided principally by biomechanical anal-

ysis for gait-based person identification is proposed

[15]. The shape model for human subjects is composed

of an ellipse to describe the head and the torso, quad-

rilaterals to describe the limbs and rectangles to de-

scribe the feet. Anatomical data is first used in order to

derive shape and motion models that are consistent

with normal human body proportions. Prototype gait

motion models are then adapted to individuals using

the specific characteristics of the extracted features.

These individual specific shape and motion models

are then used for gait recognition. A systematic analysis

of the model-based approach also showed that cadence

and static shape parameters of the human body ac-

count for most of the recognition performance.
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Experiments on the USF Gait Data

In order to quantitatively test the performance and the

viability of gait based biometrics a challenging gait

database of 122 individuals was collected at the Uni-

versity of South Florida [4] as part of the DARPA

Human Identification at a Distance (HID) program.

The entire dataset containing over 1,200 videos was

separated into 12 different experiments with varying

levels of difficulty. The different challenge experiments

amounted to varying different covariates during gait,

like viewpoint, clothing, surface type, shoe type, and

time etc. A bar plot of the recognition performance

of various algorithms on the USF dataset (Experiments

A-G) is shown in Figure 2. Experiments A,B and C

correspond to changes in ‘‘view’’, ‘‘shoe type’’ and

‘‘view þ shoe type’’ respectively without any change

in the surface of walking, while challenege experiments

D,E,F and G correspond to changes in the surface

type from grass to concrete. The experiments indicate

that changes in the surface type has significant impact
Gait Biometrics, Overview. Figure 2 Comparison of various
on the recognition performance while view, shoe

type affects recognition performance to a much lesser

degree.
Summary

Gait is thus a novel biometric that provides significant

operational advantages over several other biometrics

such as face, fingerprint, iris etc. Unlike traditional

biometrics like fingerprint, gait does not require the

active cooperation of the subjects. Moreover, gait is a

medium range biometric in the sense that acquisition

distances can be as large as tens of meters. Moreover, in

most operational scenarios, it is non-intrusive and

does not require the subject to wear any special cloth-

ing. Preliminary experiments into gait as a biometric

seem to indicate that the discriminative power of gait

is not as strong as that of traditional biometrics such

as fingerprints or iris. Therefore, several successful

investigations for fusing the gait biometric with other
algorithms on the USF gait database. (Courtesy [1]).
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traditional biometrics in order to boost the identifica-

tion performance have been performed and this seems

to be an area of immense potential [16].
Related Entries
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Definition

Model-based gait recognition relates to the identifica-

tion using an underlying mathematical construct(s)

representing the discriminatory gait characteristics

(be they static or dynamic), with a set of parameters

and a set of logical and quantitative relationships be-

tween them. These models are often simplified based

on justifiable assumptions, e.g., a system may assume a

pathologically normal gait. Such a system normally

consists of gait capture, a model(s), a feature extraction

scheme, a gait signature, and a classifier (Fig. 1). The

model can be a 2- or 3-dimensional ▶ structural

(or ▶ shape) ▶model and/or ▶motion model that

lays the foundation for the extraction and tracking of

a moving person. An alternative to a model-based

approach is to analyze the motion of the human sil-

houette deriving recognition from the body’s shape

and motion. A gait signature that is unique to each

person in the database is then derived from the extr-

acted gait characteristics. In the classification stage,

many pattern classification techniques can be used,

such as the k-nearest neighbor approach.

The main advantages of the model-based approach

are that it can reliably handle occlusion (especially self-

occlusion), noise, scale and rotation well, as opposed

to silhouette-based approaches.

Practical issues that challenge the model-based ap-

proach can be divided into two categories, which relate

to the system and to the person. One of the systems-

related challenges is viewpoint invariance, whilst

person-related challenges include the effects of physio-

logical changes (such as aging, the consistency of gait

taken/enrolled at different times, whether our walking

pattern changes over a longer period of time), psycho-

logical changes (mood), and external factors (load,

footwear, and the physical environment).

The first model-based approach to gait biometrics

was by Cunado et al. in 1997 [1, 2], featuring the ability
Gait Recognition, Model-Based. Figure 1 Components

of a typical model-based gait recognition system.
to reliably accommodate self-occlusion and occlusion

by other objects, noise, and low resolution. Also, most

of the time, the parameters used within the model and

their relationship to the gait are obvious, i.e., the

mathematical construct may itself contain implicit/

explicit meaning of the gait pattern characteristics.

Though, it often suffers from high computational

cost, this can be mitigated by optimization tools or

increased computing power. Gait sequences are usually

acquired when the subject is walking in a plane normal

to the image capture device since the side view of a

moving person reveals most information, though it is

possible to use other views.
Models

In a typical model-based approach, often, a ▶ structural

model and a motion model are required to serve as

the basis for tracking and feature (moving human)

extraction. These models can be 2- or 3- dimensional,

though most of the current approaches are 2-

dimensional and have shown the capability to achieve

promising recognition results on large databases

(>100 subjects). A structural model describes the to-

pology or the shape of human body parts such as head,

torso, hip, thigh, knee, and ankle by measurements

such as the length, width, and position. This model

can be made up of primitive shapes (cylinders, cones,

and blobs), stick figures, or arbitrary shapes describing

the edge of these body parts. On the other hand, a

motion model describes the kinematics or the dynam-

ics of the motion of each body part. Kinematics gener-

ally describe how the subject changes position with

time without considering the effect of masses and

forces, whereas dynamics account for the forces that

act upon these body masses and the resulting motion.

When developing a motion model, the constraints of

gait such as the dependency of neighboring joints and

the limit of motion in terms of range and direction has

to be understood.

Bobick et al. used a structural model to recover

static body and stride parameters (Fig. 2a) determined

by the body geometry and the gait of a person [3].

Lee et al. fit ellipses to seven regions representing the

human body (Fig. 2b), then derived two types of fea-

tures across time: mean and standard deviation, and

magnitude and phase of these moment-based region

features [4].



Gait Recognition, Model-Based G 635

G

Cunado et al. proposed an early motion-model-

based approach, based on the angular motion of the

hip and thigh [1, 2], where the angular motion of

the hip and the thigh is described by a Fourier series.

For this method, a simple structural model was used

and the angular rotation as defined in Fig. 3. Although

the motion model is for one leg, assuming that gait is

symmetrical, the other leg can be modeled similarly,

with a phase lock of ½-period shift (Fig. 4).

Cunado et al. modeled the angular motion of the

thigh by

yT ¼ a0 þ 2
XN
1

½bk cos ko0t � ck sin ko0t �;

where N is the number of harmonics, o0 is the funda-

mental frequency, and a0 is the offset. In application,

the frequency data was accumulated from a series of

edge-detected versions of the image sequence of the

walking subject. The gait signature was derived by the

multiplication of the phase and magnitude component

of the Fourier description.
Gait Recognition, Model-Based. Figure 2 Example body pa

(b) Lee (c) Wagg (d) Wang.

Gait Recognition, Model-Based. Figure 3 Structural model o

thigh and the lower leg, respectively, connected at the knee
Later, Yam et al. [5] extended the approach to

describe the hip, thigh, and knee angular motion of

both walking and running gaits first by an empirical

motion model, then by an analytical model motivated

by coupled pendulum motion. Similarly, the gait signa-

ture is the phase-weighted magnitude of the Fourier

description of both the thigh and knee rotation.

Bouchrika et al. [6] have proposed one of the latest

motion-model-based gait feature extraction using a

parametric form of elliptic Fourier descriptors to de-

scribe joint displacement.

xðtÞ
yðtÞ

� �
¼ a0

b0

� �
þ cosðaÞ� sinðaÞ

sinðaÞ cosðaÞ
� �

XðtÞ � Sx
Y ðtÞ � Sy

� �
;

where a is the angle, Sx and Sy are the scaling factors,

and X(t) and Y(t) are Fourier summation. The joint

trajectory is then fitted to the image sequence by opti-

mizing a0, b0, a, Sx and Sy; the motion model fit is

implemented by the Hough Transform.

Wagg et al. (Fig. 2c) andWang et al. (Fig. 2d) used a

combination of both structural and motion models to
rameters that are used in structural models. (a) Bobick

f a lower limb: upper and lower pendulum represents the

joint.
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rotation (b) Left and right lower leg rotation.
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track and extract walking human figures [7, 8]. Wagg

introduced a self-occlusion model whilst Wang used

the conditional density propagation framework [9] to

aid feature extraction.

Beyond the 2D models, Urtasun et al. developed a

3D gait motion model derived from a small group of

subjects [10]. The joint motion is approximated by a

weighted sum of the mean motion and the Eigenvec-

tors of sample angular motion vectors. This approach

also shows that it is capable of approximating running

motion as well.
Feature Extraction

Feature extraction segments interesting body parts

for a moving human, and extracts static and/or dyna-

mic gait characteristics. The process normally invol-

ves model initialization, segmentation, and tracking

(estimation) of the moving human from one image

to the next. This is a significant step that extracts

important spatial, temporal, or spatial-temporal sig-

nals from gait. Feature extraction can then be carried

out in a concurrent [1, 2, 5, 8], or iterative/hierarchical

[7] manner.

A conventional starting point of a gait cycle is the

heel strike at the stance phase, although any other stage

within a gait cycle can be used. Earlier techniques

determine the gait cycle manually, later, many have

employed automatic gait cycle detection. A gait cycle

can be detected by simply identifying the stance phase;
if using a bounding box method, the width of the box

has the highest value during the stance phase. Other

alternatives are counting the pixels of the human fig-

ure, using binary mask (Fig. 5) by approximating the

outer region of the leg swing [7].
Quality of Feature Extraction

A good model configuration is defined as one that

yields a high correlation between the model and the

subject’s image. Useful measures for computing model

and image data correlation include edge correspondence

and region correspondence [8]. Edge correspondence is

a measure of how closely model edges coincide with

image edges, whilst region correspondence is a mea-

sure of similarity between the image region enclosed by

the model and that corresponding to the image of the

subject. These two measures are used together. A high

edge correspondence indicates that the model is closely

aligned with image edges; however, it does not guaran-

tee that the model matches the correct edges. If the

initial model configuration is poor, or the subject is

occluded, the match may be coincidental. For this

reason, region correspondence is also required.

