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Abstract

Conventional low frame rate cameras result in blur

and/or aliasing in images while capturing fast dynamic

events. Multiple low speed cameras have been used pre-

viously with staggered sampling to increase the temporal

resolution. However, previous approaches are inefficient:

they either use small integration time for each camera which

does not provide light benefit, or use large integration time

in a way that requires solving a big ill-posed linear system.

We propose coded sampling that address these issues:

using N cameras it allows N times temporal super-

resolution while allowing ∼
N
2 times more light compared

to an equivalent high speed camera. In addition, it results

in a well-posed linear system which can be solved inde-

pendently for each frame, avoiding reconstruction artifacts

and significantly reducing the computational time and mem-

ory. Our proposed sampling uses optimal multiplexing code

considering additive Gaussian noise to achieve the maxi-

mum possible SNR in the recovered video. We show how to

implement coded sampling on off-the-shelf machine vision

cameras. We also propose a new class of invertible codes

that allow continuous blur in captured frames, leading to

an easier hardware implementation.

1. Introduction

A video camera has limited temporal resolution which is

determined by the frame rate and exposure time of the cam-

era. Temporal events occurring faster than the frame rate of

a camera leads to aliasing in captured image sequence and

blur in individual frames due to the camera’s finite integra-

tion time. This blur could be because of motion of objects,

in which case it is referred to as motion blur. However, tem-

poral change of intensities can also happen when there is no

motion in the scene, e.g., a flickering light or LCD screen.

The goal of temporal super-resolution (SR) is to produce an

aliasing-free video, where for each frame the effective inte-

gration time is small enough to avoid blur. Thus, temporal

SR is more general than motion deblurring. In fact, motion

blur artifacts may be removed by temporal SR [22].

A high speed camera has a fundamental light capture

limit: if the frame rate is f frames/sec, the exposure dura-

tion cannot be greater than 1/f sec. In addition, commercial

high speed cameras are expensive, require large bandwidth

and are limited to capture durations (few seconds) that can

fit in local memory. Multiple cameras have been used to

increase the temporal resolution by staggering the start of

integration across the frame time. Using N cameras each

running at frame rate f , a video with an effective frame rate

of Nf can be recovered by staggering the start of each cam-

era’s exposure window by 1
Nf

and interleaving the captured

frames in chronological order [28, 27]. However, the expo-

sure time is set to 1
Nf

, similar to an equivalent high speed

camera and thus this scheme is light-inefficient. We refer

to this as point sampling and later show that it corresponds

to an identity sampling matrix. The advantage here is that

reconstruction process simply involves interleaving the cap-

tured frames and does not have any reconstruction artifacts.

Shechtman et al. [21, 22] combined several low frame

rate videos to obtain a high frame rate output using an op-

timization framework. Their approach allow finite integra-

tion time to collect more light, which leads to motion blur

in captured videos. However, the finite integration time of

the camera acts as a low pass box filter and suppress high

temporal frequencies. Recovering the lost high frequency

information is inherently an ill-posed problem. Shechtman

et al. [22] use regularization to solve the resulting ill-posed

linear system to suppress the ringing artifacts. Moreover,

using N cameras, they found that it is difficult to achieve a

temporal SR by a factor of N . In addition, the reconstruc-

tion requires solving a huge sparse linear system (million

variables) for modest video size of 256× 256× 16.

We propose coded sampling that is optimal in the sense

of maximizing the signal to noise ratio (SNR) of recovered

high speed video assuming additive Gaussian noise in mea-

surements. In our scheme, each low speed camera captures

a different linear combination of frames of the desired high

speed video. The linear combination is made invertible by

employing a sampling strategy based on S-matrices [20, 9]

and Hadamard multiplexing. Our approach overcomes the
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disadvantages of previous approaches: each camera can

gather N/2 times more light compared to an equivalent

high-speed camera, and the reconstruction process is well-

posed, invertible and maximizes the output SNR. We show

later that the our sampling matrix is block diagonal, where

each block is identical and correspond to a N×N S-matrix.

Thus, the corresponding frames from each camera can be

processed independently to recover N output frames, lead-

ing to low computational time and memory requirements.

