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ABSTRACT
Networks of multiple video cameras are being deployed in several
scenarios like surveillance, traffic enforcement, human motion anal-
ysis and sports telecast. The unmanageable size of the raw video
sequences necessitates the use of compression schemes to efficiently
encode these videos. Traditional video compression schemes ac-
count for spatial and temporal redundancy in a video sequence. In
this paper, we present a compression technique that also leverages
the information redundancy between video sequences across differ-
ent cameras with overlapping fields of view. An algorithm based on
homography for efficient compression of multiple video sequences
is presented that performs significantly better than current schemes.
We also derive an efficient distributed version of the algorithm that
can be implemented on a large scale network of cameras. This dis-
tributed algorithm minimizes both the communication costs and the
compression costs simultaneously.

Index Terms— Image Coding, Compression, Camera Networks

1. INTRODUCTION

Large scale networks of cameras are becoming ubiquitous in out-
door surveillance, traffic monitoring, and several other applications.
In order to manage and store the voluminous amount of data gen-
erated by these video sensors, effective schemes for compression of
these videos are needed. Video coding schemes like the MPEG1,
MPEG2, MPEG4, H261, and H263 target the intra-sensor redun-
dancy in videos. They exploit spatial redundancy within an image
and the temporal redundancy in a video stream by performing trans-
form coding using the discrete orthogonal transforms and motion
compensation respectively. In a multi-camera setting, there is also a
significant amount of redundancy across overlapping camera views.
Traditional video coding schemes do not exploit this inter-sensor re-
dundancy. In this paper, we present a simple, yet powerful technique
for video compression that exploits the redundancy present within as
well as across video sequences.

We assume multiple cameras with overlapping fields of view,
observing a scene containing one or many planes. For instance, one
plane may be the dominant ground plane, and there may be other
planes defined by buildings or other man-made objects. We uti-
lize inter-sensor redundancy for compression by making use of the
homography relationship induced by a plane between images from
multiple views. The homography is the only information that we
need to perform inter and intra sensor coding. We do not need any
other information like intrinsic and extrinsic calibration etc. We ex-
perimentally show that in a variety of settings the new multi-video
coding technique results in significant savings compared to tradi-
tional intra-sensor coding techniques like MPEG. In a sensor net-
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work setting, it also becomes important to minimize the required
communication bandwidth between the various sensor nodes. We
also develop a completely distributed version of the multi-video cod-
ing technique that involves minimal information exchange among
the sensor nodes during the compression process. This is achieved
by a careful selection of the model that relates the observed intensi-
ties at corresponding locations on different cameras. We show both
quantitatively and empirically that the distributed version of the al-
gorithm results in significant bandwidth savings.

1.1. Prior Work

Existing video compression standards likeMPEG1, MPEG2, MPEG4,
H261, and H263 do not account for the redundancy across camera
views. In the presence of multiple video streams, they act on the
each of the individual videos independently. Recently, there have
been some efforts to tackle this issue using techniques from dis-
tributed source coding(DSC) [1][2]. In [3] and [4] distributed source
coding techniques are used to increase error resilience and to move
the complexity of the code from the encoder to the decoder. Zhu
et. al. [5] developed an algorithm for Wyner-Ziv encoding of light
fields in multiple camera settings. But these methods do not exploit
the inter-sensor redundancy resulting from the overlapping fields of
view of multiple cameras. Wagner et. al. [6] present a method for
simultaneous compression of multiple video streams by registering
them at a central node and then performing joint coding for the
overlapping areas. In another similar approach [7], the parameters
of a 3D model are recovered by employing a model-based track-
ing algorithm to provide registration across camera views. Gehrig
and Dragotti [8] developed a distributed source coding scheme for
multi-camera images under several restrictive conditions like cam-
eras located on a horizontal line and piecewise polynomial intensity
fields. The approach closest to our work is [9], where the epipolar
geometry between cameras is used to perform joint source coding.
Nevertheless, our approach differs in significant ways. Firstly, [9]
require the knowledge of camera locations and calibration infor-
mation to compute epipolar geometry whereas we do not require
complete calibration. We only require the homographies induced
by scene planes between images from different views. Moreover,
inspired by the results in [2], we describe a distributed version of the
algorithm leading to significant communication savings in sensor
networks.