Another measure is a pose evaluation function

(PEF) which combines the boundary (edge) matching

error and the region matching error to achieve both

accuracy and robustness. For each pixel, pi, in the

boundary of the projected human model, the cor-

responding pixel in the edge image along the gradient
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to detect gait cycle. The sum edge strength within the

mask varies periodically during the subject’s gait

and the heel strike being the greatest.

Gait Recognition, Model-Based. Figure 6 Measuring the

boundary matching error.
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direction at pi (Fig. 6) is searched. In other words, the

pixel nearest to pi and along that direction is desired.

Given that qi is the corresponding pixel and that Fi
stands for the vector piqi, the matching error of pixel pi
to qi can be measured as the norm Fik k. Then the

average of the matching errors of all pixels in
the boundary of the projected human model is defined

as the boundary matching error

Eb ¼ 1

N

XN
i¼1

Fik k;

where N is the number of the pixels in the boundary.

In general, the boundary matching error measures

the similarity between the human model and image

data, but it is insufficient under certain circumstances,

as illustrated in Fig. 7a, where a model part falls into

the gap between two body parts in the edge image.

Although it is obviously badly-fitted, the model part

may have a small boundary matching error. To avoid

such ambiguities, region information is further con-

sidered. Figure 7b illustrates the region matching.

Here the region of the projected human model that is

fitted into the image data is divided into two parts: P1
is the model region overlapped with the image data

and P2 is the rest of the model region. Then the match-

ing error with respect to the region information is

defined by

Er ¼ P2j j= P1j j þ P2j jð Þ
where Pij j; ði ¼ 1; 2Þ is the area, i.e., the number of

pixels in the corresponding region.
Recognition

A gait signature is a discriminatory feature vector that

can distinguish individual. These signatures have invari-

ant properties embedded in a person such as stride

length, person’s height/width, gait cycle and self-

occlusion, and that related to the imaging system such

as translation, rotation, scale, noise, and occlusion by

other objects. These signatures can be of static [3],

dynamic [2, 5] or a fusion of static and dynamic

[7, 8] characteristics of gait or with other biometrics

[11, 12]. The fusion can happen either at the feature

extraction stage or at the classification stage. On

the Southampton datasets of 115 subjects filmed in-

doors (in controlled conditions) and outdoors (with

effects of shadows, background objects, and changing

illumination) Wagg’s approach achieved an overall

CCR of 98.6% on the indoor data and 87.1% on the

outdoor data.

In the case of 3D approach [10], experiments show

that the first six coefficients of that motion model can
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(a) A typical ambiguity: a model part falls into the gap between two body parts (b) Measuring region matching error.
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characterize 90% gait patterns of the database used.

This resulted in a very compact gait signature, which

requires only the first three coefficients to form sepa-

rate clusters for each subject. It is interesting that this

study found that the first few coefficients could repre-

sent physiological characteristics like weight, height,

gender or age, while the remaining ones can be used

to distinguish individual characteristics. Another in-

teresting finding is that the nature of the gait signature

for running derived from this 3D motion model is

similar to that of Yam et al., that is, signature clusters

are more dispersed within subject, and span more

widely within the signature space, as compared to

that of walking. Both studies were based on data col-

lected by having subjects running on the treadmill.
Conclusions and Outlook

Using a model is an appealing way to handle known

difficulty in subject acquisition and description for gait

biometrics. There is a selection of models and appr-

oaches which can handle walking and running. Clearly,

the use of a model introduces specificity into the feature

extraction and description process, though this is gen-

erally at the cost of increased computation. Given their

advantages, it is then likely that model-based appro-

aches will continue to play a part in the evolution of

systems which deploy gait as a biometric. Currently,

practical advantages of three-dimensional (3D) appro-

aches have yet to be explored and investigated. Given

that human motion occurs in space and time, it is

likely that much information is embedded within the

3D space. Further, 3D approaches may provide a more
effective way to handle issues like occlusion, pose, and

view point. Therefore, 3D model-based gait recognition

may be a good way to move forward.
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Synonyms

Appearance-based gait analysis; Silhouette analysis for

gait recognition
Definition

The appearance of gait in an image sequence is a

spatiotemporal process that characterizes the walker.

The spatiotemporal characteristics of gait contain rich

perceptual information about the body configuration,

the person’s gender, the person’s identity, and even the

emotional states of the person. Motion analysis for gait

recognition is a computer vision task that aims to

capture discriminative spatiotemporal features (signa-

ture) from image sequences in order to achieve human

identification. Such a signature ought to be invariant
to the presence of various viewing conditions, such as

viewpoint, people clothing, etc. In contrast to Model-

based gait analysis systems, which is another article,

the goal here is to capture gait characteristics without

fitting a body model or locating the body limbs, rather

by analyzing the feature distribution over the space and

time extent of the motion.
Human Gait as a Biometric

Human gait is a valuable biometric cue that has the

potential to be used for human identification similar to

other biometric features, such as faces and fingerprints.

Gait has significant advantages compared to other

biometric features since it is easily observable in an

unintrusive way, it does not require collaborative sub-

jects, and it is difficult to disguise [1]. Therefore, using

gait as a biometric feature has a great potential for

human identification in public places for surveillance

and for security. A fundamental challenge in gait rec-

ognition is to develop robust algorithms that can ex-

tract visual gait features invariant to the presence of

various conditions that affect people’s appearance, as

well as conditions that affect people’s gait. That

includes, viewpoint, clothing, walking surface, shoe

type, object carried, etc. [2].

Johansson’s seminal psychophysical experiments

[3] showed that humans can recognize biological mo-

tion, such as gait, from Moving Light Displays (MLD).

Cutting and Kozlowski [4] showed that humans can

also identify friends from their gait using MLD. Moti-

vated by these results, many researchers in different

disciplines, have shown that the spatiotemporal char-

acteristics of gait contain rich perceptual information

about the body configuration, the person’s gender, the

person’s identity, and even the emotional states of the

person. That motivated extensive recent computer vi-

sion research on extracting features from gait.

Vision-based human motion tracking and analy-

sis systems have promising potentials for many applica-

tions, such as visual surveillance in public area, activity

recognition, sport analysis, video retrieval, and human–

computer interaction. Extensive research has been done

in this area in the last two decades with lots of promising

results. For excellent literature surveys in the subject,

the reader can refer to [5, 6]. The human body is an

articulated object with a large number of degrees of

freedom. This fact makes the problems of tracking the
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body configuration and extracting biometrics very

challenging. Besides the articulation nature of the

body, the variability in people’s appearance adds to

the problems. Human gait is a special case of the

general problem of human motion analysis, and to

some extent, is easier. This is because of the physical

constraints on such a motion as well as the periodic

nature of it.

The appearance of gait in an image sequence is a

spatiotemporal process that characterizes the walker.

Gait recognition algorithms, generally, aim to capture

discriminative spatiotemporal features (signature)

from image sequences in order to achieve human

identification. Gait analysis approaches can be categor-

ized according to the way the gait features are extracted

for classification. There are two broad categories of

approaches: model-based approaches and appear-

ance-based approaches. Model-based approaches,

e.g., [1], fit 3D body models or intermediate body

representations to body limbs in order to extract prop-

er features (parameters) that describe the dynamics of

the gait (see the related entry on ‘‘Model-based Gait

Recognition’’ for details). Model-based approaches

typically require a large number of pixels on the

tracked target to fit their model, i.e., high resolution

zoomed-in images are required on the tracked person.

In contrast, appearance-based approaches aim to cap-

ture a spatiotemporal gait characteristic directly from

input sequences without fitting a body model. The

appearance-based approaches are mainly motivated

by the psychophysical experiments, mentioned earlier,

e.g., [3, 4], which showed that spatiotemporal patterns

such as Moving Light Displays could capture impor-

tant gait information without the need of finding

limbs. Appearance-based approaches do not require

high resolution on subjects, which makes them more

applicable in outdoor surveillance applications where

the subjects can be at a large distance from the camera.
Characteristics and Challenges of
Gait Motion

Gait is a 3D articulated periodic motion that is pro-

jected into 2D image sequences. Therefore, the appear-

ance of a gait motion in an image sequence is a

spatiotemporal pattern, i.e., a spatial distribution of

features that changes over time. Researchers have de-

veloped several algorithms for capturing gait signature

from such spatiotemporal patterns by looking at the
space-time volume of features. The observed shapes of

the human body, in terms of the occluding contours of

the body (silhouettes), are examples of such spatiotem-

poral patterns, which contain rich perceptual infor-

mation about the body configuration, the motion

performed, the person’s gender, the person’s identity,

and even the emotional states of the person. Objects

occluding contours, in general, have a great role in

perception [7] and have been traditionally used in

computational vision, besides other appearance cues,

to determine object category and pose.

The objective of any gait tracking and analysis

system is to track the global deformations of contours

over time and to capture invariant gait signature from

such contours. There are several challenges to achieve

this goal. An observed person’s contour in a given

image is a function of many factors, such as the per-

son’s body build (tall, short, big, small, etc.), the body

configuration, the person’s clothing and the viewpoint.

Such factors can be relevant or irrelevant depending on

the application. Modeling these sources of variabilities

is essential to achieve successful trackers and to extract

gait biometric features. Modeling the human body

dynamic shape space is hard, since both the dynamics

of shape (different postures) and the static variability

in different people’s shapes have to be considered. Such

shape space lies on a nonlinear ▶manifold.

Figure 1 shows an example of a walking cycle from

a side view where each row shows half a walking cycle.

The shapes during a gait cycle temporally undergo

deformations and self-occlusion. The viewpoint from

which the gait is captured imposes self-similarity on

the observed shapes over time. This similarity can be

noticed by comparing the corresponding shapes at the

two rows in Fig. 1. This right part of the figure shows

the correlation between these shapes. The similarity

between the corresponding shapes in the two half

cycles is exhibited by the dark diagonally parallel

bands in the correlation plot. The similarity in the

observed shapes indicates a nonlinear relation between

the observed gait and the kinematics of the gait. This

can be noticed by closely inspecting the two shapes in

the middle of the two rows in Fig. 1. These two shapes

correspond to the farthest points in the walking cycle

kinematically (the top has the right leg in front

while the bottom has the left leg in front). In the

Euclidean visual input space (observed shapes) these

two points are very close to each other as can be

noticed from the distance plot on the right of Fig. 1.