Our scheme does not require any regularization or image

priors and allows N times temporal SR using N cameras

with minimal possible reconstruction noise.

The optimal coded sampling typically leads to discontin-

uous or coded blur in captured frames and requires specific

triggering for implementation. While certain machine vi-

sion cameras may not support such triggering mechanism,

they frequently support simple external trigger mode with

continuous integration time. We propose invertible codes

allowing continuous integration time that could be imple-

mented on such cameras.

Contributions: Our paper makes the following contribu-

tions:

• We formulate the problem of temporal SR from multi-

ple low-frame videos as a sampling problem.

• We show that the optimal sampling is achieved via

coded sampling by taking invertible linear combina-

tions of time samples.

• We demonstrate how to implement coded sampling to

achieve N times temporal SR by using N coded expo-

sure cameras. We also propose a new class of invert-

ible codes that allow continuous integration time for

easier implementation.

1.1. Benefits and limitations

Our approach allows more light capture compared

to [28] as well as avoids noise/reconstruction artifacts com-

pared to [21]. It leads to a well-posed linear system of

size N independent of the number of frames processed

and support streaming output due to independent process-

ing of frames. We use CCD cameras with global shutter

that avoid rolling shutter artifacts present in typical CMOS

cameras [28]. Our implementation shares some of the limi-

tations with [28, 21], since we also use non co-located mul-

tiple cameras. We assume that the scene is either relatively

planar or is far away from the camera so that the images can

be aligned using projective transforms similar to [28, 21].

Non-linearities in the imaging system such as specularities,

saturation, non-linear camera response and radiometric cal-

ibration errors lead to artifacts in the reconstructed high

speed video. Geometric calibration errors lead to spatial

jitter (wobbling artifacts) in reconstructed frames.

1.2. Related work

Multiplexed sampling has been used for increasing the

capture SNR in acquiring images under variable illumina-

tion [20]. This was extended in [19] to include the effect

of sensor noise and saturation. Our approach is similar,

but along the temporal dimension. Multiplexing angular

information by reducing spatial resolution has been used

for lightfield capture using lenslets [15] and masks [25].

Pupil-plane multiplexing to capture wavelength and polar-

ization information by reducing spatial resolution has been

proposed in [10]. Assorted pixels [14] perform a point-

sampling of multi-dimensional data and use learned prior

models for reconstruction.

Motion deblurring: Recent interest in computational pho-

tography has spurred significant research in motion deblur-

ring algorithms. Fergus et al. [8] use natural image statistics

to estimate the point spread function (PSF) from a single

blurred image. Joshi et al. [12] estimate non-parametric,

spatially-varying blur functions by predicting the sharp ver-

sion of a blurry input image. Recent work on deblurring

algorithms [29, 23, 4] have shown promising results on mo-

tion blurred images. A coded exposure [18] camera makes

motion PSF invertible so that the resulting deconvolution

process becomes well-posed. Agrawal and Raskar [2] ana-

lyzed capture methods for single image motion deblurring

using the similar criterion of maximizing the SNR of the

deblurred output. Note that temporal SR is more general

than motion deblurring and can reduce motion blur artifacts

without any PSF estimation.

Camera arrays: Levoy and Hanrahan [13] presented one

of the earliest systems for capturing scenes from multiple

perspectives for static scenes. This was extended to dy-

namic scenes by Dayton Taylor [24] using a linear array

of still cameras. Wilburn et al. [28, 27] used camera arrays

for temporal SR as well as effects such as digital refocusing.

Similar to [21], we show an array of 2 × 2 cameras for 4X

temporal SR.

