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Abstract

Pattern recognition in video is a challenging task becaufsth® multitude of spatio-temporal
variations that occur in different videos capturing theatxsame event. While traditional pattern-theoretic
approaches account for the spatial changes that occur dighting and pose, very little has been done
to address the effect of temporal rate changes in the exesutif an event. In this paper, we provide
a systematic model-based approach to learn the nature bftesogoral variations (time warps) while
simultaneously allowing for the spatial variations in thesdriptors. We illustrate our approach for the
problem of action recognition and provide experimentatifieation for the importance of accounting
for rate variations in action recognition.

The model is composed ofreominal activity trajectoryand afunction spaceapturing the probabil-
ity distribution of activity-specific time warping transfoations. We use the square-root parameterization
of time warps to derive geodesics, distance measures arshlghity distributions on the space of
time warping functions. We then design a Bayesian algoritiimich treats the execution rate function
as a nuisance variable and integrates it out using MonteoGaimpling, to generate estimates of
class posteriors. This approach allows us to learn the sphdine warps for each activity while
simultaneously capturing other intra- and inter-classat@mns. Next, we discuss a special case of this
approach which assumes a uniform distribution on the sphtiene warping functions and show how

computationally efficient inference algorithms may be i for this special case. We discuss the
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relative advantages and disadvantages of both approaoHeshaw their efficacy using experiments on
gait-based person identification and activity recognition

. INTRODUCTION

Pattern Recognition in videos is gaining momentum in receaty because of its applicability
to several problems such as gait-based person identificaiivity modeling and recognition,
video-based face recognition etc. Pattern recognitiondeosstreams is often a very challenging
task because of the multitude of spatiotemporal changés<#maoccur in a video capturing the
exact same event. Several algorithms and methods accournhdospatial variations due to
changes in lighting, pose and appearance of individualotdjeNevertheless, very little work
has been done to account for the complex temporal variati@isoccur in videos. For example,
in activity recognition, different instances of the saméivdty may consist of varying relative
speeds at which the actions are executed, in addition te ottie- and inter- person variabilities.
Most existing algorithms for activity recognition are nary robust to intra- and inter-personal
changes of the same activity, and are sensitive to warpirigeofemporal axis due to variations
in speed profile.

A. Prior Work in Activity Recognition:

One of the earliest investigations about the nature of humawement was the study done by
photographers Etienne Jules Marey and Eadweard Muybritlgm [the 1850s. They captured
photographs of several moving subjects that revealed waiiigteresting aspects of human and
animal locomotion. The classic Moving Light Display (MLDxmeriment of Johansson [2]
provided a great impetus to the study and analysis of humaiomperception in the field of
neuroscience. This then paved the way for mathematical lmgdef human action and automatic
recognition, which naturally fell into the purview of contpu vision.

Activity recognition has attracted tremendous interesteicent years because of its potential
in applications such as surveillance, security, and hunwdy mnimation. Activity recognition
has been a research area since the 90's. The reader canordifer different surveys [3][4][5]
on activity recognition for a detailed review of previousearch in this area. The important
issues that arise in an action recognition system are disdus detail in [3]. Broadly, action
recognition has either been studied using probabilistaphical models such as hidden Markov
models [6][7][8][9] and dynamic Bayesian networks [10][[11}][13][14]. Since our approach
is an attempt to account for the variabilities that affedicacrecognition, we provide a more
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indepth coverage of prior work in this area. Recently, [15§ kaplicitly enumerated the three
most important sources that contribute to variabilitieh©wman activity videos as a) Viewpoint
change, b) Anthropometry of actors and c) Execution rate.

1) Viewpoint and AnthropometryTypical approaches for human action recognition begin
by extracting features from a single frame or a small set amfs. These features could be
simple motion-based features such as optical flow [16], avidtdrajectories [17], or simple
silhouette-based features such as binary backgroundastddr images [18] or shape features
[19]. Irrespective of the actual feature used for represtent, it becomes important to ensure that
these features are then invariant to viewpoint of the caraaththe body stature of the subject
(anthropometry). Most approaches use simple scaling basedto account for anthropometry
while more sophisticated approaches including affine iavae are required in order to account
for view invariance. Since the focus of this paper is on miodetemporal rate variations we
refer the reader to some recent methods on tackling viewpainations [17][20][21][22][23]
and anthropometry variations [24].

2) Execution Rate:Inspite of this large body of work in accounting for viewpbiand
anthropometry invariance very little has been done to aucfan the variability in the execution
rate of the actors. Results on gait-based person identdicahown in [25] indicate that it is very
important to take into account the temporal variations enghrson’s gait. In [26], we showed that
accounting for execution rate enhances recognition pedace for action recognition. Typical
approaches for accounting for variations in execution aageeither directly based on the dynamic
time warping (DTW) algorithm [27] or some variation of thisgatithm [26]. A method for
computing an average shape for a set of dynamic shapes iglpdow [28]. A method to learn
the best class of time-warping transformations for a givassification problem is proposed in
[29].

In this paper, we study the variations due to execution mata systematic way. We model
an action sequence as a composition of these two sourcesriability - variability on the
feature space and variability due to execution rate. By kepthie model on the feature space
completely independent of the model on the space of exetuites, we are then able to exploit
any of the above mentioned viewpoint invariant features un method. Therefore, as more
sophisticated features become available our model willlde 8 exploit the characteristics of
those features while retaining the ability to deal with &ians in execution rate. We explicitly
model execution rates and derive a Baysian classificatiooritign for action recognition. If
the chosen features are viewpoint and anthropometry mvarihen the resulting algorithm
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becomes invariant to all the three significant modes of tiana - viewpoint, anthropometry

and execution rate. Moreover, since the model developednsrgl and not necessarly restricted
to action recognition, we believe that similar models mayuled for other applications that
require rate-invariance.