This nonlinear relation between the observed shapes



Gait Recognition, Motion Analysis for. Figure 1 Twenty sample frames from a walking cycle from a side view. Each row

represents half a cycle. Notice the similarity between the two half cycles. The right part shows the similarity plot: each

row and column of the plot corresponds to one sample. Darker means closer distance and brighter means larger

distances. The two dark lines parallel to the diagonal show the similarity between the two half cycles.

Gait Recognition, Motion Analysis for G 641

G

and the kinematics poses a problem to gait tracking

and analysis systems. However, such similarity can

be useful in extracting gait features. For example,

the temporal self-similarity characteristic has been

exploited in the work of BenAbdelkader et al. [8] for

gait recognition.
Extracting Gait Signature from
Motion

There have been extensive research on appearance-

based extraction of gait signatures. Typical prepro-

cessing steps for gait analysis include detecting

and tracking the human subject in order to locate a

bounding box containing the motion and/or extracting

the body silhouette (see the related entry on human

detection and tracking).

One of the early papers on gait analysis using

spatiotemporal features is the work of Niyogi and

Adelson [9] where a spatiotemporal pattern (corres-

ponding to leg motion) was used to detect gait motion

in an image sequence represented as an XYT volume.

Gait was then parameterized with four angles for rec-

ognition. Murase and Sakai [10] used a parametric

eigenspace representation to represent a moving object

using Principle Component Analysis (PCA). In their

work, the extracted silhouettes were projected into an

eigenspace where a walking cycle forms a closed trajec-

tory in that space. Spatiotemporal correlations be-

tween a given trajectory and a database of trajectories

were used to perform the recognition. Huang et al. [11]

extended the method using Canonical space transfor-

mation (CST) based on Canonical Anaylsis (CA), with

eigenspace transformation for feature extraction.

Little and Boyd [12] exploited the spatial distri-

bution of optical flow to extract spatiotemporal

features. From dense optical flow, they extracted
scale-independent features capturing the spatial distri-

bution of the flow using moments. This facilitates

capturing the spatial layout of the motion, or as they

call it ‘‘the shape of the motion.’’ Periodicity analysis was

then done on these features to capture gait signatures for

recognition. BenAbdelkader et al. [8] used image self-

similarity plots (similar to Fig. 1) to capture the spa-

tiotemporal characteristics of gait. Given bounding

boxes around a tracked subject, correlation is used to

measure self-similarity between different time frames

in the form of similarity plots. PCA analysis was used

to reduce the dimensionality of such similarity plots

for recognition. Hayfron-Acquah et al. [13] used spa-

tial symmetry information to capture gait chara-

cteristics from silhouettes. Given a walking cycle, a

symmetry operator was used to extract a symmetry

map for each silhouette instance in the cycle. Fourier

transform was used to extract descriptors from such

symmetry maps for recognition.

Since gait is a temporal sequence, researchers have

investigated the use of Hidden Markov Models

(HMM) to represent and capture gait motion charac-

teristics. HMMs have been successfully used in many

speech recognition systems, as well as gesture recogni-

tion applications. Typically a left-right HMM with a

small number of states (three to five) is sufficient to

model the gait of each subject in the database, where

the HMMs are trained from features extracted from

silhouettes. In [14], HMM was used to capture gait

dynamics from quantized Hu moments of silhouettes.

HMM was also used in [15] with features representing

silhouette width distribution.

Lee and Elgammal [16] used bilinear and multi-

linear models to factorize the spatiotemporal gait pro-

cess into gait style and gait content factors. A nonlinear

mapping was learned from a unit circle (representing a

gait cycle) to the silhouettes’ shape space. The unit

circle represents a unified model for the gait manifold
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of different people, therefore, any spatiotemporal char-

acteristics of the gait of a specific person should exist

on the mapping space. Bilinear and multilinear models

were used to factorize such mapping to extract gait

signatures.
Manifold-based Representation for
Gait Analysis

Despite the high dimensionality of the human body

configuration space, any body motion is constrained

by the physical dynamics, body constraints, and the

motion type. Therefore, many human activities lie

intrinsically on low dimensional manifolds. This is
Gait Recognition, Motion Analysis for. Figure 2 Embedded

frames from a walking cycle along the manifold with the fram

are shown. Right: three different views of the manifold. � IEE
true for the body kinematics, as well as for the observed

motion through image sequences. For certain classes of

motion like gait, facial expression, and simple gestures,

considering a single person and factoring out other

sources of variability, the deformations will lie on a

one-dimensional manifold. Recently many researchers

have developed techniques and representations for gait

analysis that exploit such manifold structure, whether

in the visual space or in the kinematic space, e.g.

[17, 18]. Modeling the gait manifold was earlier used

for gait recognition in [10].

Intuitively, the gait is a one-dimensional closed

manifold that is embedded in a high dimensional

visual space. Such a manifold can twist and self-inter-

sect in such high dimensional visual space. This can be
gait manifold for a side view of the walker. Left: sample

e numbers shown to indicate the order. Ten walking cycles

E.
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noticed by considering the human silhouette through

the walking cycle, (as shown in Fig. 1) as points in a

high dimensional visual input space. Given the spatial

and the temporal constraints, it is expected that these

points will lay on a closed trajectory. In order to

achieve a low dimensional embedding of the gait man-

ifold (▶manifold embedding), dimensionality reduc-

tion techniques can be used. Linear dimensionality

reduction can be used to achieve an embedding, as in

[10]. However, in such a case the two half cycles would

be collapsed to each other because of the similarity in

the shape space. Nonlinear dimensionality reduction

techniques such as LLE [19], Isomap [20], GPLVM

[21], and others can successfully embed the gait

▶manifold in a way that separates the two half cycles.

As a result of nonlinear dimensionality reduction, an

embedding (and a visualization) of the gait manifold

can be obtained in a low-dimensional Euclidean

space [17]. Figure 2 illustrates an example embedded

manifold for a side view of the walker. The data used

are from the CMU Mobo gait data set which contains

25 people from six different view points. Data sets

of walking people from multiple views are used in

this experiment. Each data set consists of 300 frames

and each containing about 8–11 walking cycles of

the same person from a certain view points. The
Gait Recognition, Motion Analysis for. Figure 3 Embedded

view manifold is the right most one and back view manifold

illustrates its shape in the 3D embedding space is visualized.
walkers were using treadmill which might result in

different dynamics from the natural walking. Figure 3

illustrates the embedded manifolds for five different

view points of the walker. For a given view point, the

walking cycle evolves along a closed curve in the

embedded space, i.e., only one degree of freedom con-

trols the walking cycle, which corresponds to the

constrained body pose as a function of the time.

Such a conclusion conforms to the intuition that the

gait manifold is one-dimensional.

As can be noticed in Fig. 3, The manifold twists in

the embedding space given the different viewpoints,

which impose different self occlusions. The least twist-

ed manifold is the manifold for the back view as this

is the least self occluding view (left most manifold in

Fig. 3. In this case the manifold can be embedded in

a two dimensional space. For other views, the curve

starts to twist to be a three-dimensional space curve.

This is primarily because of the similarity imposed by

the view point which attracts far away points on the

manifold closer. The ultimate twist happens in the

side view manifold where the curve twists to get

the shape of the numeral 8 where each cycle of the

eight (half eight) lies in a different plane. Each half of

the ‘‘eight’’ figure corresponds to half a walking cycle.

The cross point represents the body pose where it is
manifolds for five different views of the walkers. Frontal

is the leftmost one. The view of the manifold that best

� IEEE.
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totally ambiguous from the side view to determine

from the shape of the contour which leg is in front,

as can be noticed in Fig. 2. Therefore, in a side view, a

three-dimensional embedding space is the least that

can be used to discriminate the different body poses.

Embedding a side view cycle in a two-dimensional

embedding space results in an embedding similar to

that shown in top right of Fig. 2 where the two half
Gait Recognition, Motion Analysis for. Figure 4 Adaptive C

frames. (b) adapting to the target style. (c) the tracked body c

From [22].
cycles lie over each other. Interestingly, despite that

the side view is the most problematic view of the gait,

most gait recognition systems seem to favor such view

for recognition! Different people are expected to have

different manifolds. However, such manifolds are all

topologically equivalent.

The example embeddings shown here are for sil-

houette data, i.e., the visual manifold of the gait is
ontour Tracking of Gait: (a) tracking through sample

onfiguration showing a constant speed dynamic system.
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embedd ed. Simil ar embedd ing can be obtai ned for

kinem atic data, in such a case the kin ematic manifo ld

of the gait is embedde d. In suc h a case PCA would be

suffic ient to achieve an em bedding . The impor tance of

such em bedded representat ions is that they prov ide a

low dimension al representation for tracki ng the gait

motion. On ly a one-dime nsional paramet er is nee ded

to control and track the gait moti on. This leads to a

simple constant speed dynam ic model for the gait .

Figure 4 shows an examp le of gait contour tr acking

system [22 ] that uses an embedded re pre sentation o f

the gait manifold. As a result, a constant speed linear

dynamics is achieved (Fig . 4b). The tracke r can a lso

adapt t o t he tracke d person shape st yle a nd identify

that st yle fro m a database of st yles ( Fig . 4c).

Explicit manifol d representation for gait is not only

useful for tracking and pose estimati on, but also can be

used in gait recognition sy stems. Different people are

expecte d to have different manifol ds for the appear-

ance of their gait. However, such manifol ds are all

topolo gically equivalen t to a unit circle. A person’s

gait manifol d can be tho ug ht of as a tw iste d circle in

the input space. The spati otemporal process of gait is

captured in the tw ist of a given per son’s manifol d.