2. MOTIVATION AND MULTI-VIDEO CODING

Consider a typical surveillence scenario as shown in Figure 1, where
two camera views are surveying a common area. There is a dominant
plane, and a several static and moving objects on it. Inspite of sig-
nificant variations between images from the two views due to pose
and illumination effects, the images captured by these cameras are

1596978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008



Fig. 1. Two camera views of a typical airport scene. The two images
are related, and joint coding will result in compression.

related. In general, the relationship between corresponding pixels in
images from the two camera views is expressed by the epipolar con-
straint. But the epipolar geometry requires knowledge of the exact
relative position of the two cameras. Moreover, the epipolar con-
straint restricts an imaged point in one camera view to lie on a line
in the other camera view. The memory savings obtained by using the
epipolar constraint is therefore, at best, modest. We note that typical
scenes are dominated by the presence of several planar objects. For
all points belonging to a particular scene plane, the corresponding
pixels in two different camera views are related by a homography.
Given the image from one camera, the image of a plane as seen by
any of the other cameras can be accurately reconstructed using the
homography induced by the plane.

2.1. Homography in multi-video coding

Let us assume that there is one dominant plane in the scene being
monitored by the set of cameras. In the scene shown in Fig.1, this is
the ground plane. The relationship between corresponding pixels x1

and x2 in the two images is given by x2 ≈ H12x1, where H12 is a
3× 3 homography matrix relating the corresponding points. Instead
of coding and storing the image intensities for the images from all the
views separately, we could obtain significant coding efficiency in the
overlapping field of view by storing the image from one view and the
homography matrix relating the two views. But the image intensities
of corresponding points might not be identical because of different
settings of internal camera parameters like brightness compensation,
automatic gain adjustment etc. To model these differences, we write
the relation between the intensities of the overlapping portions of
two images as:

I2(H12x1) = f(I1(x1), a12) (1)

where f is a function modeling the change in gain and brightness,
and I(x) denotes the observed intensity at location x. The parame-
ters a12 relate the gain and brightness parameters of the two cameras.
Therefore, we store only one set of images for a certain viewpoint,
the homography between this view and all other views, and a set of
camera gain parameters a12. Using this, it is possible to reconstruct
the images from all the viewpoints.

2.2. Modeling the Gain and Brightness

The choice of the functional form for f in (1) does not significantly
affect the coding/compression efficiency. Nevertheless, certain
choices of functions are more preferable than others because they
allow efficient network based distributed algorithms to be imple-
mented. In this work, f is chosen to be an affine function of the
intensity values at the corresponding pixels with two parameters
a12 = {c12, d12}.

I2(H12x1) = c12I1(x1) + d12 (2)

This choice of functional form accounts for the gain and white bal-
ance between the two different cameras. With this functional form,
we later derive a distributed algorithm to jointly code the multiple
video streams.

2.3. Motion Compensation and Transform Coding

Traditional single stream video coding schemes like MPEG use the
paradigm of motion compensation followed by transform coding us-
ing DCT in order to exploit the temporal and spatial redundancy
and achieve compression. In our scenario, we wish to target the
redundancy across video streams in addition to the the redundan-
cies within a sequence. Therefore, we borrow concepts from single
stream compression and augment them with the homography based
correspondence in order to do better rate-distortion performance than
compressing different video streams independently.

Similar to MPEG, we divide each image into 8 × 8 blocks and
compute the 2D DCT of these blocks. We quantize these DCT co-
efficients for each block and then encode them. We then perform
run-length coding to leverage the presence of many zero-values in
the high frequency DCT coefficients.

2.4. Multi-video coding : The details

In order to account for the redundancy across camera views, the
homography-based multi-view coding is implemented, in a block-
wise fashion. We describe the algorithm assuming two views. The
case for multiple views is easily generalized. The first video se-
quence is MPEG coded using intra-coded (I) frames, and inter-coded
(P and B) frames accounting for motion compensation. The second
video sequence is divided into 8 × 8 blocks. If a block can be ade-
quately reconstructed using the corresponding frame in the first view
and the homography, then we only store the gain or white balance
(a12), rather than storing the DCT coeficients. Most video cameras
have automatic gain and brightness adjustments that associate differ-
ent gain values to different regions in the image, depending on the
observed intensities. To compensate for this spatially varying gain
adjustment, we can store the gain-parameters for each block sepa-
rately rather than storing one set of common values for the entire
image. In this setting, using 8 bits for the gain parameters, the entire
block can be coded with just 16 bits, i.e. approximately 0.25 bits per
pixel, while maintaining the same quality of the observed image as
before. When there are occlusions, or when objects are not confined
to any of the scene planes, or when there are specularities observed
in one view that are not observed in the other view, the homography
based reconstruction will result in a large reconstruction error. In
all such cases, the corresponding blocks are individually coded us-
ing motion compensation followed by transform coding, quantiza-
tion and run-length coding. This implies that when there is minimal
or no overlap between two videos, the compression efficiency of the
Homography based Multi-Video Coding (HMVC) algorithm is just
as good as traditional MPEG encoding of the individual videos.