Super-resolution: Combining multiple low-resolution im-

ages to increase the spatial resolution is well-known [11,

6, 16]. A hardware solution using sub-pixel detector shifts

was shown in [7]. Baker and Kanade [5] analyzed lim-

its on achievable super-resolution factors. In [1], super-

resolution and deblurring were performed simultaneously

using a coded exposure camera. Shechtman et al. [21] com-

bine space-time super-resolution in a common framework

by formulating the low frame rate videos as low-pass fil-

tered samples of high resolution space-time videos. They

also propose combining still images with video. Our ap-

proach analyzes the most general sampling by imaging the

low frame rate video as coded samples of high frame rate

video. Similar to [21], spatial SR can also be incorporated

in our approach, but we focus on temporal SR only.
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Figure 1. Comparison of sampling techniques using N = 4. The frame time T in
f of each camera Ci is same. Point sampling captures

independent samples across time with T out
= T in

= T in
f /N . Box sampling collect more light (T in

= T in
f ) but captures low pass filtered

samples, making it ill-posed. Coded sampling captures invertible linear combination of samples over time. Interleaving reduces frame

time T out
f = T in

f /N only for point and box sampling. Box and coded sampling requires solving a linear system to reduce the effective

integration time T out.

2. Temporal aliasing and blur

Temporal aliasing and motion blur are related but distinct

visual effects in low frame rate videos. Let Tf be the frame

time of the camera (inverse of the frame rate) and let T ≤

Tf be the integration time of each frame. Tf determines

how fast the camera samples the temporal variations at each

pixel, while T determines how long the camera integrates at

that sampling rate. Depending on the relationship between

T , Tf and the Nyquist sampling rate, one can either have

blur, aliasing, a combination of both or none in the captured

video. Aliasing occurs when the sampling rate is smaller

than the Nyquist sampling rate, and it can occur along with

blur if integration time T is large. A high speed camera

avoids both blur and aliasing by sampling faster and keeping

the integration time T sufficiently small. Note that since T
cannot be greater than Tf for a camera, a high speed camera

has a fundamental light capture limitation.

To achieve temporal SR, it is important to consider both

(a) increase in frame rate or decrease in frame time Tf , and

(b) decrease in integration time T . Either one is not suffi-

cient enough. For example, one can always decrease the in-

tegration time T of a single camera to avoid motion blur, but

since the frame rate is not increased, it will result in alias-

ing. On the other hand, consider interleaving frames from

N cameras having T = Tf , by evenly spacing the start of

the integration time across the frame time (Figure 1 (mid-

dle)). The interleaved video will automatically have higher

frame time, since the temporal events are sampled faster.

One can avoid aliasing artifacts in such an interleaved video,

but due to large integration time, temporal blur will remain.

Thus, the goal of temporal SR is to both remove aliasing

and reduce blur in the reconstructed video frames.

2.1. Removing aliasing by interleaving frames

Figure 1 (left) shows the simplest way to achieve tem-

poral SR, which we refer to as point sampling. By inter-

leaving the start of integration, one can use N cameras each

with a frame time T in
f and integration time T in = T in

f /N

to remove aliasing, and obtain a video with frame time

T out
f = T in

f /N . Note that T out = T in and blur is avoided

by keeping T in small. This implementation is the one pro-

posed in [28]. Note that point sampling does not have light

advantage compared to an equivalent high speed camera.

However, no extra processing is required and output does

not have reconstruction noise or artifacts.

Specifically, consider N co-located cameras each with

same frame time T in
f . Let T i

s(k) and T i
e(k) denote the start

and end of integration of camera i for frame k. Let the first

camera (i = 0) starts integrating the first frame (k = 0) at

T 0
s (0) = 0. If all cameras start integration at the same time

for each frame, then T i
s(k) = kT in

f . Let vi(x, y, k) denote

the ith camera video. The interleaved video u(x, y, k) is

defined as the video obtained by temporally interleaving the

corresponding frames from all cameras

u(x, y, k) = va(x, y, b), b =

⌊
k

N

⌋
, a = k −Nb. (1)

If the start of integration is interleaved uniformly according

to

T i
s(k) = kT in

f + iT in
f /N, (2)

then the interleaved video has a smaller frame time of

T out
f = T in

f /N (higher frame rate). This is because the

interleaved video frames correspond to samples at the inter-

vals of T out
f . Note that for an interleaved video, the integra-

tion time can be larger than the frame time, not possible for

a conventional camera.