Therefore, a per son’s gait signature can be captu red

by mode ling how a unit circle (an ideal manifol d)

can def orm to fit that per son’s gait manifol d. This

can be achieved by fitting a nonlinear war ping functio n

between a unit circle and a given person’s silhouet te

sequen ce. In [23 ] this approach was used to capture

gait si gnatures by factor izing the w arping func tions’

coefficient space to obtain a low -dimensi onal gait sig-

nature space for recogni tion.
Summary

Appearance-b ased ana lysis of gait is motivat ed and

justifi ed by psychophysical exp erimen ts. Appearance-

based app roaches fo r gait recognition aim to extrac t a

gait signatu re from the spati al and tempora l distri bu-

tion of the features on a tr acked subjec t w ithout the

need to fit a body model or to locate limb s. Such

approaches have proved ver y successful in gait recog-

nition and are applicab le in scenarios where the gait

biome tric features can onl y be extra cted from a

dista nce. The re are many limitatio ns to the current

gait recognition system s incl uding achiev ing invaria nt

to v iew ing condi tions, such as v iew point invariant.
Recent progress in manifol d-based representation of

gait, as well as facto rized models, such as mu ltilinear

tensor models prov ides potential solutio ns to such

problems.
Related Entries

▶ Gait Recognition, Model-B ased

▶ Human detectio n and tra cking
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Definition

Silhouette-based gait recognition is the analysis of

walking human figures for the purpose of biometric

recognition. Gait biometrics offers the advantage

of covertness; acquisition is possible without the

awareness or cooperation of the subject. The analysis

may apply to a single static image, or to a temporal

sequence of images, i.e., video.
Introduction

The phenomenon of gait is the ‘‘coordinated, cyclic

combination of movements that result in human loco-

motion’’ [1]. Gait is necessary for human mobility and

is therefore ubiquitous and easy to observe.
The common experience of recognizing a friend

from a distance by the way they walk has inspired

the use of gait as a biometric feature. In fact, Cutting

and Kozlowski [2], using ▶moving light displays

to isolate the motion stimulus, demonstrated that

humans can indeed identify familiar people from gait.

In their experiments, seven subjects identified the

gaits of a subset of six subjects correctly at a rate of

38%. While this rate is less than adequate for bio-

metrics, it is significantly better than random (17% in

for their sample size), and validates the human source of

inspiration.

To convert a gait into a feature vector suitable for

biometrics, one can characterize the motion in the gait,

e.g., by analyzing joint angles and limb trajectories, or

by measuring the overall pattern of motion. Alterna-

tively, one can measure critical body dimensions such as

height or limb lengths. In the later approach, biometric

features can be measured statically, but the motion in

the gait provides a convenient mechanism to reveal

joint positions, and consequently, limb lengths.

McGeer’s work on passive dynamic walkers [3, 4]

reveals the extent to which gait motion relates to

body mass and limb lengths: in the passive dynamic

model of a human gait, the motion is a stable limit

cycle that is a direct result of body mass and limb

length. Factors not accounted for in McGeer’s original

model are muscle activation (gravity powers a passive

dynamic walker), walking surface, injury, and fatigue.

Intuitively, the motion in a gait is a reflection of the

mass and skeletal dimensions of the walker. McGeer’s

passive dynamic model leads to more sophisticated

models that account for some of these other factors.

For example, see the work of Kuo [5, 6].

Confounding factors in gait biometrics include

clothing and footwear. Clothing can change the

observed pattern of motion and make it difficult to

accurately locate joint positions. The effect of footwear

is more complex. Some variation in footwear causes

changes in muscle activation, but causes no outwardly

visible change in the pattern of motion [7], whereas

other footwear changes will alter gait.

▶ Silhouette-based gait recognition extracts the

form of a walking subject, and then computes a feature

vector that describes either the pattern of motion

in the gait, or the physical dimensions of the subject.

A classifier then matches the feature vector against

previously acquired examples for identification or

verification.
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Silhouettes

Definitions of silhouette are often ambiguous: some

definitions refer to the region covered by a figure,

whereas other definitions refer to the boundary be-

tween a figure and its background. In the context of

silhouette-based gait biometrics, we assume that the

silhouette refers to the region, rather than the border.

Nevertheless, there are related examples that use the

boundary, e.g., see Baumberg and Hogg [8].

To form a silhouette of a walking figure requires

the ▶ segmentation of image pixels into foreground

(the moving figure) and background (everything else)

sets of pixels. The silhouette is the set of foreground

pixels. The easiest way to acquire a reliable silhouette is

chroma-keying [9], which relies on color disparities

between a backdrop and the foreground subject. The

background color (usually green or blue), is chosen to

make the color discrimination robust. Figure 2d shows

an example of chroma-keying in gait analysis. The

unusual color of the backdrop makes the subject

aware that they are under surveillance, negating the

covertness of gait biometrics.

▶Background subtraction obviates the need for a

colored backdrop by measuring the naturally occur-

ring scene behind the subject. This entails estimating

the statistical properties (usually in the luminance

and color) of every pixel over one or more frames

of video. By comparing the background estimate

with subsequent frames of video, one can classify fore-

ground pixels as those that do not match the back-

ground. The classifier can be as simple as thresholding

of the absolute difference between the background and

video frames. In most cases, the background estima-

tion and subtraction are merged into an online system

that continuously computes pixel differences and then

updates the background for each frame of video. Back-

ground subtraction requires that the background

and camera be stationary. Stauffer and Grimson [10]

describe a widely used background subtraction method

that uses a multimodal estimate of background statis-

tics to produce reliable silhouettes of moving objects.

Their method is robust in the presence of some back-

ground motions (e.g., rustling leaves or swaying tree

branches).

The projection of motion in a scene onto a camera

image plane is called a motion field. When a human

figure is walking, segmenting moving from slow or

stationary pixels in the motion field will extract a
silhouette of the figure. Additionally, a motion field

provides richer information than a simple silhouette

because it indicates not onlywhere the subject ismoving,

but also how fast the various body parts are moving. In

general, it is not possible to measure a motion field, but

one can measure ▶ optical flow, an approximation to

the motion field that is sufficient for biometric gait

recognition. If one imagines the luminance of pixels to

be a fluid that can flow around an image, the optical

flow estimates the movement of that fluid. It is, in part,

related to themotion field, but is not necessarily equal to

the motion field in all cases. Barron et al. [11] provide a

comparative survey of some well-known optical flow

algorithms. For example, see Fig. 2a.

Most silhouette-based biometric gait analysis

focuses on a view of the subject orthogonal to the

sagittal plane of the subject, i.e., the subject walks

across the field of view rather than toward or away

from the camera. We believe that this preference exists

because front or rear views of the subject show mostly

side-to-side motion and do not reveal either joint

location or the complex patterns of limb motion.

Marker-based motion capture, e.g., Johansson’s

moving light displays, offers a counterpoint to silhou-

ettes that are less practical for biometrics, but are

useful for gaining insight into the perceptual issues

surrounding gait [12, 13].
Duration of Observation

In general, it is desirable to observe the gait as long as

possible. One way to extend the duration of an obser-

vation indefinitely is to have a subject walk on a tread-

mill in front of a stationary camera, e.g., see Fig. 2b.

However, this requires the cooperation and awareness

of the subject.

Alternatively, allowing the camera to pan with the

motion of the subject can extend the observation time

without the subject walking on a special apparatus.

However, when the camera moves, the images acquired

contain both the movement of the subject, and the

background. The changing background makes accu-

rate background subtraction difficult.

Using a static camera simplifies both the apparatus

and the processing to extract the silhouette, but the

duration of observation is limited by the time it takes

the subject to cross the field of view of the camera. The

actual duration will vary with the angular width of
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the field of view, the distance between the subject

and the camera, and the speed of the subject. The

practical limit on distance to subject depends on the

resolution of the camera. Higher resolutions allow

the subject to be further away while maintaining

enough pixel coverage to measure biometric feature

vectors accurately. In examples reported in the litera-

ture that use a static cameras and subjects walking on

the ground, the typical duration of observation is

approximately three to six strides.
Periodicity and Synchronization

Gait is a periodic phenomenon, so the silhouette of a

walker varies with position in the gait cycle. Conse-

quently, it is necessary to synchronize measurements of

the silhouette to positions in the gait cycle. In turn, this

requires measurement of the frequency of the gait and

establishment of a phase reference within the gait cycle.

The method used to perform the synchronization

depends on the particular measurements acquired and

can serve to differentiate gait analysis methods. For

example, Little and Boyd [14] measure the frequency

from the oscillations of the centroid of the figure.

To establish a phase reference, they use the phase of

an oscillating measurement. In methods that measure

height, e.g., Ben-Abdelkader et al. [15], the frequency

of oscillations of the figure height gives the frequen-

cy of the gait. Positions of maxima in the height corre-

spond to the positions in the gait where the swinging

leg is vertical, thus defining a phase reference.
Conversion of Silhouettes to Features

A necessary step in silhouette-based gait recognition is

conversion of a temporal sequence of silhouettes into a

gait signature, i.e., a feature vector suitable for classifi-

cation. One approach is to extract features that char-

acterize the silhouette shapes and their variation over

time, as illustrated schematically in Fig. 1a.

As an example, Little and Boyd [14] use geometric

moments to describe a silhouette within a single frame

of video. The moments include geometric centers, i.e.,

the average position of pixels in the silhouette, some-

times called the center of mass. Weighting the pixel

positions by corresponding optical flow values gives

geometric moments sensitive to rapid limb movement.
Little and Boyd also use eccentricity [16], based on

higher-order geometrical moments. A further step is

necessary to combine the shape description for silhou-

ettes in individual frames to a feature vector repre-

sentative of the entire gait. Cyclic oscillations in the

silhouette shape moments result naturally from a gait,

so Little and Boyd exploit this to collect the individual

shape descriptions into a single feature vector of the

relative phases of the moment oscillations. Shutler and

Nixon [17] describe a variation on this approach that

uses Zernike moments to represent an accumulated

shape over the duration of a gait cycle.

Ben-Abdelkader et al. [18] also exploit the periodic

nature of a gait to form feature vectors. Periodicity and

symmetry in a gait mean that similar shapes occur

throughout the cycle of a gait. A feature vector built

from measures of the silhouette self-similarity over

period forms the basis for gait recognition. Periodicity

in the self-similarity measures establishes the frequency

of the gait. Hayfron-Acquah et al. [19] characterize the

silhouette shape in a single frame by measuring sym-

metries in the outline of the silhouette to produce a

symmetry map. The average of these symmetry maps

over a gait cycle gives the gait signature used for recog-

nition. Boyd [20] uses an array of phase-locked loops

to measure the frequency, amplitude, and phase of

pixel intensity oscillations due to a gait. The ampli-

tudes and relative phases form a vector of complex

phasors that acts as gait signature for recognition.