Motivation: Consider the INRIA iXmas activity recognition dataset. ShawrFigure 1(L)
is the distribution of the number of frames in different exi@ans of the same activity for four
distinct activities. Figure 1(L) clearly shows that for teame activity the rate of execution
and consequently the number of frames during the executawoiessignificantly. Moreover, in
most realistic scenarios this temporal warping might alsanberently non-linear making simple
resampling methods ineffective. This implies that for umtcolled scenarios the variations due
to temporal warpings could be even more significant. Igrgptins temporal warping might lead
to structural inconsistencies apart from providing poaogmnition performance. The sequence
of images shown in the first two rows of Figure 1(R) correspantivb different instances of the
same individual performing the same activity. There is avials temporal warping between the
two sequences. If this temporal warping is ignored, theadist between these two sequences
will be large, leading to incorrect matching. Moreover, ieware looking for some statistical
description of the activity like an average sequence, igigothe temporal warping could lead to
structural inconsistencies like the presence of four amtstevo heads in the average sequence
as shown in the third row of Figure 1(R). If we do account for pemal warping then such
inconsistencies are avoided and the distance between thedguences is rightly small. The
fourth row shows a typical average sequence obtained by etinad after accounting for time
warping.

Why should the distribution of time-warps be class-specifio?answer this, let us consider
the activity of ‘jumping’. The subject may in principle sgkap certain portions of the activity
relative to the others. But, during the actual moments thgestihas no contact with the ground,
the only external forces on the subject are those from grtwrt and therefore, much as he/she
might attempt to, he/she will not be able to change the ei@mtugpeed during such times.
There are thus physical, aesthetic and structural conttrtéhat force different activities to have
different warping functions. The constraints themselvay with each activity and therefore the
eventual probability distribution on warping functionsries from one activity to another.

B. Contributions of the paper

« We propose a systematic generative model for activitie$ dlcaounts for variations in
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a) Cross Arms

Normal

Average
Sequence

Warped
Average
Sequence

c) Get Up d) Wave Hands

(L) Histogram of number of frames (R) Two sequences with differing rates of executions
and their normal and warped average sequences.

Fig. 1. (L) Histogram of the number of frames in different executiohthe same action in the INRIA iXmas dataset. The
histograms for4 different activities are shown. (a) Cross Arms (b) Sit Down (c) Gpt(d) Wave hands. (R) Row 1, Row 2:
Two instances of the same activity. Row 3: A simple average sequencew 4R\verage Sequence after accounting for
time warps.

speed profile of an activity. The model is composed aofoaninal activity trajectoryand a
probability distribution on théunction spacef temporal warpings capturing the permissible
activity-specific time warping transformations. We thenivke a Bayesian solution for a
rate-invariant classification of activities.

« We highlight a special case of this approach where we assunm&@m distribution on a
convex subset of the warping functions and derive comprtatly efficient algorithms for
learning and inference.

« While the preliminary conference publication [26] dealtyomlith uniform distribution on
the space of time-warps here in this paper we deal with thailegand inference problems
for a much more general class of distributions. Further|evfi6] directly works with the
time warping functions, we show how one can efficiently ineasRiemannian metric and
perform exact and efficient statistical inference effidgand correctly using the square-root
density form of the time warp functions.

C. Outline of the paper

We begin by providing a formal statement of the problem askid in this paper in Section
Il. Section IIl describes the geometry of the space of timepaaand presents algorithms for
computing geodesics, distances and prior probabilityridigions on this space. Section IV
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describes how these tools may be used in order to learn thelpachmeters. Section V describes
the special case of the model when the probability distidoubn the space of time warpings
is uniform. In Sections VI and VII, we discuss how both the migddeveloped earlier can be
used in a Bayesian recognition framework in order to perfoctivildy analysis, recognition and
activity-based person identification. Finally, in Sectighl, we present conclusions and future
research directions.

[I. PROBLEM STATEMENT

Let Cy,C,,...,Cy be M classes (in our cas&/ different activity labels). Here we wish to
tackle two tasks while accounting for time-warping: 1. Giveeveral instances of an activity,
we would like to build a model for that activity and 2. Givenest sequence, we would like to
classify the sequence to one of the models in the database.

A. Feature for representation

Observations of an activity are typically obtained usinged cameras and they are in the
form of video frames. Raw videos are not appropriate featfoesepresentation. In principle,
the feature chosen to describe the action units must havaqathysignificance and one must be
able to directly identify the relationship between the feas extracted and the basic human pose.
For the problem of activity recognition, 3-D joint angleswi be ideal features. Unfortunately,
estimating features like 3-D joint angles from images isidift and unreliable. So researchers
have used several other features for describing the actmts {17][28][30][31]. Since the
USF gait database consists of monocular video, we use thee sifathe silhouette (along with
the appropriate Procrustes distance ) as a feature [32h®gait-based person identification
experiments. The INRIA iXmas dataset contains synchronizéddos from multiple views and
therefore allows us to use 3D Fourier based shape featussiloled in [33]. We refer the
interested reader to [34][32] and [33] for details about shape feature and the 3D circular
FFT feature respectively.