2.2. Light efficiency: box and coded sampling

Now consider the box sampling strategy (Figure 1 (mid-

dle)), which allow more light but introduces motion blur

in the captured frames. In [22], a general framework with

different start and integration time of input videos were pro-

posed. But in essence their technique is similar to box sam-

pling shown in Figure 1 (middle). Since the start of integra-

tion is interleaved, the interleaved video has higher frame

rate, but needs to be processed to remove blur (to achieve ef-

fective lower integration time). However, the blur is caused
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Sampling Captured Video Interleaved Video Reconstruction Linear System FIS Light Benefit Computation

Blur Aliasing Blur Aliasing

Point No Yes No No Not Required Well-posed Yes No None

Box Yes Yes Yes No Solve Linear System Ill-posed No Yes Depends on K
Coded Yes Yes Yes Yes Solve Linear System Well-posed Yes Yes Constant

Figure 2. Comparison of sampling techniques for achieving N times temporal SR using N cameras. Box sampling requires solving a

NK ×NK ill-posed linear system for K frames, while coded sampling allows independent linear systems of size N ×N .

by a continuous box filter in each camera which suppress

high temporal frequencies. The processing thus involves

solving an ill-posed linear system.

Our proposed coded sampling is shown in Figure 1

(right). We also allow motion blur in captured frames, but

in the most general form of coded blur. In each camera for

each frame, the shutter is open and closed according to a

code, resulting in discontinuous or coded blur. The code is

chosen so as to preserve high temporal frequencies in the

captured images and leads to a well-posed linear system.

More importantly, the linear system can be solved indepen-

dently for each set of captured frames. A key distinction

with box sampling is that the start of integration is not in-

terleaved exactly, and thus the interleaved video could have

aliasing artifacts.

Frame independent sampling (FIS): Let Ts(k) =
mini T

i
s(k) and Te(k) = maxi T

i
e(k). Ts(k) and Te(k)

denote the bounds of integration time of the corresponding

frames of all cameras. We call a sampling strategy frame

independent sampling (FIS) if Ts(k + 1) ≥ Te(k) for all k.

Thus for FIS, the temporal information in the corresponding

camera frames is not shared across frames and reconstruc-

tion can be done independently for the set of correspond-

ing camera frames. Figure 1 shows that point and coded

sampling are FIS, but box sampling is not. We later show

that FIS results in block diagonal sampling matrices, while

frame dependent sampling (FDS) does not. Figure 2 shows

an in-depth comparison between the sampling schemes.

3. Sampling matrices and linear system

The above sampling techniques can be described in

terms of a linear system governed by a sampling ma-

trix, which describes the relationship between the N input

videos and output video. Previous approaches are equiv-

alent to either an identity sampling matrix as in [28], or

an ill-posed sampling matrix which is not block diagonal-

izable [22]. Coded sampling results in an invertible block

diagonal sampling matrix.

For co-located cameras, each pixel is independent and so

we drop the spatial coordinates for ease of discussion1. Let

s denote the intensity vector of a pixel in the output video

at integration time T out. Let u denote the interleaved vec-

tor for the pixel, obtained by stacking corresponding pixels

from each camera according to (1). The sampling matrix A
relates the interleaved low resolution video and the desired

1In practice, one needs to geometrically align the images.

high resolution video as

u = As. (3)

For point sampling, it is easy to see that matrix A is an iden-

tity matrix of size N × N for every N interleaved frames.

For N = 4,

u(k) =




v1(k)
v2(k)
v3(k)
v4(k)


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 s(k). (4)

This is because each camera samples the high resolution

video at a distinct time instant. Each 1 or 0 of the sam-

pling matrix corresponds to a sample in the output video at

the integration time T out. If we take K video frames from

each camera, the resulting A matrix correspond to an iden-

tity matrix INK×NK , which is trivially block diagonalized

by IN×N .

For box sampling, the sampling matrix (N = 4) corre-

sponds to

u =















1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0

0 0 0 0
. . .

. . .
. . .

. . . 0















s. (5)

Note that the sampling matrix does not have independent

blocks of size N ×N .