Rather than relying on the connection between gait

and body structure to form a gait signature, one can

use feature vectors that relate directly to body dimen-

sions as shown in Fig. 1b. For example, Bobick and

Johnson [21] measure stride and torso lengths, and

Ben-Abdelkader et al. [15] measure height and stride

characteristics. Collins et al. [22] identify key frames

in a gait sequence for both the double-support (two

feet on the ground) and mid-stride phase of a gait.

From these key frames they measure cues related to

height, width, and other body proportions, and move-

ment-related characteristics such as stride length, and

amount of arm swing.
Data Sets

A database of sample gaits is essential for developing a

silhouette-based gait recognition system. Little and

Boyd [14] provided one of the earliest databases
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the silhouette combine to form a gait signature from the motion of the gait, or (b) critical body dimensions are measured

from key frames within the gait cycle. Existing methods use variations on both of these themes and can even

combine them.

Gait Recognition, Silhouette-Based G 649

G

featuring seven sample gaits for each of six subjects, for

a total of 42 gait sequences (Fig. 2a).

Gross and Shi [23] created the Motion of Body

(MOBO) database (Fig. 2b). It features gait samples

for 25 subjects. Each subject walks on a treadmill under

four different conditions (slow, fast, on an incline, and
carrying a ball) and from a variety of viewing angles.

Segmented silhouettes are part of the database.

Sarkar et al. [24] present a large (1.2 Gigabytes) gait

database as part of the HumanID Gait Challenge Prob-

lem associated with the Defense Advanced Research

Projects Agency (DARPA) HumanID project (Fig. 2c).



Gait Recognition, Silhouette-Based. Figure 2 Example images from gait databases suitable for testing silhouette-based

gait recognition: (a) Little and Boyd [14], (b) MOBO [21], (c) HumanID Gait Challenge [22], and (d) Shutler et al. [23].

All examples show raw video images in the top row and silhouettes or magnitude of the optical flow (Little and Boyd

only) in the bottom row. The silhouettes shown for the Shutler et al. do not correspond to the images above.
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The database contains samples for 122 subjects

acquired in multiple sessions and under variable con-

ditions. The challenge problem specifies a series of tests

using the database as well as a reference algorithm to

facilitate comparative testing by researchers.
Shutler et al. [25] created a database featuring

over 100 subjects (Fig. 2d). The database contains

sequences acquired over multiple sessions and features

subjects walking from both left-to-right and right-to-

left. Subjects walk on the ground or on treadmills, and
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in front of green screens (for chroma-keying) or in

outdoor scenes.
G

Examples

Bhanu and Han [26] estimate upper bounds on the

performance of gait recognition by equating gait with

body dimensions, presented as plots of recognition rate

versus gallery size for varying assumptions of accuracy.

As one might expect with upper bounds, these rates are

optimistic. Random guessing is a good lower bound on

performance, but any practical biometric system must

be much better. One can reasonably expect that a gait

biometric system should perform at least as well as

humans on moving light displays [2], i.e., 38% from

a gallery of six.

Within these broad bounds, there are numerous

examples of existing silhouette-based gait recognition

systems. Most of these have been tested with one

or more of the databases mentioned earlier. Examples

include the work of Hayfron-Acquah et al. [19],

Shutler and Nixon [17], Collins et al. [22], Bobick

and Johnson [21], Ben-Abdelkader et al. [15, 18], Liu

and Sarkar [27], Robledo and Sarkar [28]. Lee and

Grimson [29], Little and Boyd [14, 20], and Wang

et al. [30]. The best reported correct classification

rates (CCR) are better than 90% from a gallery of

approximately 100 people.
Summary

Human experience supported by psychological obser-

vation suggests that humans can be recognized by

their gaits, which inspires gait biometric systems.

Silhouette-based gait recognition systems convert

images from a video gait sequence to silhouettes of

the walker. Dynamic shape or body dimensions are

measured from the silhouettes and combined to form

a gait signature used for recognition. There are several

databases available for testing silhouette-based gait

recognition, and numerous published examples of suc-

cessful recognition using these databases.
Related Entries

▶Gait Recognition, Model-Based

▶Gait Recognition, Motion Analysis for

▶Human Detection and Tracking
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Synonyms

Gait analysis; Perpetrator identification
Definition

Forensic evidence of gait, or forensic gait analysis, may

be defined as analyses of gait performed in the service

of the law. Usually, this involves analyses of criminal
cases with the aim to characterize the gait of a perpe-

trator, and often to compare the gait of a perpetrator

with the gait of a suspect. The results of the analyses

may furthermore need to be presented in court. The

methods involved in forensic gait analyses comprise

morphological assessment of single gait features and

kinematic assessment of body movement, often com-

bined with photogrammetrics. The latter means that

body segment lengths, stride length, etc. may be quan-

tified and used in direct comparisons.
Introduction

Forensic analysis of ▶ gait has a lot of common ground

with biometric gait recognition, but there are also some

major differences. In terms of image capture, the imag-

ery used in forensic gait analysis is mostly always ac-

quired from CCTV, with the perpetrator specifically

trying to conceal identity. In biometric systems, image

capture of a person, or registration, takes place under

specific circumstances, designed to maximize data

quality, and obviously a person will willingly follow a

set of guidelines in order to ensure proper registration.

On the other hand a bank robber might try to hide his

or her face to avoid facial recognition or wear baggy

clothes to blur body morphology.

Biometric gait recognition systems may operate

with various false accept or reject rates, which govern

how exclusive the system is, and reflect the number of

‘‘wrong’’ registrations that can be tolerated. For exam-

ple, a relatively high false reject rate (i.e., rejecting a

person who otherwise should be cleared) is not a

problem if the system is meant for a screening func-

tion, where rejection simply leads to an additional

identity check. It is possible to generate computer

models which can identify people by their gait with

more than 90% success [1, 2], but these models are still

based on a small number of people and require optimal

conditions seldom found outside the laboratory [3].

Alternative biometric approaches use a description of a

subject’s silhouette, often with reportedly improved

recognition performance [4]. In forensic gait analysis,

the analysis is often specifically carried out to match a

perpetrator with a suspect. If the case is made that

there is a match then the suspect may be sentenced.

This places a certain onus on the gait analysis and the

scientists carrying out the analyses, and the prosecution

and the defense may well challenge the findings of the
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gait analysis. This also means that when presenting

the results of a forensic gait analysis, one has to be

familiar with the legal prerequisites for the legal state-

ments, and how expert evidence is adjudicated.
G

Technical Issues

Bank CCTV systems are often set up not to capture gait

specifics, but rather to give fields of view covering

office spaces, teller machines, etc., and also often to

supervise the bank employees. It is a not uncommon

experience when perusing CCTV footage after a bank

robbery that the perpetrator is seen moving behind

desks and tellers, so that only the upper part of his

body is filmed. Also, the CCTV system may vary quite

a lot in terms of technical quality, e.g., image capture

frequencies, digital versus analog data storage, color

versus b/w cameras (the latter often of sharper quality),

and numerous supplier – dependent video and com-

puter systems (e.g., in terms of data compression of

video images).

The recording frequency should ideally be about

15 Hz allowing the examination of dynamic features

such as, e.g., lateral instability in the knee at heel strike.

Others have found a similar frequency sufficient for

obtaining joint angles [5] and for automatic recogni-

tion of gait [2]. Lower recording frequencies may also

be sufficient to examine features that are more static,

although the gait will have a ‘‘jerky’’ appearance. Even

at a low 5 Hz recording frequency, it has proved possi-

ble to examine gait parameters such as dorsal/plantar

flexion at heel strike, degree of ‘‘push-off ’’ at toe-off,

and knee flexion during stance. At even lower record-

ing frequencies, where the images really are still image

series, specific gait-related characteristics may be no-

ticed, e.g., a perpetrator with a bow-legged left knee.

This means that even just one single image of the gait

can sometimes be useful, if the gait feature captured

can be deemed characteristic.
Gait

The ability to recognize other individuals is fundamen-

tal to human life. Identification by gait is a part of

this process. Shakespeare made use of this in his play

‘‘The Tempest’’ where Ceres said: ‘‘High’st queen of

state, Great Juno, comes; I know her by her gait’’.
Psychophysiological studies have proved that the

human being can recognize the sex of a walker [6]

and friends and colleagues [7, 8] with a success rate

up to 70–80%.

The authors derive from the Institution that

has conducted what are, so far, the only scientific

approaches to gait analysis for evidential procedures.

The essay describes how evidential analysis was derived

and presented in two forensic investigations [9, 10].

Gait analyses is performed by first gaining a purely

morphological, ▶ anthroposcopic impression of the

gait of a perpetrator. We then combine the basic ability

to recognize people with biomechanical knowledge in

order to give statements as to whether a suspect could

have the same identity as a perpetrator in a given case

by comparing the suspect’s posture and joint angles

during gait with the perpetrator’s. A checklist has been

developed for forensic gait analysis (Table 1). First

described are the general characteristics of the perpe-

trator’s gait following which are analyzed each of the

joint rotations and segment movements found relevant

for forensic gait analysis (by trial end error). When a

profile of the perpetrator has been completed, each

item of the list is compared to the recording of the

suspect and stated if agreement (A), no agreement (N),

or comparison not possible (-) is found. An item can

be incomparable because either the joint rotation/

movement cannot be analyzed due to poor quality of

the surveillance recordings, or the recording of the

suspect differs too much in some way from the record-

ing of the crime such as differences in shoulder angles

between suspect and perpetrator because of elevated

shoulders in one of the recordings.

There have been several automated assessments of

feature analysis for forensic and biometric purposes

which show that there is a natural match between

technique and observed performance [5]. Their fea-

tures include foot angle (degree of outward rotation),

the step length, and the mean hip joint angle, among

others. Several other characteristic features have also

been identified: inversion/eversion in the ankle during

stance, lateral flexion in the dorsal column of the

spine, and the knee angle in the frontal plane that

would show lateral instability of the knee and signs

of a person being bow-legged/knock-kneed. Further-

more, some of the characteristic features found were

so special, such as limping, that it was not necessarily

expected to be found in the 11 randomly selected

subjects.
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gait description form/checklist. The rightmost column is

marked up either with ‘‘A’’ for agreement; ‘‘N’’ for no

agreement; and ‘‘-’’ for incomparable (see text).