For now let us assume that for each frame of the video, an pppte feature has been
extracted and that the video data has now been convertedaifiéature sequence given by
fL, f2, ..., for framesl, 2, ... respectively. We will useF to denote the feature space associated
with the chosen feature.
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B. Model for warping functions

Let v be a diffeomorphism (A diffeomorphism is a smooth, invdeifunction with a smooth
inverse.) from|0, 1] to itself with v(0) = 0 and (1) = 1. Also, letT" be the set of all such
functions. We will use elements @f to denote time warping functions. Our model for an activity
consists of an average activity sequence giverubyo0, 1| — F, a parameterized trajectory on
the feature space. Any time-warped realization of thisvéagtis then obtained using:

r(t) = a(y(t), veT. 1)

We note in passing thdt is a group with composition as the group operation and thetiom
v(s) = s as the identity element. Equation (1) actually defines aiomatf I' on FI*U, the
space of all continuous activities. In our model, the valigbassociated withy in each class
will be modeled using a distributio®, on I'. For the convenience of analysis and computation
( refer Section 11l ), we prefer to work withh = ++/% instead ofy directly. There is a bijection
betweeny and ) and the probability models on directly relate to equivalent models on
Thus, we will introduce probability distributionB8,, on the set of alljs, for each activity class.

The parameters of this model at&), the nominal activity trajectory, an,,, the probability
distribution on square-root representations of time wagdunctions. In general, the nominal
activity trajectorya(t) can also be chosen to be random. But, here, we restrict ouysiab
cases where, the nominal activity trajectary) is deterministic but unknown. We will consider
parametric forms of densities fa?, and reduce the problem of learnidg, to one of learning
the parameters of the distributiaf,. In particular, we highlight (in Section V) a special-case
of a uniform distribution on the space of time warpings. Tp&sticular special-case appeared
as a preliminary conference paper [26].

Physical Significance of the ModelThe nominal activity trajectory(¢) and the probability
distribution on the space of time-warps,, together capture all the possible realizations of
the activity and provide the description of the activity endlifferent variations. In general,
the nominal activity trajectories of two different actieis will be vastly different. The nominal
activity trajectory for ‘walking’ would consist of key pastes like heel-strike, toe-off, mid-stance
etc., while that of ‘sit down’ would consist of the followiragtions - bend knee, lower body, settle
on chair and rest back on backrest. The distribution of #gtspecific temporal warping#’,
represents the space of all permissible time-warping toamstions for each activity. By learning
this space, we are able to ‘interpolate’ appropriately leefvtraining sequences. Suppose there
is a test sequence that is within this space, but was not aopéne training sequences. Most
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template sequence-based recognition techniques tendgttassify such test sequences. Learning
the function space of an activity provides our algorithmihvthe generalization power necessary
to correctly classify such test sequences. Moreover, yddly learning this warping space in a
class specific manner, we also obtain better discrimingitoxger than other heuristic techniques
for handling time-warping. The model Mz, P, } represents &unction spacef activities whose
elements are composed of functionsy(t)), Vv € T.

C. Problems

Here, we state informal descriptions of the various prolkleve wish to tackle.

1) The Learning Problem:Given N labeled realizations, s, 73, ...rn, Of an activity, we
would like to learn the model for this activity. This is eqalent to learning the nominal activity
trajectorya(t) and the distribution on the warping parameters givenfpy

2) The Classification ProblemSuppose we have models fof different activities{a’, P;Z') M.
Given a test sequenagt), we would like to classify this test sequence as belongingri® of
the M models.

3) Clustering Problem:Given several realizations frorR™ different activities with no class
labeling, we would like to cluster these sequences fstalistinct clusters such that sequences
within the same cluster are maximally similar while seqesnin different clusters are dissim-
ilar. Moreover, unlike traditional clustering algorithrtisis similarity is invariant to changes in
exectution rate of the action since the model for each alustbuilt to be rate-invariant.

[11. DIFFERENTIAL GEOMETRIC TOOLS ON THE SPACE OF TIMBNVARPING FUNCTIONS

The model for a random observation of an activity class @ssifa(y(t)), wherea is the
average of that class angd is a warping function. In order to classify activities at iadbte
execution rates, we need to analyze the warping functionaradom functions. However, the
space of warping functions is not a vector space and that nuéethe use of classical functional
analysis for this task. One alternative is to utilize thdeddntial geometry of this space, impose
a Riemannian structure on it, and use appropriate tools tfonpercalculus and statistics of
warping functions. In particular, we can compute distarfmetsveen warping functions, estimate
sample means for given warping functions, and impose pdranaed non-parametric probability
distributions on the space of warping functions.

The next question is: What Riemannian structure on the spasamping functions is suitable
and convenient for activity recognition? The Fisher-Raorimet often used for analyzing
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probability density functions. (The Cramer-Rao lower boumd estimation of parameters is
derived using this metric.) One major reason for its poptylas that it is invariant to arbitrary
warpings of the functions involved. In other words, undas tietric the distance between any
two warping functionsy,(¢) and,(t) is same as that between(v(t)) andy,(~(t)) for any
arbitrary warping functiony(¢). This point is important in activity recognition becauss, vae
will point out in Section IV-D, the representation of an &ityi model is not unique, i.e. there
is no canonical choice of for representing activity models. The choice of Fisher-Raarim
implies that the resulting distances are same irrespectivibe baseline time axis chosen to
represent activity models.

The Fisher-Rao metric, when applied to different matherahtepresentations of, i.e., +,
log ¥, or v/, takes different forms. Interestingly, in the caseyof /7, this metric simplifies
to the familiar and convenierit.? metric [35], [36]. Furthermore, the space of all warping
functions, represented by their square-root density formder the Fisher-Rao metric, becomes
a unit sphere. This is because

llf? = / () Pt = / ()]dt = A(1) = A(0) = 1.

For these two reasons — invariance to arbitrary time scalemgd the spherical nature of the
resulting space, we choose the square-root density fornegoesent and analyze variability
associated with the warping functions.