3.1. Optimal sampling

The optimal sampling is the one which minimizes the

mean square error (MSE) in estimating the output s from

captured interleaved video u. Assuming IID zero mean

Gaussian noise with variance σ2 in u, the maximum-

likelihood (ML) estimate of output, ŝ is given by

ŝ = (ATA)−1AT u. (6)

Thus, the covariance matrix Σ of the error s − ŝ in the esti-

mate is given by [17]

Σ = σ2(ATA)−1ATA(ATA) = σ2(ATA)−1. (7)

The MSE increases by a factor F = trace(ATA)−1/n,

where n is the size of u. A similar problem was studied

by Schechner and Nayar [20] for capturing images under

multiplexed illumination. The matrix A which minimizes

the above MSE is called the S-matrix [20]. If N + 1 is
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Figure 3. Reconstruction MSE F in dB. (Left) As N increases,

coded sampling offers higher SNR than point and box sampling.

(Right) Coded and point sampling MSE’s are independent of num-

ber of frames processed due to being FIS. For box sampling, MSE

increase with K.

divisible by 4, then the rows of the S-matrix correspond to

Hadamard codes of length N+1. For S-matrix, the increase

in noise F = 4N
(N+1)2 , which is less than 1, indicating a

multiplex advantage [20].

S-matrices have following properties. Firstly, each

value is either 0 or 1. This implies that each row of the S-

matrix correspond to the on/off sequence of a coded expo-

sure camera [18]. Note that each bit of the code corresponds

to a sample in the output video. Thus, each bit amounts to

integration time of T out. A 1 implies that the shutter is kept

transparent and 0 implies that the shutter is kept opaque for

the duration T out within the integration time of the cam-

era. Secondly, each row has (N + 1)/2 ones implying that

each camera integrates (N + 1)/2 times more light com-

pared to an equivalent high speed camera. Finally, inverting

S-matrix is easy as shown in [20].

Code search: Note that S-matrices are not defined for

all N . For small N , one can search for all possible binary

matrices and choose the one with the lowest F . In order to

enforce at least 50% light throughput, each row should have

at least N/2 ones. For N = 4, we search for all 216 choices

(took 10 seconds in Matlab) and choose the optimal coding

matrix C which minimizes F , given by

C =









1 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1









. (8)

For K frames, the sampling matrix A4K×4K =
kron(IK×K , C), where kron denotes the kronecker prod-

uct. The corresponding sampling is visualized in Figure 1

(right). For large N , one can perform a randomized greedy

search similar to the search for best motion deblurring code

in [18]. Typically, it requires few minutes in Matlab to

search 106 codes.

Reconstruction noise: Figure 3 plots 10 log10 F for the

three sampling techniques to depict increase in noise (dB)

assuming K = 30 input frames from N cameras. Note that

FdB is 0 for point sampling and less than 0 for coded sam-

pling indicating SNR gain. As N increases, the reconstruc-

tion noise for box sampling does not decrease. Thus, box

Ringing

High Speed (Ground Truth) Box Sampling Coded Sampling

Box Coded Error Box Error Coded

Noise

Ground Truth

Figure 4. 15 cameras were simulated using a high-speed video for

coded and box sampling. (Top) Three frames from high-speed,

box and coded sampling videos. (Bottom) One of the recon-

structed frame and corresponding error images. Notice the ringing

artifacts and enhanced noise in box sampling reconstruction.

sampling is inherently ill-posed. For coded sampling, more

cameras allow more temporal SR with even lower MSE.

Note that even at N = 4, coded sampling is better by 15
dB than box sampling. Another interesting observation is

that MSE increases for box sampling as number of frames

K increase. But since coded and point sampling are FIS,

MSE is independent of K for them.

Figure 4 shows a simulation using a 500 fps high speed

video of marbles falling into water. N = 15 low frame

rate videos were simulated both for box and coded sam-

pling and Gaussian noise (σ = 0.1) was added in frames.

The top row shows three frames from the ground truth, box-

sampling and coded-sampling videos respectively. Bottom

row shows one of the reconstructed frames along with the

error images. Notice the enhanced noise and ringing arti-

facts in the box reconstruction. The coded reconstruction

gives an artifact and noise free output. The increase in MSE

(F ) was 32 times (15 dB) smaller for coded sampling com-

pared to box sampling. Please see the supplementary mate-

rials for full videos.