The middle column is used for notes and specific

observations

General

Notes on gait of
perpetrator/

suspect

Long/short steps, stiff/
relaxed gait with Narrow/
wide distance between
the feet

Signs of pathologic gait

Feet/ankle joint

Outward rotation

Inversion/eversion

Dorsal/plantar flexion at
heel strike

Degree of ‘‘push-off’’ at
toe-off

Knee

Varus/valgus

Knee flexion during stance

Hip/pelvis

Pelvis Abduction/adduction

Pelvis Rotation

Pelvis tilt

Upper body

Lateral flexion of spinal
column

Forward/backward leaning

Rotation of the upper body
during walk

Shoulders

Angle in frontal plane

Forward/backward rotation

Neck/head

Posture in sagittal plane

Head movements in frontal
plane

Quality of recordings/
other precautions

654G Gait, Forensic Evidence of
It should be stressed that a rather wide definition

of ‘‘gait analysis’’ is used, so that basically all bodily

movements may be studied. Posture and stance may be

quite specific. For example, when standing, one leg is
more often weight-bearing than the other; there may

be marked lordosis; the neck and shoulders may be

more or less slouched, and so on. These stance-related

characteristics have a bearing on how a person initiates

or stops walking, and should thus also be involved in

the analysis.

All the above features may be judged purely mor-

phologically, but it may be of great evidentiary value to

attach numbers to these features. Thus, the morpho-

logical approach is combined with photogrammetry in

order to acquire specific measurements of body seg-

ment lengths and heights.
Photogrammetry in Association with
Gait Analysis

Photogrammetry literally means measuring by pho-

tography. Photogrammetry enables the measurement

of unknown values in two-dimensional space (2D)

using known values within a single image [9, 10].

Another basic application of photogrammetry is mea-

suring objects in three-dimensional space (3D) using

photographs taken from different sides and angles.

Zhao et al. [11] have also worked with video sequences

in this respect. Jensen and Rudin [9] used a 2D method

to measure the stature and several segment lengths in

two different cases and found excellent agreement be-

tween perpetrator and suspect. Lynnerup and Vedel

[10, 12] used a 3D method in the investigation of a

bank robbery where the perpetrator was recorded si-

multaneously from two different cameras and found

good agreement in bodily measurements when com-

paring the perpetrator to the suspect.

A first step in photogrammetry is calibration of

the CCTV cameras. This is done by placing frames

with targets on the locations (Fig. 1). The frames

are photographed with both the surveillance video

cameras and a calibrated digital camera. Using the

digital camera images and special software (PhotoMo-

deler Pro1) the points are measured and subsequently

imported as control points (‘‘fiduciary points’’). A

feature in PhotoModeler Pro1 allows determination

of the internal parameters of the surveillance video

cameras, e.g., focal length, and subsequent calculation

of the exact placement of the cameras. After calibration,

still images from the surveillance cameras are input in

PhotoModeler Pro1. The photogrammetrical method

described here has the advantage that there is no need
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to ascertain the position of the perpetrator in relation

to a measuring device. After calibration by fiduciary

points, the photogrammetrical analysis produces

points in a 3D space, and an evaluation of the goodness

of fit may be made directly in the software. This then
Gait, Forensic Evidence of. Figure 1 Measuring screens

put up in a department store, in order to calibrate the

CCTVs [10].

Gait, Forensic Evidence of. Figure 2 Screen shots of PhotoM

Simultaneous images from different CCTV cameras are used to

from different POV. The lines between the points are to scale

G

allows measuring body segment lengths, stature, etc. of

a perpetrator in various locations and with various

body stances (Fig. 2). The selection of anatomical

points is done by choosing specific points such as the

top of the head, eyes, and joint center-points on an

image. This selection is made by judging anatomical

landmarks, clothing displacement, comparison with

images just before and after the chosen photo, etc.

When then focusing on the other images of the same

situation, but from other cameras, the program will

indicate the epi-lines (the ‘‘line of sight’’) from the first

image, as well as a line connecting the two joints. After

selecting the identical anatomical points in this image,

it is immediately apparent how good the fit is, and

whether the points selected in the first image are ade-

quate. Thus, the 3D coordinates are calculated not only

by a simple averaging of points chosen from two

images, but reflect a dynamic process where the tight-

ness of the intersections of the epi-lines is minimized.

The absolute error associated with measuring using

photogrammetry as described is small. For instance,

the height of a desk (bolted to the floor and not moved

between the incident and the analysis) was measured

by photogrammetry (result: 89.3 cm) and compared to
odeler Pro1 interface, showing selection of points.

pinpoint concurrent anatomical points (and markers) seen

and thus hold accurate measures of distance [10].
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an actual physical measurement (result: 90.0 cm), thus

the error was 7 mm or less than 1%. Intra- and inter-

observer tests of photogrammetric measurements of

bodily segments seem to indicate that the error asso-

ciated with clearly identifiable body points, such as top

of the head, eyes, ear lobes, among others is small. On

the other hand, if the body points are hidden or ob-

scured by clothing, such as joint center-points, then

there is some variation, which needs to be taken into

account.

Currently, research focuses on implementing the

possibility of performing accurate measurements

of a perpetrator even though images are from only

one camera. To do this, a measuring screen is used,

the contours of which can be accurately measured

by the software, which is physically placed near to

where the perpetrator was standing (it needs to

place the perpetrator on a specific point on the

floor). If the screen is oriented perpendicular to

the camera, then the screen can be imported as a

virtual screen overlaid the crime video-footage

(Fig. 3). The perpetrator can then be measured against

this screen, akin to seeing a person standing in front

of a light-source, and whose shadow is cast of a screen

or wall behind him.
Comparing Gait and Photogrammetry

As the forensic analysis mostly pertains to comparisons

of perpetrators and suspects, then gait analyses and
Gait, Forensic Evidence of. Figure 3 Using the back-project
measuring of the suspect also has to be carried out.

Owing to legal exigencies, this may be performed

under very different settings and conditions, compris-

ing hidden and overt image capture for gait, and

hidden and overt photogrammetry. In some cases,

legal circumstances have ruled out hidden image cap-

ture; in other cases the defense counsel was invited to

be present (but without the knowledge of the suspect);

and finally, the suspect has sometimes been filmed

completely overt. Ideally, it is felt that gait image cap-

ture should be performed hidden, so as the suspect

does not know he is being filmed. This is to ensure that

the gait is not ‘‘changed’’. Preferably, the setting for

performing the image capture should to some extent

mimic the crime scene. For example, if at the crime

scene there was a step at the entrance, which the

suspect engaged in a distinct fashion, then filming

the suspect engaging a somewhat likewise step would

be obvious for comparison. If the crime scene images

show a perpetrator walking down a corridor, either

against or away from the CCTV camera, then a setting

at police offices with a long corridor may be suitable.

The filming usually takes place with ordinary DV-

cameras, and is done by forensic technicians, but the

setting would have been discussed in advance. For

instance, a policeman can be instructed to accompany

the suspect, but walking at a speed that matches the

velocity of the perpetrator, because the gait speed may

influence some of the features. For example, a lateral

instability in the knee will be more pronounced at a

higher gait speed.
ion screen method (see text).
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The photogrammetric measurement of the suspect

is most easily performed overtly. Usually a corner in an

office is identified with points fixed on the wall, and

the suspect is asked to stand in the corner. Using two or

three digital cameras, coupled to a computer, several

sets of images of high quality for subsequent photo-

grammetry can be rapidly acquired. While height

could be just as easily acquired using a stadiometer,

it is found that the same measuring method (photo-

grammetry) should be used for comparing perpetrator

and suspect. While at first glance stadiometer-measured

stature might seem as a ‘‘gold-standard’’, it is also found

that people almost automatically straighten themselves

when asked to stand against a stadiometer, meaning in

fact that a better agreement between subsequentmeasur-

ings of stature by photogrammetry has been found, than

between photogrammetry and a stadiometer. Of course,

measuring the suspect by photogrammetry also makes

it easier to measure other heights, such a floor to eye,

floor to shoulder, and floor to ear-lobe.

Schöllhorn et al. [13] concluded that ‘‘identifica-

tion of individuality seems to be impossible with single

variables or specific parameters of single variables’’, so

the more gait characteristics and bodily measurements

of the perpetrator that can be extracted and compared

to the suspect, the better.
The Nature of Forensic Statements

In statements to the police it is noted what image mate-

rial has been available, and what manner of image

enhancing techniques had been used. The results of the

above analyses are then presented, each followed by a

separate conclusion, and each conclusion always sum-

ming up what features were found to indicate concor-

dance between the suspect and the perpetrator, as well as

features which seemed to indicate incongruity. Each

item may therefore be seen as constituting single pieces

of evidence. This renders a statistical approach, for

instance the calculation of likelihood ratios for identity,

based on the prevalence of certain facial and bodily traits,

problematical [14].

Using the data sheets for gait analyses and photo-

grammetry fulfils three of the four guidelines in

the ▶Daubert Standard, a legal precedent set by Su-

preme Court of the United States [15], for determining

whether expert witnesses’ testimony is admissible as

evidence: (1) the testimony in court is based on an
empirically used technique, (2) the technique has

been published in peer-reviewed literature and (3) it

is generally accepted for use in forensic medicine. The

last Daubert Guideline states that the reliability of

the technique has been tested and potential error

rates known.

Image based comparisonwill probably never achieve

specific identification such as associated with DNA-

typing and fingerprinting. However, analyzing gait

and measuring stature and segment lengths of a perpe-

trator from surveillance video has the possibility of

becoming a valuable forensic tool because the gait and

the measures are an integrated part of the offender.

At present, the methods can be used effectively to

exclude a suspect if the gait and anthropometrical mea-

sures of the suspect and perpetrator are entirely different

from each other. On the other hand, if the perpetrator

and suspect do have a similar gait and similar measures,

it can only be stated in court that the suspect cannot be

excluded as the perpetrator. To give a more specific

statement of the value of evidence, a database with gait

characteristics and measures for a population of which

the perpetrator and suspect could be referenced against.