Let the space of all square-root density forms be given by

W= {0 [0,1] — Rlp > 0’/0 Gt =1} 2)

This is the positive orthant of a unit hypersphere in the éfillspace of all square-integrable
functions on[0, 1]. Let T;,(¥) be the tangent space ® at any given point). Then, for any
vy andv,y in T,,(¥), the Fisher-Rao metric is given by

(00, va) = /O o (o (b)dt. 3)

Since W is a sphere, its geometry is well known and we can directlykimgsvn expressions for
tools such as geodesics, exponential maps, and inverseexie maps onw. Consequently, the
algorithms for computing sample statistics, defining pllitst density functions, and generating
inferences also become straightforward.

We begin by describing some elements of differential geomett ¥.
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A. Geometry ol

One way to quantify the differences between two warping tions is to compute the distance
between their corresponding representationabinThis distance is given by the length of a
geodesic, the shortest path connecting those two poins.ikVe know that the geodesics on
a sphere are the great circles and the geodesic distanampdydhe length of the shorter arc
connecting the two points on a great circle. Given two wagdunctionsy; and~,, and their
square-root density forms;; and, in ¥, the geodesic distance between themdons given
by

d(1,v9) = COS_I(WI: ¥2)), (4)

where (1, 12) = fo 1 (t)a(t)dt

The geodesic path |tself can also be computed rather siffgkyng the radial projection of the
chord joining points); andi, onto the unit sphere results in the geodesic. The chordnginj
andq, is given by(1 — s)iy + sy, Wheres is the parameter that identifies various points on this
chord. The radial distance of a point on this chord is given®y (1 —s)%+2s(1—5) ({1, 19)).
Therefore, we can analytically write the geodesic conngati; and, as: X : [0,1] — ¥,

L —8)Y1 + sty
X6) = o 2 =
such thatX (0) = «; and X (1) = v,. Another way to specify a geodesic path¥nis by giving

a starting point) € ¥ and a starting direction € 7,,(¥):

X(s) = cos(s|v]]) + sin(s |IUH) (5)

where ||v|| = folv(t)th.

One use of geodesics is to define and compute the exponeraffnom 77, (¢') to . It is
simply the value reached at= 1 by a geodesic that starts fromin the directionrv and moves
at a constant speed. We can evaluate the exponential mag usin

expy (v )—COS(HUH)@/J+Sm(||v||)|| i (6)

Similarly the inverse of the exponential mapp;f(%) = v € Ty, (v) can also be computed
analytically using

u = 1y — <¢2a1/)1> (G0 (7)
_ UCOS_I((¢1>¢2>)' (8)
(u, u)
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B. Statistical Analysis oW

With the geometry of as specified above, let us derive some tools for statisticalyais
of data. Given a number of observed warping functions, we @stimate the sample mean
and covariance, use these estimates to define a "wrappessi@atidensity function and derive
Bayesian classification algorithms using these densitigwiass.

To compute the sample means of element¥ofve will use the notion of Karcher mean [37]
that has been used frequently for defining means on nonlimaaifolds. Suppose, we have
different square-root density forms, given dy, v, ...1»,. Then, their Karcher mean is defined
as the element that minimizes the sum of squares of geodssandes:

) = arg min Z;d(% v;)? 9)

where,d is the geodesic distance defined in (4). Note that the Kanectegem may not be unique
and can instead be a set of elements. A commonly used appfoatihding a Karcher mean
is to use the gradients and this is where the exponential mdpts inverse are needed. The
iterative update to the current value of mean is given by:
P — expy(ev), where v = %Z expil(wi) (20)
=1
and wheree is usually0.5.

The next step is to define and compute a sample covariancedatiserved's. The key idea
here is to use the fact that the tangent sgbg@P) is a vector space. Using a finite-dimensional
approximation, say” C 7;;(¥), we can use the classical multivariate calculus for thippse.

In practice, we obtain a natural restriction whers observed at a finite number, say of times
leading to an observatiofv(t;)|: = 1,2,...,T'}. With a slight abuse of notation, we will denote
this vector byv € R”. The resulting sample covariance matrix is given By ﬁ S vl
where eachy; is aT-dimensional sample of the functi(m:pilwi. Note that by definition, the
mean ofv;s should be zero. In cases where the number of samplesmaller tharil’, one can
apply an additional dimension-reduction tool to work on aalem space. For instance, we can
use the singular value decomposition (SVD) of the samplaance matrix> and retain only
the topm significant singular values and the corresponding singedators. In such cases, the
covariance matrix is indirectly stored using, \,, ...\,,, singular values and their corresponding
singular vectorsiy, us, ...u,,.

Next, we define a “wrapped-Gaussian” probability densitylonWe say “wrapped-Gaussian”

becauseVl is a non-Euclidean space and it is not possible to define adizaudensity here. We
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follow the tangent PCA (TPCA) approach [38] for defining probgbdensities on nonlinear
manifolds. In this approach, one defines a Gaussian pratyadénsity on a tangent space of
the manifold and then projects it onto the manifold usingekponential map. However, in our
case we need only the samples from the eventual densityidanahd the explicit functional
form of that projected density is not needed. In fact, we apply one more transformation
in taking the samples o® to obtain samples olr. For a meary, and covariancé:, we can
define a normal density functioN (v|u, X) on the elements of C 7),(¥). In case the data is
available in the form of prior samples, we can use the samggans and covariances to define
this density on the spadé. The exponential mapxp,; : 7;(¥) — ¥ maps this density to the
spherical space of square-root forms, and the mappirg v(t) = f(f | (7)|2dT takes it further
to the space of warping functions. The exponential map tegulwrapping the Gaussian density
on the tangent space onto the sphere and therefore the weapped-GaussiariWe will denote
the resulting densities o andI' by P, and P,, respectively.

