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ABSTRACT Motion information that is implicit in the individual trask

Tracking multiple objects in a video is a demanding task thapbtained in the various views is an obvious candidate. But
is frequently encountered in several systems such as surveihe tracks in the various camera views are perspective pro-
lance and motion analysis. Ability to track objects in 3D jections of true 3D tracks and therefore additional comstsa
requires the use of multiple cameras. While tracking multi-are necessary to match tracks. There have been several at-
ple objects using multiples video cameras, establishingeeo tempts to use auxiliary information about motion to coristra
spondence between objects in the various cameras is a ndhe matching process. [2] uses the constraint that the motio
trivial task. Specifically, when the targets are dim or ang/ve of the feet of tracked people lies on the ground plane to re-
far away from the camera, appearance cannot be used in ord#ver extrinsic camera parameters and then to align ancdimatc
to establish this correspondence. Here, we propose a techiacks obtained in the two views. [3] computes the field of
nique to establish correspondence across cameras using tfiew of one camera on the field of view of the other cameras,
motion features extracted from the targets, even when the reagain by assuming the presence of a ground plane on which
ative position of the cameras is unknown. Experimental resubjects walk, to obtain correspondence across views. rin ou
sults are provided for the problem of tracking multiple beesapproach we use a theorem concerning the projection of 3-D
in natural flight using two cameras. The reconstructed 3Drajectories of a moving object on to a 2-D image stated origi
flight paths of the bees show some interesting flight patternsnally in [4] and then later again in [5], to establish corresp
dence between motion trajectories in the various cameras.
1. INTRODUCTION

Tracking objects using multiple cameras has the obvious ad- 2. OVERVIEW OF THE APPROACH

vantages of 3D reconstruction of tracks and wider field ofj,q65 from the different cameras are initially considered
view. Moreover, when the cameras are sufficiently far apar&eparately. The dynamic background is obtained for each
objects that are occluded in one camera might still be \&sibl;4q sequence during each frame by assuming that the back-
in the other cameras. But the use of multiple cameras requir%round variations are much slower than the motion of the
establishing correspondence across objects seeninbesar ;a5 The background subtracted frames are thresholded
views. When there is only one object in view then this corres, optain a binary foreground mask. Connected component
spondence is easily established [1]. But while handling-muly o \ysis is performed on the binary foreground mask to ob-
tiple targets establishing this correspondence is a noitr ain 5 set of blobs representing the hypothesised posifion o
task. Moreover, if the cameras are sufficiently separated th 1o several targets in each frame. A simple blob tracking
the appearance of the same target in the different camelias Wiy, je| pased on the constant velocity model is used to track
be very different and therefore cannot be used as a cue for €% motion of the targets in the video. Thus there are sev-
tablishing correspondence. Also, when the targets are dig ;| ong tracks of targets available for each camera viear. W
(very low signal to noise ratio) or are very far away from theggiapiish correspondence between the various bee tracks in
camera (and therefore occupy very few pixels on the imageje gifferent camera views by exploiting the propertieshef t
then appearance features cannot be used for establisiting cgy1ig.temporal curvature of these tracks. We note thabest
respondence. Moreover, if the targets themselves resembjlgy,ng this correspondence does not require one to know the

each other in appearance, as in the case of tracking seveggl, .t relative position of the cameras. Once corresporedenc
bees, then using appearance information could be inefeCti oeen tracks is established, we can infer the relative pos

Therefore, one needs to develop alternate strategiesttl-es yjon of the cameras using these correspondences. We then re-

lishing this correspondence. construct the 3-D trajectories of the targets using thedstah
This work was partially supported by the NSF-ITR Grant 032%1 triangulation algorithm. Therefore, the algorithm is dist




bees in several videos across two camera views and recon-
structed 3D flight paths of the bees.

3. PRE-PROCESSING AND TRACKING

In this section we will discuss the nature of the pre-procgss

and tracking algorithm that we have used. The pre-procgssin

and tracking algquthm initially runs independently on “@E.O Fig. 1. Sample Background subtracted Frames from a tracked

sequences obtained from the different cameras. We discuss
S . . ! ; . ““Sequence of a several bees. Each blob represents a bee.