3.2. Invertible codes with continuous blur

In general, optimal coded sampling leads to discontin-

uous blur in captured frames. However, this requires each

camera to start and stop integration multiple times within

the exposure time according to its code. While this fea-

ture is available in some machine vision cameras (Point-

grey Dragonfly2 [3]), several machine vision cameras do

not support it. Such cameras often support external trigger-

ing followed by a continuous integration time. This implies

that while the start of integration time can be changed, only

codes that have continuous ones can be supported. Can we

have invertible codes that allow continuous (box) blur?

We show that one can obtain such sampling with an in-

crease in MSE compared to optimal sampling. A trivial con-

tinuous blur invertible code matrix for N = 4 is given by
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Figure 5. Our prototype using four cameras. A micro-controller

(PIC) is used to trigger the cameras accurately.



1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1


 . We refer it to as triangular codes since

the code matrix is a lower triangular matrix. The recon-

struction noise here is larger than optimal sampling by 4 dB

only for N = 4. However, triangular codes require a large

dynamic range, since the exposure time between cameras

changes by a factor of N . Ideally, we would like all codes

to integrate similar amount of total light to avoid dynamic

range issues. To achieve that, we search for continuous ones

codes each having at least 50% light throughput.

Search space: For each camera, the code can have N
2 ,

N
2 + 1, . . ., N ones which can occur in N

2 + 1, N
2 , . . ., 1

places respectively. Therefore, the possible code choices for

a single camera are c = (N+2)(N+4)
8 . The total search space

is thus
(
c
N

)
. For N = 4, the code matrix with minimum

MSE2 was found to be








1 1 0 0

1 1 1 0

0 1 1 0

0 1 1 1









. (9)

Note that each row has continuous ones and thus would lead

to box blur, but overall the linear system is well-posed. For

N = 4, these codes are better than box sampling by 10
dB. These codes can also be thought of as traditional cam-

eras with varying exposure and start times. While Shecht-

man et al. [22] also allows cameras with varying exposure

and start time, their resulting system is not well-posed since

the exposure and start times are not carefully chosen. The

proposed codes here do not require regularization for re-

construction and lead to a frame-independent sampling in

contrast to [22].

4. Implementation and results

Figure 5 shows our implementation using four Pointgrey

Dragonfly2 cameras, each equipped with 12 mm computar

lens. The cameras are arranged to keep their optical centers

as close as possible and are kept ≈ 2 m away from the scene.

Similar to [28], we assume that the scene is planar and

perform geometric calibration using a checkerboard. We

capture RAW images at resolution of 700 × 700 to reduce

bandwidth and perform Bayer interpolation using Pointgrey

SDK. After geometric calibration, the common field of view

is spanned by 400 × 400 pixels. Color calibration is done

2There could be multiple solutions with same minimum MSE.

1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1

Captured Frames

Reconstructed Frames

Figure 6. Captured and reconstructed frames for rotating fan using

codes with continuous ones (9). In comparison with Figure 7, the

reconstruction has more noise than coded sampling, but is sharper

than box sampling.

using a Macbeth chart by computing a 3× 3 color transfor-

mation for each camera. Dragonfly2 cameras support coded

exposure via trigger mode 53. All cameras are triggered us-

ing a Microchip PIC16F690 micro-controller which avoids

temporal synchronization issues. We found that this was

more stable than using a PC’s parallel port [3], which could

have trigger variations of 1 ms. We use T in
f = 60 seconds,

capturing the input videos at 16Hz. The reconstructed video

has frame rate of 64Hz using 4 cameras, with frame integra-

tion time T out = 15 seconds. As described in [21], the out-

put video will be similar to the one captured with a camera

having T out integration time. Thus, if the scene is chang-

ing faster than 64Hz, the output video frames will also have

blur. Please see videos in supplementary materials.