For a Bayesian classification of activities, as describeer lat this paper, we will need to
estimate the posterior probability of different classefgithe observed data. In this calculation,
the warping function is considered a nuisance variable katls to be integrated out. Using a
Monte Carlo approach, we will generate samples from the ot and use those samples to
approximate the nuisance integral. Thus, we have a neednerafe samples from the class-
specific priorsP, onI'. This, in turn, requires sampling from the probability dgng’;, which
is accomplished as follows. Let and ¥ be the sample mean and the sample covariance of the
square-root forms observed in a particular class. Assuraettie covariance is stored in the
form of m singular values\;s and corresponding singular vecters. In such cases, a random
sample from the modeP,, is given as

Y ~ expy(v) where v ~ Z ziv/Nu;  and z ~ N(0,1) (11)

i=1
This random sample can then be converted into a warpingimating the partial integration
i+« such thaty(t) = [ |¢(7)|*dr.

Example Consider the example shown in Figure 2. Figure 2(a) shows i3plsatime-warping
functions from each of three different classes (color cpddthe corresponding square-root
density forms are shown in 2(b) and can be computed ugirg./7. For each class using the
samples of the square-root density forms we can compute &énehr mean and the covariance
as in Equation 9. The Karcher means are shown in 2(d). The mmaawarping functions for
each class obtained by partially integrating the Karcheamseare shown in 2(c). The model
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Time 0.7 07 0.7 ]
Warping . 0s 0s
Functions o 0 o4
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(a) 90 time-warp functions (c) Corresponding mean warping (e) Random samples of time-warpin
belonging to 3 different classes functions for the Karcher means functions corresponding to the
shown in (d) samples shown in (f)

o 02 04 06 08 1

(b) The square root density forms of  (d) Karcher mean of the samples (f) Random samples generated
of time warp functions shownin (a)  shown in (b) using the Karcher mean and the
covariance for each class separatel

Fig. 2. Figure is Color coded - Each color represents a different (da$8andom samples of time-warping functions belonging
to 3 different classes (color coded) (b) Corresponding samples afregoot density forms (c) Mean time-warping function for
each class computed by partial integration of the class-specific Kanoban (d) Class specific Karcher mean computed using
the samples shown in (b) () Random samples generated from the stodkd (f) Random samples af generated from the
stored Karcher means and covariance.

for each class of time-warping functions is encoded in threnfof the corresponding Karcher
means and covariances. Now one can generate random samgrteshis model as described
above. Shown in 2(f) are sample square-root density formergéed using the model parameters
for each class (i.e., the Karcher mean and covariances). efaréb the corresponding time-
warping functions maybe computed via partial integratiod are shown in 2(e). We encourage
the interested reader to download sample code either frenstipplemental material or from
http://www.cfar.umd.edutashok/Documents/TIRCode Supplemental.zip to generate some of
the figures and results shown in this example.

C. Global Speed of activity

We have restricted our attention to time-warping functifsos [0, 1] to itself, i.e the functions
that do not contract or dilate the full duration of the adjiviVe claim that this is not restrictive,
since any other time-warping transformation can be deceeghanto two parts: a global linear
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scaling of the temporal axis and the non-linear time-waydimctions that we have addressed
so far. The effect of such a linear global temporal scalingléntical to the effect of changing
the rate of sampling.

Let a(t), for 0 <t < T,, be a vector valued function of time. Lé{t), for 0 < ¢ < T}, be a
time-warped version ai(t), with the warping function given by(t), i.e.,b(t) = a(w(t)), w(t) :
[0, T3] — [0,T,]. Noww(t) can be decomposed agt) = T,~(t/1,) wherey : [0,1] — [0, 1] i.e.,

a global linear dilation (or contraction) and a non-linearping . Without loss of generality
we will use the word time-warping transformation to synowysly denote the non-linear time
warping function given byy. In all our experiments we have first identified the global penal
scaling factor by identifying the start and stop instantea&th activity. The identification of the
start and stop instants of each activity is also done aufioailgt by template matching. Once
the global temporal scaling factor is found, each realiratf the activity is temporally dilated
or contracted linearly so that the total duration of the\atstiis a constant for all realizations
of the activity.

IV. LEARNING AND CLASSIFICATION ALGORITHMS

Given N realizationsry, ry, 73, ...ry, Of an activity, we need to learn the parameters of the
model for this activity. This amounts to learning the nonhiaativity trajectorya(t) and the
probability distributionF.

A. EstimatingP, givena(t)

Let us assume that the nominal activity trajectafy) is known. Now we need to estimate
the parameters of the warping distribution which is givenHy In order to learn?,, we first
warp each of the observed realizations of the activity tokhewn nominal activity trajectory
given bya(t). This warping can be performed using the DTW algorithm. THaADalgorithm
provides us with corresponding warping functiongt) such thatfo1 lms(t) — a(y;(t))]]?dt is
minimized. Then, we can computes usingy; = /7.

Now, we have several samples, ¢, ... to estimate the distributioft,. Assuming a "wrapped-
Gaussian” distribution on¥, this amounts to estimating the sample mean and the sample
covariance of the observed;s. As described in Section IlI-B, we can define and compute
the Karcher mean of giveg;s using the exponential and the inverse exponential maps. Th
covariance is obtained similarly by restricting t@"adimensional approximatiolr’ of the vector
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spacel;(¥). Using SVD of observations iir, one ends up with the singular valugs A, ...\,
and their corresponding singular vectars us, ...u,,.

Thus, given the nominal activity trajectoryt), we can estimate the parameters of the warping
distribution P,,, namely its Karcher mean; and its covariance stored indirectly usimgsingular
valuesi, Ay, ...\, and corresponding singular vectars, us, ...u,,.