the application of tracking multiple bees in free flight wgin

two cameras. The bees are typically 25-50 metres away from

the cameras and therefore are very small dim targets. wherej represents the predicted location of the beerep-
Background Subtraction: Since the cameras are static, resents the actual location of the bee alfyi represents the
the changes in the background are essentially due to changg@gtance functiono is a scale parameter that represents how
in the environment and the illumination conditions. We as-|gse to the constant velocity model the actual bee traeks ar
sume that these changes are much slower (low frequencyhe choice of an exponential distribution (as opposed to say
when compared to the changes due to the foreground motiqgaussian) was motivated by the distribution of the veloafty
of the bees. Therefore by adequate and appropriate low-pagfe pees in several videos. Computing the maximum likeli-
filtering, the slowly varying background can be reliably es-pood solution for this model is computationally expensive.

timated for each frame. For each pixel location in the im-there argV bee tracks andv blobs in the next frame theN'!
age we compute the median of a temporal window of abou¢onfigurations have to be entertained.

10-20 frames in order to estimate the background. We have \ye note that since the probability density function is ex-

also noticed that this estimate of the background is famy i ponential in the distance between the predicted and thalactu
sensitive to the width of the temporal window. The back-|gcation of the bee, the blobs that are far away from the pre-
ground subtracted image is then thresholded to obtain &binagicted location of the bee are very unlikely to be associated
foreground mask. This is followed by connected componenyith this bee track. This observation leads to a computation
analysis to segregate the foreground mask into distin@-sepg)ly efficient algorithm for tracking. We assume that the max
rate blobs. So for each frame now, we have a set of blobs §ym distance between the predicted location of the bee and
various locations which are the hypothesised pixel l0€&tio the actual location can only b@,,,.,. This leads to two dis-
of the bees. Figure 1 shows some of these binary backgrounghct advantages. Firstly, it reduces the computationedé.
subtracted frames for one of the cameras. As can be seen, fiepractice we have noticed that this results in an order of
targets are very small and therefore appearance models gggnitude decrease in computational complexity. Secondly
ineffective for establishing correspondence across Views  inis |eads to a very simple method for identifying new bees
Tracking by Data Association:  Once the bees in each tnat enter the frame. If a certain blob is not associated with
frame have been identified as blobs, tracking these blobagir any of the bee tracks that were present in the previous frame
the video sequence reduces to establishing correspondeng@n it is declared as a new bee that entered the field of view
between blobs in consecutive frames. For example, let us agr the current frame. In effect this means that the probigbili

sume that we have bee tracks that are active at framend  f 3 bee being a distanegpixels) from its predicted location
at framei + 1 the background subtraction has determined thags given by,

there ares bees in this frame. Tracking is essentially deter-

mining which of thes& bees corresponds to which of thdse L sexp(—r/o) 0 <r < D

tracks present in the previous frame and also simultangousl (d(p,a) =r) = { 0 Otherwise

identifying whether new bees have entered the frame. In or-

der to do this we assume a simple constant velocity model fovhere,S is a scaling to normalize the density.

the motion of each bee. Using this constant velocity model, For each frame among all the various configurations (each
the location of each bee in the next frame can be predictedonfiguration representing a set of correspondences betwee
We assume that the probability of the bee being a distance current tracks and blobs in the next frame),we pick the cenfig

(r > 0) pixels from this predicted location is given by an ex- uration with the maximum likelihood as the solution. Thus we

ponential distribution, i.e.P(d(p,a@) = r) = Lexp(—r/s),  have a simple maximum likelihood tracking algorithm based

uted, in the sense that most processing is performed loaglly
each camera. The central processor only takes the tracked tr
jectories available from each camera and reconstructshe 3
flight paths of the bees. The entire algorithm is completely
automatic with no need for any manual inputs. We have suc-
cessfully used this approach for tracking several hundoéds
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Fig. 2. The figures show 5 bees being tracked simultaneously inthecamera views. Each bee track is represented by a
different color. Each dot represents the position of a beeparticular frame. For simplicity, the images show the fpms$ of
the bees in the last 15 frames only.

on a constant velocity model that tracks the bees indivigual the approach taken by [5], we identiflynamic instantas
in each camera. Figure 2 shows multiple bees being simultadhe maxima of the spatio-temporal curvature of these tracks
neously tracked in two cameras. The position of the bees ifthese dynamic instants are then conserved across the variou
the lastl5 frames have been marked in the image. As showrcamera views. Therefore we can compute the actual corre-
in this figure, the tracking algorithm produces a set of tsack spondences between tracks across views by matchirdythe
one for each bee. Typically most of the bee tracks that waamic instant®f the tracks across the views obtained by dif-
obtained were greater than 500 frames long. ferent cameras. The spatio-temporal curvature of the srack
k(t) is given by,
4. CORRESPONDENCE ACROSSVIEWS