In theory, this might mean that if a perpetrator and a

suspect are measured to have an unusual height, i.e.,

either very tall or very small, then this might in itself

increase the likelihood of concordance between them,

whereas very average heights would lower the likelihood

(because then it might be almost anybody). In actuality,

such databases are rather restricted, with often only

specific subsamples of the entire population repre-

sented; populations also change in terms of e.g., immi-

gration; and finally the perpetrator might well be from

an entirely different part of the world. If comparing with

such databases, it is important to stress that ‘‘given the

perpetrator/suspect are drawn from the same popula-

tion as the database’’, then their stature is more or less

common, and the likelihood of concordance between

them is more or less likely.

Future work will probably focus on a better inte-

gration of gait characteristics and photogrammetry in

order to perform dynamic measurements of gait (basi-

cally ‘‘animating’’ the line models, cf. Fig. 4). This has

the potential of calculating angles of flexion – exten-

sion in the major joints, step length, degree of side-to-

side movement of the torso during walking, etc. These

parameters may then further assist in discriminating

between suspects and more specifically in identifying

individual traits of gait.
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produced by the Photomodeler1 based on the selected

anatomical points, showing the gait.

658G Gallery and Probe
Related Entries

▶Gait Recognition, Model-Based

▶Gait Recognition, Motion Analysis for

▶Gait Recognition, Overview

▶Gait Recognition, Silhouette-Based
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Gallery and Probe
Gallery is one of the data partitions in an algorithm-

level biometric evaluation experiment. It is a collection

of biometric templates that form the search dataset.

Typically, these are representative of the enrolled tem-

plates in an actual biometric deployment scenario. In

algorithm-level evaluations, care should be taken to

have same number of representative templates per

subject in the gallery. Probe is the second data partition

in an algorithm-level evaluation experiment. It is a

collection of biometric templates that need to be recog-

nized or identified by matching against the gallery. In

any given algorithm-level evaluation, the probes and

gallery differ with respect to the covariate that is being

studied. For example, to study the impact of viewpoint

covariate, the gallery is chosen to be from one view-

point and the probe is chosen to be from a different

viewpoint. Since during actual operations biometric

data is expected to arrive in a sequential fashion, it is

not appropriate to normalize or adjust biometric
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matching scores over the probes. Neither is it appro-

priate to train on the probe data.

▶Evaluation of Gait Recognition
Gaussian Mixture Density
▶Gaussian Mixture Models
G

Gaussian Mixture Models

DOUGLAS REYNOLDS

Lincoln Laboratory, MIT, Lexington, MA, USA
Synonyms

Gaussian mixture density; GMM
Definition

A Gaussian Mixture Model (GMM) is a parametric

▶ probability density function represented as a weight-

ed sum of Gaussian component densities. GMMs are

commonly used as a parametric model of the pro-

bability distribution of continuous measurements or

features in a biometric system, such as vocal-tract

related spectral features in a speaker recognition

system. GMM parameters are estimated from training

data using the iterative Expectation-Maximization

(EM) algorithm or ▶Maximum A Posteriori (MAP)

estimation from a well-trained prior model.
Introduction

A Gaussian mixture model is a weighted sum of M

component Gaussian densities as given by the equation,

pðxjlÞ ¼
XM
i¼1

wi gðxjmi; SiÞ; ð1Þ

where x is a D-dimensional continuous-valued data

vector (i.e. measurement or features), wi, i ¼ 1, . . .,M,
are the mixture weights, and gðxjmi; SiÞ, i = 1, . . ., M

are the component Gaussian densities. Each compo-

nent density is a D-variate Gaussian function of the

form,

gðxjmi; SiÞ ¼ 1

ð2pÞD=2jSij1=2
exp �1

2
ðx�miÞ0 S�1

i ðx�miÞ
� �

;

ð2Þ

with mean vector mi and covariance matrix Si.

The mixture weights satisfy the constraint thatPM
i¼1wi ¼ 1.

The complete Gaussian mixture model is parame-

terized by the mean vectors, covariance matrices and

mixture weights from all component densities. These

parameters are collectively represented by the notation,

l ¼ fwi;mi;Sig i ¼ 1; . . . ;M : ð3Þ

There are several variants on the GMM shown in

Eq. (3). The covariance matrices, Si, can be full rank or

constrained to be diagonal. Additionally, parameters

can be shared, or tied, among the Gaussian compo-

nents, such as having a common covariance matrix for

all components, The choice of model configuration

(number of components, full or diagonal covariance

matrices, and parameter tying) is often determined by

the amount of data available for estimating the GMM

parameters and how the GMM is used in a particular

biometric application.

It is also important to note that since the compo-

nent Gaussian are acting together to model the overall

feature density, full covariance matrices are not neces-

sary even if the features are not statistically indepen-

dent. The linear combination of diagonal covariance

basis Gaussians is capable of modeling the correla-

tions between feature vector elements. The effect of

using a set of M full covariance matrix Gaussians can

be equally obtained by using a larger set of diagonal

covariance Gaussians.

GMMs are often used in biometric systems, most

notably in speaker recognition systems [1, 2], due to

their capability of representing a large class of sample

distributions. One of the powerful attributes of the

GMM is its ability to form smooth approximations

to arbitrarily shaped densities. The classical unimodal

Gaussian model represents feature distributions by a

position (mean vector) and a elliptic shape (covariance

matrix) and a vector quantizer (VQ) or nearest neigh-

bor model represents a distribution by a discrete set
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of characteristic templates [3]. A GMM acts as a hybrid

between these two models by using a discrete set of

Gaussian functions, each with its own mean and

covariance matrix, to allow a better modeling

capability. Figure 1 compares the densities obtained

using a unimodal Gaussian model, a GMM, and a

VQ model. Plot (a) shows the histogram of a single
Gaussian Mixture Models. Figure 1 Comparison of distribut

coefficient from a 25 second utterance by a male speaker (b)

and its ten underlying component densities (d) histogram of

ten element codebook.
feature from a speaker recognition system (a single

cepstral value from a 25 second utterance by a male

speaker); plot (b) shows a unimodal Gaussian model of

this feature distribution; plot (c) shows a GMM and

its ten underlying component densities; and plot

(d) shows a histogram of the data assigned to the

VQ centroid locations of a ten element codebook.
ion modeling. (a) histogram of a single cepstral

maximum likelihood unimodal Gaussian model (c) GMM

the data assigned to the VQ centroid locations of a
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The GMM not only provides a smooth overall distri-

bution fit, its components also clearly detail the multi-

modal nature of the density.

The use of a GMM for representing feature distri-

butions in a biometric system may also be motivated

by the intuitive notion that the individual component

densities may model some underlying set of hidden

classes. For example, in speaker recognition, it is reason-

able to assume the acoustic space of spectral related

features corresponding to a speaker’s broad phonetic

events, such as vowels, nasals, or fricatives. These acous-

tic classes reflect some general speaker-dependent vocal

tract configurations that are useful for characterizing

speaker identity. The spectral shape of the ith acoustic

class can in turn be represented by the mean mi of

the ith component density, and variations of the aver-

age spectral shape can be represented by the covari-

ance matrix Si. Since all the features used to train the

GMM are unlabeled, the acoustic classes are hidden in

that the class of an observation is unknown. A GMM

can also be viewed as a single-state HMM with a

Gaussian mixture observation density, or an ergodic

Gaussian observation HMM with fixed, equal transition

probabilities. Assuming independent feature vectors, the

observation density of feature vectors drawn from these

hidden acoustic classes is a Gaussian mixture [4, 5].
Maximum Likelihood Parameter
Estimation

Given training vectors and a GMM configuration, the

parameters, l, are estimated which, in some sense, best

match the distribution of the training feature vectors.

There are several techniques available for estimating

the parameters of a GMM [6]. By far the most popular

and well-established method is▶maximum likelihood

(ML) estimation.

The aim of ML estimation is to find the model

parameters which maximize the likelihood of the

GMM given the training data. For a sequence of T

training vectors X ¼ fx1; . . . ; xTg, the GMM likeli-

hood, assuming independence between the vectors

(The independence assumption is often incorrect but

is needed to make the problem tractable.), can be

written as,

pðX jlÞ ¼
YT
t¼1

pðxt jlÞ: ð4Þ
Unfortunately, this expression is a nonlinear function

of the parameters l and direct maximization is not

possible. However, ML parameter estimates can be

obtained iteratively using a special case of the expecta-

tion-maximization (EM) algorithm [7].

The basic idea of the EM algorithm is, beginning

with an initial model l, to estimate a new model �l,
such that pðX j�lÞ � pðX jlÞ. The new model then

becomes the initial model for the next iteration and

the process is repeated until some convergence thresh-

old is reached. The initial model is typically derived by

using some form of binary VQ estimation.

On each EM iteration, the following re-estimation

formulas are used which guarantee a monotonic

increase in the model’s likelihood value,

Mixture Weights

�wi ¼ 1

T

XT
t¼1

Prðijxt ; lÞ: ð5Þ

Means

�mi ¼
PT
t¼1

Prðijxt ; lÞ xt
PT
t¼1

Prðijxt ; lÞ
: ð6Þ

Variances (diagonal covariance)

�s2i ¼
PT
t¼1

Prðijxt ; lÞ x2t
PT
t¼1

Prðijxt ; lÞ
� �m2i ; ð7Þ

where si
2, xt, and mi refer to arbitrary elements of the

vectors si
2, xt , and mi , respectively.

The a posteriori probability for component i is

given by

Prðijxt ; lÞ ¼ wi gðxt jmi;SiÞPM
k¼1

wk gðxt jmk;SkÞ
ð8Þ

Maximum A Posteriori (MAP) Parameter
Estimation

In addition to estimating GMM parameters via the

EM algorithm, the parameters may also be estimated

using Maximum A Posteriori (MAP) estimation. MAP
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estimation is used, for example, in speaker recognition

applications to derive speaker model by adapting

from a universal background model (UBM) [8]. It is

also used in other pattern recognition tasks where limited

labeled training data is used to adapt a prior, general

model.