B. Estimatinga(t) assuming known warping functions

For the given observations, s, ..., of an activity, assume that the corresponding warping
functions v;, 7., ..., are also given. Then, we can estimate the nominal or averefatya
trajectorya(t) using

N
_ 1 _
a(t) = N Zﬁ'(% H(t)) (12)

i=1

C. lteratively estimating:(¢) and P,

Given N realizations-, o, r3, ...r 5, Of the same activity, we would like to learn the parameters
of the model for this activity. We do this by iteratively estiting P, and refining our estimate
of the nominal activity trajectoryi(t) using the steps described in the previous two sections.
We first initialize the nominal activity trajectory to one tife realizations say,,;(t) = r1(t).
Then we estimateé®, using the method described in Section IV-A. We then refineetstenate
of the nominal activity trajectory using the method desedibin Section IV-B. These two steps
are iterated till convergence. In practice, we find that thetions converge very quickly (within
4 or 5 iterations).

D. Uniqueness of the Model parameters

The model parameters given byt) and P, ~ {¢x, ¥, } are not unique. Two different sets of
model parameters/; = {a(t), Py, } and M, = {ax(t), Py, }, could lead to the same distribution
on the observation space. That is, the two models may ledteteame distribution on the space
of all activity realizations. This could happen if the capending nominal activity trajectory
and the distribution on the space of warping transformatiare related as

as(t) = a1((1)) D=V bo =/ T2(t) =1 (7 (1)) Yo =31 (13)

When the conditions listed in (13) are satisfied, we noticé théy(t)) = a1(7:(t)), i.e., the
mode of the activity trajectories is the same for both madelereover, since the covariance
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matrices for the two models are identical, (= X,), this means that samples for either of these
models will have identical distributions and would therefde indistinguishable. In practice this
means that there is an equivalence class of models suchripaiva models from the same
equivalence class are indistinguishable. The conditionsb&longing to the same equivalence
class are those stated in (13). While performing classiGicatind inference based on these
model parameters it becomes essential to maintain unigaesfemodel parameters. Therefore,
once we learn the model parameters we always choose a siagical representation for
each equivalence class. Note that the choice of this caamlor@presentation does not affect the
performance of the algorithm at all as long as this choiceoissistent. We choose the model
with Jx(t) = ¢, such that the Karcher mean of the warping distribution esponds to simple
linear warping and the covariance matrix of the warping gfarmations encodes all the non-
linearities in the warping distributions. The canonicaldebparameters are unique and can be
directly used for classification and inference.

E. Generating activity samples from the model

The model for an activity is given by the nominal activityj&etory a(t) and the distribution
on warping transformations given by,. We can use this model to generate random samples
from the model. We first generate random samples)s, .....1»y, from the warping distribution
P, as described in Section IlI-B. The corresponding time wanpdach is computed. Let
1,72, ---Ym D€ the corresponding time warps. Then realizations fronmibdel may be drawn
as
ri(t) = a(y;(t)) +w(t)  where w -« N(0,X). (14)

F. Classification Algorithm

Let us assume that we hav€ different models)M, M, ... Mg given by their appropriate
nominal activity trajectories,, as, ...ax and correspondin@, given byPl,Pj, ...,Pf. Given
a test sequence(t), we would like to classifyr(¢) to one of the K possible classes. This
classification task can be accomplished using MAP estimatie.,

ID = arg _max P(M;|r) = arg,_, o max P(r|M;)P(M;). (15)
The likelihood P(r|M;) can be computed as,

P(r|M;) = /¢ P(r|M, ¢)P(|M)de  where  P(4[M,) = P, (16)
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This integral can be estimated using Monte Carlo samplinghatst We drawV samples from
the modelM; as described in Section IV-E. Using these samples we estithat likelihood
P(r|M;) as

j=N
_ 1 Z P(rla;,¢;)  where  ¢; « P(y) = P, (17)
] 1

In order to compute the summation described above, we neecddelnfor computing the
conditional likelihoodP(r|M;, v;). The conditional warp probability is inversely proportarto
the squared distance between the warped nominal actiajgctory and the test sequence, i.e.,

P(r|M;, ;) = e Praitn)  where D(r, a;(v;)) = /0 (r(t) — ai(v;(t)%dt  (18)

and« is a suitably chosen constant. As the number of samplescreases the accuracy of the
approximation improves. One can also improve the accurbittyecapproximation by performing
importance sampling [39]. Let us assume that the proposdilalition from which the samples
of the ¢) are drawn is given by7(:)). Then we drawN samples ofy) from G and the integral
is approximated as

:N MZ
:%Z (r| M, ;) g”é'p')) where ¢, — G(1)). (19)

In practice, using importance sampling significantly imy@® the accuracy of the approximation
when using a finite number of samples. The effectiveness pbitance sampling also critically
depends upon the proposal distribution. The proposalilligton or the importance distribution
should ideally be as close to the posterior distribution wehwo approximate. In practice,
we first estimate the mode of this posterior by computing tket lwarping transformation
between the nominal activity trajectory of the mode]({)) and the test sequence({)). We
set the mean of the importance distribution to be this warpiansformation while letting the
covariance of the importance distribution to be the samehascbvariance of the model. We
have experimentally found that this choice of importanc&riiution enables us to effectively
approximate the integrals using Monte Carlo methods with asaeable number of random
samples.

V. FUNCTION SPACE OFTIME-WARPS

The model described in the previous sections representstasityausing a nominal activity
trajectorya(t) and a probability distribution on the space of time warpidgs There are two
inherent difficulties in practical implementations of sughmodel inspite of its rigour. Firstly,
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since the model attemps to learn a probability distributtonthe space of permissible time-
warping functions, the algorithm for learning thi3, requires a reasonable number of sample
realizations of each action. In the presence of very few $asnphe learning algorithm might
lead to underfitting of the data. Moreover, as inference gusinis model is done using Monte
Carlo methods, the algorithms for inference are computaliprexpensive.