So far we have discussed how tracking can be accomplished () x " (2)]]
on each of the video sequences separately for each camera. (t) = er(t)”i%
We are now left with multiple tracks for each camera. The
actual correspondence across camera views (i.e., whick tra  where, x’ represents the vector cross product dhd
in view i corresponds to which track in viey) is yet to be  represents the magnitude of a vector. Figure 3 shows the
determined. In order to do this we exploit the following theo spatio-temporal curvature for corresponding tracks indifo
rem from [4] which was recently restated in [5] in the contextferent camera views. We clearly see that the maxima in the
of view-invariant activity recognition. spatio-temporal curvature (i.e., the dynamic instantstcma

Theorem 1: The continuities and discontinuities in posi- We use the matching between the dynamic instants to estab-
tion, velocity and acceleration in the 3-D trajectory of avao  |ish the correspondences of tracks across camera views.
ing object are preserved in 2-D image trajectories under a
continuous projection function. 5. RECOVERING 3-D FLIGHT PATHS

The proof of the theorem is given in [4]. Similar to [5] we
consider the affine projection model for the projection d3- Once we have established correspondence of tracks across
trajectories on to 2-D image trajectories. Each track of@a beviews we now have for each frame the coordinates (in pixels)
is then a spatio-temporal curve given byt) = [z(t)y(¢)t],  of each bee in all the cameras. For simplicity, let us comside
wherez, y represents the image coordinates in pixel units anéhe case of two cameras. For any given frame we have the

¢ represents the frame number. The velocit§) and the ac-  Position of each bee in both the cameras. Therefore, we can

ceIeratiomGs) can be directly computed as use simple triangulation to recover the 3D location of the be

®)

~ ~ for each frame. But in order to do triangulation, we need to
v(t)=7/(t) = [2'(t) ¥'(t) 1] (1)  know the internal and external camera calibration pararmete
- - We assume that the internal calibration parameters, such as
o _ 1 /! !
a(t) =r"(t) = [2"(t) y"(t) 0] (@ focal length are known. The relative orientation of the cam-

The theorem states that the discontinuities(in), v(t), a(t) eras can be recovered from the known correspondences as in
are all conserved across the several camera views. Similar [6]. We use a simple non-linear least-squares optimizaton
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Fig. 3. The spatio-temporal curvature of corresponding bet '

tracks in two camera views. We see that the maxima of th
spatio-temporal curvature match.
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minimize the reprojection errors and compute the relative p

sition and orientation of the cameras. In our set-up we als&ig. 4. 3-D Volumetric reconstruction of the flight path of 5
knew the distance between the two cameras approximatetyees. This video sequence had more than 100 bee flights. We
and used this to further constrain the optimization. Once wehow only 5 of the reconstructions here for simplicity.

have recovered the external calibration (relative pasitind

orientation of the cameras), the 3D reconstruction of flicgat o )
jectories is possible via triangulation. Precise camegnal Method for establishing correspondence across camera view

ment is difficult to achieve in a field study such as this, so thdy matching the maxima of the spatio-temporal curvature of
technique of auto-calibration used here is preferred. the trajectories was presented. Experimental results prere

Let us assume that the imaged positions of the bee in canyided for several videos containing more thian000 frames
eral and2 are given by(z1,y1) and (z2,2) respectively. and consisting of a few hundrgd beg flights. The algorithm
We know that the straight line passing through the camer#/as used to recover the 3D trajectories of hundreds of freely
center of cameraand the corresponding imaged pojnt, y1)  flying bees.
on its image plane, passes through the 3D coordinates of the
bee. Similarly, the straight line passing through the cam-

era center of camera and the corresponding imaged point_[l] Z. Yue, S. Zhou, and R. Chellappa, “Robust two-camera

(z2,y2) on its image plane, passes through the 3D coordi- * gy al tracking with homographyJCASSP 2004.
nates of the bee. Therefore the 3D coordinates of the bee can

be computed as the point of intersection between these twi@] C. Jaynes, “Multi-view calibration from planar motion
lines. In practice, these two lines might not actually isést. for video surveillance,Second IEEE Workshop on Visual
In such cases an approximate solution is obtained by mini- Surveillancepp. 59-66, 1999.

mizing the reprojection error. Thus we automatically resrov
the 3-D coordinates of the bee in each frame.
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