In the presence of multiple scene planes, we may improve the
coding efficiency by using different homographies for different re-
gions of the images. Using the homography relations induced by all
the scene planes increases the number of blocks that are encoded us-
ing the homography and gain parameters. Additional overhead bits
are needed for each block indicating which of the homographies was
used for compression. In practice, the overhead is quite small since
most scenes have around 3 − 4 planes which induce homographies
between the views. The compression gain obtained by coding ad-
ditional blocks using multiple homographies is significantly larger
than this overhead.
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PSNR Vs Bit Rate plot for a) AVW Dataset and b)Airport Dataset
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Fig. 2. Plot of Peak Signal to Noise Ratio (in dB) Vs Bit Rate of
Encoding in Bits per Pixel per Frame for a) AVWilliams dataset b)
Airport Dataset.

3. EXPERIMENTS ON MULTI-VIDEO CODING

We evaluate the performance of the multi-video coding scheme on
two datasets with varying characteristics. Dataset A (A. V. Williams
Dataset) contains synchronized video sequences from two cameras
observing an outdoor scene with human and vehicular traffic. This
dataset exhibits variations in scene brightness, complex motion of
targets and parallax due to large vehicles. The second dataset (airport
dataset) contains three cameras surveying an airport scene with many
moving objects (people) in the scene.

We evaluate the performance by comparing the PSNR versus bit-
rate plots with the baseline MPEG coding of the video streams. We
implement two versions of our algorithm - one with the affine gain
parameters constant all over the image (HMVC-P), and the other
with these parameters different for each block (HMVC-B). The first
version (HMVC-P) provides us with higher compression efficiency
while it introduces some artifacts when the camera gain is differ-
ent in various image regions. The performance is expected to be
similar in scenes with normal dynamic range. But for scenes with
high dynamic range, HMVC-B is likely to perform better. Figure
2 shows the peak signal to noise ratio of the various compression
algorithms on the AVWilliams datasets. At very low bit rates the
HMVC-P algorithm outperforms the other algorithms. At moderate
and high bitrates the HMVC-B algorithm performs best. There is
a clear increase in performance of HMVC compared to traditional
MPEG because of targeting inter-sensor redundancy between video
streams. The PSNR versus bit rate plot for the airport sequence is
also shown in Fig. 2. For this sequence, the ground plane had a
wide variation in texture (checkerboard pattern), therefore we could
not obtain estimates of gain-parameters that were consistent across
all regions of the image. This suggests that it is important in some
scenes to store the gain parameters in a blockwise fashion. Sample
output image reconstructed from the compressed data are shown in
Figure 3. In this scene, there was significant parallax from the plane
because of objects and moving targets. We see that even at very low
bit-rates such as 0.5 bits per pixel, the reconstruction using HMVC
is good over all regions of the image.

4. DISTRIBUTED ALGORITHM

Consider a sensor network scenario. Each node Xi is a video sen-
sor and is monitoring a scene. There is significant overlap between
the fields of view of the various video sensors. Node S is the sink
node and is the central facility where all the image sequences are
collected and stored for further processing. If we use the HMVC

(a) Original image (b) HMVCB reconstructed image

Fig. 3. Original and reconstructed images (at 0.5 bits per pixel) for
airport scene.

algorithm at the central node S for compression, then we would ob-
tain tremendous memory savings at the central sink node but the re-
quired bandwidth of each of the links between the video sensors and
the sink node would still beH(Xi) whereH denotes the entropy. In
practice, the required bandwidth of each of these links would have to
be at least as large as the bit-rate of traditional MPEG compression.
For a general linear network where encoding is performed only at the
sink node, the required capacity of the links is shown in Figure 4(b).
The Slepian-Wolf Theorem [1] states that two correlated sources can
be compressed to the same extent irrespective of whether the sources
communicate or not, as long as decompression takes place at a com-
mon receiver. This implies the existence of some distributed coding
scheme that can potentially be implemented within the bandwidth
constraints shown in Figure 4(d). But practical designs for Slepian-
Wolf video codes have been very hard to come by.