Suppose we relax the assumption about learning the prayathistribution of permissible
time-warps and instead attempt to learn a subset in thewarping space and assume that the
probability distribution of time-warps is uniform withimé learnt subset. Each activity can now
be represented by using a nominal activity trajectory givea(¢) and1¥, the set containing all
the time warping transformations permissible for that\agti Each realization of an activity is
given by a trajectory(¢) = a(f(t)) wheref € W. Such a model is a special case of learnifg
where, we assume that the probability distribution is unifen a subsetV € T" in the space
of time-warpings. The advantage of using such a model whHezeptobability distribution is
assumed uniform is that both the learning and the inferelgmrithms become simple dynamic
programming problems when we constrain thel$éto be a convex set.

A. Activity specific time-warping spac@/()

Even thoughI' represents the space of all plausible time-warping tranmsdtions, every
individual activity may only be able to access a subHétof the candidate functions il
because of the physical constraints imposed on the actothendctivity. We can then model
the activity using a uniform distribution on this sub3$&t Then learning the parameters of the
uniform distribution boils down to learning this sub3$&t Below, we discuss and visualize some
properties of this activity specific time warping spdée

1) Wis asubsetoll,i.e.,W CT.

2) ~(t) =t is a candidate function ifV, i.e.,v(t) =t € W. This represents no time warping.

3) It is reasonable to assume tH&t is convex, i.e.V v1,72 € W anda € (0,1), y = an + (1 —a)y €

W. Since the derivative is a linear operator, this means fitheirate of execution of some action unit can

be speeded up by factors andas then it can also be speeded up by any fagton betweena; andas.
This is not just reasonable but in fact desirable.

This implies thatl¥’ can be bounded above and below by functiang € W such that
u(t) >t >1(t) vVt e (0,1) and u>y>1l VyeWw (20)

wherey, > v, = 71(t) > 72(t) Vt € (0,1). So, we can now index any such convex spHce
by the functionsu and!/ and call it\,; and learninglV is essentially the same as learning the
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upper and lower bounding functionsand!.

B. Symmetric representation of an Activity Model

As described for the "wrapped-Gaussian” distribution, réygresentation of the activity model
given by M; = {a(t), W,;} is not unique. Letu,.,(t) = f~1(u(t)) and l,.,(t) = f~1((t))
and let f be a member function inV,,. Consider the new modells ={b(t), W, ..1.cwt=
{a(f(t)), Wa,.ulnew - FOr every realization of the modél/, i.e., a(y:(t)) there exists a cor-
responding realization of the modgf, given byb(f~1(y.(¢))). Therefore the two models/;
and M, are equivalent. As before, we will resolve this ambiguitydpecifying a synchronizing
time such that the average of all the warping function$linis the identity warping function.
The symmetricrepresentation of the model is such that, (t) —t =t — l,,.,(t). Therefore the

activity specific warping space can be representéd’as- W, wheres(t) = Upew(t) —t =

newlnew
t — l.ew(t), represents the extent of possible temporal warpings. jismetric representation
of the model is unique, i.e., if; = {a1(t), W51} and My = {ax(t), Wi}, thenM; = My <—
a; = ay ands; = ss.

Given a non-symmetric representation of the model, \M.,= {a(t), W,;}, we still need to
determine a time-warping functiofi such that upper and lower bounding functions of the new

model are symmetric about the diagonal. This is achieved as

Unew (t) —1 =1- lnew<t> (21)
(Substituting foru,..,(t) and applying the.~' operator)
= f(t) = {2071 (t) = T 0N}

This implicit function equation can be solved by fixed poitgrations asf(;(t) = {2u"'(t) —
f(ﬁl) (I(u™*(t)))} ', wheref; represents the approximation pfn the:'" iteration. We initialize
the iteration withf)(t) = w We observe that it converges within very few iterationshwit
such an initialization. Once we have obtained this symmegitime warpf then any non-
symmetric model parameters; = {a(t), W,;} can be transformed to its symmetric (unique)
counterpart as\l = {b(t), W}, whereb(t) = a(f(t)) and s(t) = tnew(t) —t =t — lpew(t) =
fH (u() — .
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C. Learning Model Parameters

Learning the model parameters can be done as before byingetatween the two unknowns
( a(t) and P, ). Learning the nominal activity trajectory(t) is done as described in Section
IV-B. The only difference between earlier and now is durihg estimation of the parameters
P,. Earlier we computed the Karcher mean and the covariandg, éor the wrapped-Gaussian
distribution, here since the parameterdbfare given by the upper and lower bounding functions
we need to estimate them. Given an estimate of the activdfgdtorya(t) and corresponding
warping functionsy;(¢) for each realization, the the upper and the lower boundingtfans for
the activity specific time-warping set can be estimated as

u(t) = mQaXN%(t), Vit € (0,1) and I(t) = néinN%(t), Vi e (0,1). (22)

Since eachy; is constrained to be monotonously increasing and the endpaie fixed, it is easy
to see that the estimatést) and/(¢) also inherit these properties. Thus the estimated mafiel
is given by M = {E(t), Wy }. This model parameters correspond to the non-symmetrigiorer
of the model and can be easily transformed to the equivalantretric version of the model
using the procedure described in Section V-B.