Rotating fan: Figure 7 shows comparison of coded and

box sampling for a fan rotating clockwise. Notice the coded

blur in frames for coded sampling. The reconstructed fan

blades are much sharper and closer to ground truth in coded

reconstruction. The box reconstruction shows noise and

ringing artifacts without regularization. By using regular-

ization similar to one proposed in [21], noise can be re-

duced but blur cannot be removed completely. Thus, it is

difficult to achieve N times SR with N cameras using box

sampling, as also discussed in [21]. The reconstruction us-

ing coded sampling was obtained without any regulariza-

tion. Similar videos were captured using continuous ones

codes (9) by changing the trigger mechanism using PIC.

Figure 6 shows corresponding captured and reconstructed

frames. The reconstruction has more noise than coded sam-

pling, but is sharper than box sampling.

Oscillating color chart: Figure 8 shows results on a

scene where a Macbeth color chart was moved back and

forth by hand. Note the enhanced noise and color/ringing

artifacts in box reconstruction if no regularization is used.

This shows that box sampling is inherently ill-posed. The

3Pointgrey requires delay between frames in trigger mode 5, which

leads to an equivalent gap in reconstructed video after every N frames. It

could be avoided by using external shutter [18].
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Figure 7. Comparison of box and coded sampling for a fan rotating clockwise. Coded sampling provides sharper reconstruction without

any regularization compared to box sampling which has more noise and reconstruction artifacts.

0 1 0 1 1 0 0 1

Captured Frames

Reconstructed Frames 
(No Regularization)

Reconstructed Frames 
(No Regularization)

Coded Sampling Box Sampling

Captured Frames

Ground 
Truth

Reconstructed Frames 
(With Regularization)

1 1 1 1 1 1 1 1

Box Sampling

Figure 8. Moving Color Chart. Without regularization, box reconstruction has enhanced noise, color and ringing artifacts. Regularization

can suppress noise at the expense of more blur (less temporal SR). In contrast, coded reconstruction produce sharp color edges on the color

chart without using any regularization.

reconstruction using coded sampling was obtained without

any regularization.

Facial expressions: Figure 9 shows a person making

fast facial expressions. Notice the ‘double’ teethes in cap-

tured frames corresponding to camera with code 1001. The

reconstructed frames show reduced blur without any motion

estimation.

5. Discussions

Coded sampling promises exciting avenues for computa-

tional photography and vision research beyond motion de-

blurring [18]. The ability to capture more light and have im-

mediate streaming reconstruction without reconstruction ar-

tifacts for temporal SR is a big benefit. This could be useful

for medical imaging such as laryngoscopy and endoscopy,

where reconstruction artifacts are undesirable. Combining

coded sampling in time with coded aperture techniques [25]

can lead to a unified treatment of motion and focus blur,

which are generally handled separately. Utilizing image

priors and domain knowledge can allow greater than N
super-resolution factors with N cameras. We use the same

code for each camera across frames, but due to frame-

independent sampling, the codes can be dynamically modi-

fied as in [26]. Similar to [19], intensity dependent Poisson

noise and saturation effects can also be incorporated for bet-

ter codes. While our implementation uses four cameras, it

is easily scalable by using external triggering based on pro-

posed codes. By using same temporal modulation for few

cameras (out of N ), spatial SR can be achieved at the cost

of temporal SR.

Conclusions: We formulated temporal SR using multiple

low frame rate videos as a sampling problem and analyzed

its motion blur and aliasing aspects. We showed that op-

timal sampling for temporal SR involves taking invertible
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Coded Blur

Reconstructed FramesCaptured Frames (Coded sampling)

(1 0 0 1)

Figure 9. Facial expressions. (Left) Two frames from captured

video corresponding to camera C2 and C3 with codes 0101 and

1001. (Right) Frames from reconstructed video. Blur in captured

frames is removed via temporal SR without any motion estimation.

linear combination of frames, which can be implemented

using multiple coded exposure cameras. Our proposed sam-

pling captures more light compared to an equivalent high

speed camera, and results in a well-posed linear system

which can be solved independently for frames. Thus, it

overcomes the limitations of previous approaches in terms

of light capture, reconstruction noise, and computational

requirements. We also proposed a new class of invertible

codes that lead to an easier implementation on most ma-

chine vision cameras.
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