Like the EM algorithm, the MAP estimation is a

two-step estimation process. The first step is identical

to the ‘‘Expectation’’ step of the EM algorithm, where

estimates of the sufficient statistics (These are the basic

statistics needed to be estimated to compute the de-

sired parameters. For a GMM mixture, these are the

count, and the first and second moments required to

compute the mixture weight, mean and variance.) of

the training data are computed for each mixture in

the prior model. Unlike the second step of the EM

algorithm, for adaptation these ‘‘new’’ sufficient statis-

tic estimates are then combined with the ‘‘old’’ suffi-

cient statistics from the prior mixture parameters

using a data-dependent mixing coefficient. The data-

dependent mixing coefficient is designed such that

mixtures with high counts of new data rely more on

the new sufficient statistics for final parameter estima-

tion and mixtures with low counts of new data rely

more on the old sufficient statistics for final parameter

estimation.

The specifics of the adaptation are as follows. Given

a prior model and training vectors from the desired

class, X ¼ fx1 . . . ; xTg, the probabilistic alignment

of the training vectors into the prior mixture compo-

nents is determined (Fig. 2a). That is, for mixture i

in the prior model, Prðijxt ; lpriorÞ is computed as

in Eq. (8).
Gaussian Mixture Models. Figure 2 Pictorial example of two

(a) The training vectors (x’s) are probabilistically mapped into

parameters are derived using the statistics of the new data an

is data-dependent, so UBM (prior) mixture parameters are ad
Then compute the sufficient statistics for the

weight, mean, and variance parameters x2 is shorthand

for diag(xx
0
):

ni ¼
XT
t¼1

Prðijxt ; lpriorÞ weight; ð9Þ

EiðxÞ ¼ 1

ni

XT
t¼1

Prðijxt ; lpriorÞxt mean; ð10Þ

Eiðx2Þ ¼ 1

ni

XT
t¼1

Prðijxt ; lpriorÞx2t variance: ð11Þ

This is the same as the ‘‘Expectation’’ step in the EM

algorithm.

Lastly, these new sufficient statistics from the

training data are used to update the prior sufficient

statistics for mixture i to create the adapted parameters

for mixture i (Fig. 2b) with the equations:

ŵi ¼ awi ni=T þ ð1� awi Þwi

� �
g

adapted mixture weight;
ð12Þ

m̂i ¼ ami EiðxÞ þ ð1� ami Þmi

adapted mixture mean;
ð13Þ

ŝ2
i ¼ avi Eiðx2Þ þ ð1� avi Þðs2

i þ m2
i Þ � m̂2

i ð14Þ

adapted mixture variance

The adaptation coefficients controlling the balance

between old and new estimates are {ai
w, ai

m, ai
v} for

the weights, means, and variances, respectively. The

scale factor, g, is computed over all adapted mixture

weights to ensure that they sum to unity. Note that the
steps in adapting a hypothesized speaker model.

the UBM (prior) mixtures. (b) The adapted mixture

d the UBM (prior) mixture parameters. The adaptation

apted by different amounts.
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G

sufficient statistics, not the derived parameters, such as

the variance, are being adapted.

For each mixture and each parameter, a data-

dependent adaptation coefficient ai
r, r 2 {w, m, v},

is used in the equations mentioned earlier. This is

defined as

ari ¼ ni

ni þ rr
; ð15Þ

where rr is a fixed ‘‘relevance’’ factor for parameter r.
It is common in speaker recognition applications

to use one adaptation coefficient for all parameters

(ai
w ¼ ai

m ¼ ai
v ¼ ni ∕(ni þ r)) and further to only

adapt certain GMM parameters, such as only the mean

vectors.

Using a data-dependent adaptation coefficient

allows mixture-dependent adaptation of parameters.

If a mixture component has a low probabilistic count,

ni, of new data, then ai
r ! 0 causing the de-emphasis

of the new (potentially under-trained) parameters and

the emphasis of the old (better trained) parameters.

For mixture components with high probabilistic

counts, ai
r ! 1, causing the use of the new class-

dependent parameters. The relevance factor is a way

of controlling how much new data should be observed

in a mixture before the new parameters begin replacing

the old parameters. This approach should thus be

robust to limited training data.
Related Entries

▶ Session Effects on Speaker Modeling

▶ Speaker Matching

▶ Speaker Recognition, Overview

▶Universal Background Models
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GC
GC is an analytical chemistry separation technique

which provides separation of mixtures on the basis of

differential affinity between a liquid or solid stationary

phase and a gas mobile phase.

▶Odor Biometrics
Gelatin Pad
Gelatin lifting pads are designed for the lifting of

fingerprints, footprints, dust marks, and trace evi-

dences. They comprise three layers, the first layer is

the carrier, which holds the second layer of thick low-

adhesive gelatin in a pliable and flexible format. The

thick gelatin layer is ideal for lifting evidence without

sticking to the surrounding lift area. The third layer, a

cover sheet, is a clear polyester film which is removed

prior to lifting, and may be replaced once the lift is

completed.

▶ Footwear Recognition
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General Model
▶Universal Background Models
Generalization
The classifier is designed to correctly classify unseen

objects which are not used during the training process.

Generalization represents the capacity of the classifier

to respond to this task. When a classifier has a good

generalization capacity, it can correctly classify unseen

examples.

▶Ensemble Learning

▶ Support Vector Machine
Generalization Error
The generalization error of a machine learning model

is a function that measures how far the student ma-

chine is from the teacher machine in average over the

entire set of possible data that can be generated by the

teacher after each iteration of the learning process. It

has this name because this function indicates the ca-

pacity of a machine that learns with the specified

algorithm to infer a rule (or generalize) that is used

by the teacher machine to generate data based only on

a few examples.

▶ Image Pattern Recognition
Generative Classifier
A generative classifier is a classification algorithm that

learns the full joint distribution of class and attribute

values. As a result, it can generate labeled instances

according to this distribution. To classify an unlabeled
instance, one commonly uses the Bayes decision

theory.

▶ Fusion, Quality-Based
Genetic Identification
Identification of a victim based on the victim’s DNA

samples.

▶Dental Biometrics
Genuine Matching
Genuine matching is matching of two templates gen-

erated from the same finger.

▶ Fingerprint Matching, Automatic

▶ Individuality of Fingerprints
Genuine Sign
Genuine sign, also called genuine signature, is a legal

sign. It is legally accepted as the registered sign.

▶ Signature Matching
Genuine/Impostor Attempt
In a genuine attempt, a biometric sample is compared

against other biometric samples from the same subject.

If similarity between the samples is not high enough,

the subject will be wrongly rejected by the system.

In an impostor attempt, a biometric sample is com-

pared against biometric samples from other subjects.
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If similarity between the samples is high enough, the

subject will be wrongly accepted by the system. It

should be noted that biometric samples from the

same user are not necessarily similar (e.g., temporary

injuries in the finger) and on the other hand, biometric

samples from different users can be quite similar (e.g.,

signature forgeries).

▶ Fingerprint Databases and Evaluation
G

Geodesic
Geodesic is the integral curve between two points

corresponding to the gradient direction of the intrinsic

distance function of the manifold.

▶Manifold Learning
Geometry Image
A geometry image is the result of representing all

vertices of a 3D object (x, y, and z coordinates) as a

simple 2D array of quantized points. Geometry images

have at least three channels assigned to each u, v pair of

coordinates, encoding geometric information (x, y, z

coordinates) of a vertex in R3, but surface normals and

colors can also be stored using the same implicit sur-

face parametrization. Creating a geometry image is

accomplished by cutting an arbitrary mesh along a

network of edge paths and parametrizing the resulting

single chart onto a square.

▶ Face Recognition, 3D-Based
Global Fusion
Global fusion in the framework or multi-biometric

score fusion refers to user-independent score fusion
techniques in which a unique fusion function is used

for all users, which is trained based on background

data from a pool of users (both genuine and impostor

scores).

▶ Fusion, User-Specific
Global Thresholding Techniques
Global thresholding technique is used to convert an

image consisting of gray scale pixels to one containing

only black and white pixels. Usually a pixel value of

0 represents white and the value 255 represents black

with the numbers from 1 to 254 representing different

grey levels. A threshold value Th is chosen in the range

of 1–254 and each grey pixel P in the image is modified

to either black or white according to the test.

If P � Th then P = 255 (white) orelse P = 0 (black).

There are a number of ways to select the value of

threshold Th depending on the nature of grey pixel

distributions in the image.

▶Hand Vein
Glottal Excitation
The glottal excitation corresponds to the pulsating

flow of air that comes from the lungs through the

vibrating vocal folds. This first process of the human

speech production mechanism is named after the ori-

fice between the vocal folds, the glottis.

▶ Speech Production
Glyph
A glyph is the shape of a handwriting sample. In

Roman scripts, it may contain one letter or even a
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group of letters depending on the content of the sam-

ple. In oriental scripts, a glyph corresponds to a char-

acter which consists of a set of strokes.

▶ Signature Sample Synthesis
GMM
▶Gaussian Mixture Models
Graph Matching
The configural identification of a face relating to the

measurable distances between features and the relative

ratios of height and width. A unique algorithm is

created from the key points on the face; this algorithm

is regarded as a unique biometric identifier.

▶ Face, Forensic Evidence of
Graphic Tablet
▶Digitizing Tablet
Graphical User Interface
▶User Interface, System Design
Graphometric Features
Graphometric features are intrinsic properties from an

individual handwriting style, which may be employed
by forensic experts during handwriting or signature

recognition. These include curvature and pressure

among others.

▶ Signature Features
Gray Scale
A continuous-tone image that has one component,

which is luminescent.

▶Vascular Image Data Format, Standardization
GRF (Ground Reaction Force)
The ground reaction force is, according to Newton’s

law of reaction, the force equal in magnitude but

opposite in direction produced from the ground as

the reaction to force the body exerts on the ground.

The ground reaction force is used as propulsion to

initiate and control the movement, and is normally

measured by force sensor plates.

▶ Footstep Recognition
Ground-Truth
The actual facts of a situation, without errors intro-

duced by sensors, software processing or human per-

ception and judgment. For example the actual location

of a minutia in a fingerprint image that could be used

to check the accuracy of the location reported by a

given automated minutiae extraction algorithm.

▶ SFinGe
Gummy Bear Finger
▶ Fingerprint Fake Detection
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