4.1. Correlated Data Gathering

Distributed compression schemes for correlated data have been stud-
ied in detail in [2]. They address the problem of joint rate allo-
cation and optimization and show that when the transfer matrix is
arbitary, the problem of finding the optimal transmission structure
is NP complete while this task can be efficiently achieved when the
flow cost is separable. We leverage the results and ideas presented
in [2] to derive efficient distributed algorithms for the problem of
distributed video coding. In particular, we describe two different
distributed coding architectures - one based on explicit communica-
tion and the other based on approximation to the distributed version
of the HMVC (DHMVC). Most of the results shown here are moti-
vated using either the linear network or the star network, for which
explicit bounds and performance guarantees have been obtained in
[2]. Nevertheless, the ideas presented here can easily be extended
to networks of more general topology by approximating them into a
sum of either star or linear networks of appropriate form.

4.2. Explicit Communication

Consider the linear network shown in Fig. 4(c). The nodes named
N1, N2, ..NM are each connected to video cameras and need to send
the data over to the central processing node S. Denote the video
source at node Ni by Xi and its entropy by H(Xi). In the absence
of any distributed scheme, the link LM−1 between NM and NM−1

needs to be able to accomodate a bandwidth of H(XM ). If the re-
quired capacity of each link Li is denoted by C(Li), then in the
absence of any coding the required capacity of the links is given by

CNoCoding(Li) =

M∑

j=i+1

H(Xj)

In the explicit communication based scheme for multi video
coding, the node NM transmits its entire video stream to the node
NM−1 via link LM−1. Therefore the required capacity of link
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Fig. 4. Network of cameras and the required link capacities for the
links for each of the schemes discussed.

LM−1 would remain i.e. C(LM−1) = H(XM ). But each of
the subsequent nodes, perform multi video coding before transmit-
ting the combined video streams further to the next node. For
example node NM−1 would jointly code XM and XM−1 us-
ing the HMVC algorithm and then would transmit the jointly
encoded stream further down to the next node. Therefore, the
required capacity of link LM−2, given by C(LM−2) would be
H(XM , XM−1). Since, the video streams overlap we know that
H(XM , XM−1) <= H(XM ) + H(XM−1). In general, the re-
quired capacity of any link Li can be given by

CExplicit(Li) = H(XM , XM−1, ..., Xi+1) <= CNoCoding(Li).
(3)

This would turn out to be a significant communication savings for
most networks as shown in Figure 4(c).

4.3. Approximate Slepian-Wolf coding for HMVC

Even though the explicit communication based scheme for multi
video coding results in significant bandwidth savings for general net-
works, it still does not reach the limits suggested by Slepian-Wolf
theorem [1]. The theorem states that two correlated sources can be
compressed to the same extent irrespective of whether the sources
communicate or not, as long as decompression takes place at a com-
mon receiver. This implies the existence of some distributed coding
architecture that can potentially achieve the same encoding gains as
that of the proposed HMVC algorithm but with the bandwidth re-
quirements given by Slepian-Wolf as follows:

CS−W (i) = H(XM , XM−1, ..., Xi+1/Xi, Xi−1, ..., X1)

<= CExplicit(Li). (4)

The predicted capacity of the required links are related as,

CS−W (i) <= CExplicit(i) <= CNoCoding(i) (5)

It is fair to assume that the set of blocks within each image that
are H-coded changes very slowly in natural scenarios. We do ex-
plicit communication between nodes after every n frames, and find
out the image blocks that can be H-coded. Then we H-code this
same set of blocks for the next n − 1 frames. There may be some

Frm. no. 2 4 6 8 9
perc. 95.11 94.07 92.79 92.67 92.12

Table 1. Percentage of H-coded subblocks that are common between
a certain frame and the first frame
errors in subsequent frames while doing this, but this results in sig-
nificant bandwidth savings for a small compromise in reconstruction
error. For the airport sequence, we find out the set of all subblocks
in the second view that can be coded using the known homography
(assuming explicit communication). Then we find out how many of
these subblocks are common with those estimated for the first frame.
This gives the percentage of the subblocks on which we make correct
decision in the case of the approximate distributed scheme described
above. The results are shown in table (1). Around 93% of the set of
subblocks that are supposed to be H-coded in a particular frame are
common with the same set from the first frame.

5. CONCLUSIONS AND FUTUREWORK

We proposed a scheme for joint compression of multiple overlap-
ping video sequences. We also considered the case when these video
cameras are a part of a network and provided algorithms for jointly
optimizing both the communication and the compression efficiency
at the same time. In the entire design process care was taken to en-
sure that the joint compression scheme reduced to the MPEG coding
scheme for the case of a single video sequence, which we think is an
important desirable attribute for any multi video coding algorithm.
We are currently working on a real-time ditributed video coding ar-
chitecture for a network that has 9 pan-tilt-zoom surveillance cam-
eras.
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