D. Classification using the model

The primary advantage of using the uniform distribution be space of time-warping func-
tions instead of learning a class-specific probability dgnfsinction is that the classification
algorithm becomes computationally efficient. While clasatiion in the general case is dependent
on Monte-carlo methods, we show how a simple dynamic progrizugn based algorithm will
suffice for classification using the uniform distributiorskbd model. Suppose we havedifferent
activity models given by; = {a;(t), Wy, } fori = 1,..M. Given a test sequené€t), the activity
recognition problem is one of identifying the model that giexted the test sequenaét). We
do this in two steps. Firstly, assuming that the test sequéfg is generated from the model
M;, we estimate the best warping transformatﬁgrfrom W, that would warpa; to h, i.e.,

~

Jo= min dist(h(0).0.(7(0) @3)
I'=arg min dist(h(t), ai(fi(1)) (24)

Activity recognition is performed by minimizing the wargrerror between the nominal activity
trajectory and the test sequence. Note that the search gingafunctions is performed only
over the corresponding activity specific warping set. Thevabmentioned intuitive idea for
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activity recognition can be easily implemented by a sim@eaation of the DTW. In the DTW
algorithm, instead of arbitrarily limiting the warping faton to lie within some window (typical
choices are uniform window and parallelogram window), walaee the window constraints by
the upper and lower bounds for the warping function that weeHearnt for each model. Thus,
the DTW algorithm with the window width being given hyt) = s(¢) +t andl(t) =t — s(t)
computes the distance that is being minimized in (24).

I= 4_I{11nM DTW (a;, h, s) (25)

where, DTW (a;, h, s) stands for the implementation of the DTW algorithm with therping
window constraints given by(t) = s(t) +t andl(t) =t — s(t).

VI. EXPERIMENTS

We tested the algorithms on three different datasets - UMD i@om Activities dataset,
the INRIA iXmas dataset and the USF gait dataset. We used apedi@@aussian probability
distribution for P, with its parameters stored using a set of tangent plane rgectoand their
covariance matrix-,,. We denote the experimental results using this algorithr®@as.s in the
results. We also implemented the uniform distribution oa $ipace of time-warping functions
using dynamic programming and performed maximum likelthaaference using this model.
We denote the results using this methodFas,; in the results.

A. Common Activities Dataset

We used the UMD common activities dataset [26], a datasebwincon activities to perform
preliminary experiments to validate our model. The datasetsists of10 activities and10
different instances of each activity. We patrtition the datanto 10 disjoint sets each containing
1 instance of every activity. In order to test the recognitior each set, we first learn the model
parameters from the remaining nine sets and then perforognion for the test sequences.
We repeat the process for each of the 10 sets. Thus we ensuiréhéine is no overlap between
the training set and the test sequences. Figure 3 shows tKelD0 similarity matrix for using
the function space algorithm with the uniform distribution the space of temporal warps.
Each column corresponds to a different test sequence wdle w corresponds to a different
activity. The strongly block diagonal nature of the simitlamatrix indicates that the recognition
algorithm performs well. In fact, on this database we ol#dir)0% recognition using both our
algorithms.
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@ ) (©) ©) ©® (M © h) (i) i)

(a) Pick up Object (b) Jog in Place (c) Push (d) Squat (e) Wave
(H Kick (g) Bend to the side (h) Throw (i) Turn around  (j) Talk on Cellphone

Fig. 3. 10 X 100 Similarity matrix of 100 sequences and 10 different itieivusing the function space algorithm.

B. INRIA iXmas dataset

The INRIA multiple-camera multiple video database of the PERTION group consists of
11 daily-live motions performed eaghtimes by10 actors. The actors freely change position and
orientation. Every execution of the activity is done at deitdnt rate. For this dataset, we extract
16 x 16 x 16 circular FFT features as described in [33]. Since the act@® free to perform
the actions the rate at which these actions were performaddvaignificantly as was shown
in Figure 1. So most approaches that cannot handle this @agidral rate variations, instead
model the entire segment as a single motion history volurg [Bstead, we build a time series
of the circular FFT features described in [33]. This allovestol learn the nature of the temporal
rate changes between various executions of an action. Ukege features, we performed a
recognition experiment on the provided data similar to ¢hdene in [33]. For the recognition
experiment, we used only one segment for each activity whast represented that activity as
in [40]. The recognition results are summarized in table & Mged16 x 16 x 16 circular FFT
features in all our experiments here while the results teplan [33] used2 x 32 x 32 features.
The confusion matrix showing confusion between the a@iwitising both the wrapped-Gaussian
and the dynamic programming based uniform distribution ehade shown in Table II. Note that
uniform distribution based model described in Section Vignificantly more computationally
efficient compared to the Monte-Carlo based inference usiagmrapped-Gaussian distribution
on the tangent space of warp space.

C. USF Gait Database

Note on gait-based person identificationSince the model for learning the function space
time-warpings is not explicitly dependent on the choice exdtéires, one could potentially use
the same model to learn individual specific function spaoesrder to perform activity-based
person identification. The only difference would be that weuld choose a feature that is
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Activity PCA[33] Mahalanobis | LDA[33] System Pynif Paauss
[33] Distance (This (This
[41] paper) paper)
1 || Check Watch 53.33 73.33 76.67 93.33 100 93.33
2 || Cross Arms 23.33 86.67 100 100 100 100
3 || Scratch Head 46.67 86.67 80 76.67 100 100
4 || Sit Down 66.67 93.33 96.67 93.33 96.67 100
5 || Get Up 83.33 93.33 93.33 86.67 96.67 100
6 || Turn Around 80 96.67 96.67 100 100 100
7 || Walk 90 100 100 100 100 100
8 || Wave Hand 50 70 73.33 93.33 96.67 96.67
9 || Punch 70 86.67 83.33 93.33 83.33 90
10 || Kick 50 86.67 90 100 80 100
11 || Pick Up 60 90 86.67 96.67 90 100
Average 61.21 87.57 88.78 93.93 94.85 98.18
TABLE |

COMPARISON OF VIEW INVARIANT RECOGNITION OF ACTIVITIES IN THE INRIA DATASET USING OUR
APPROACHES(Pyrpn;if AND Pggyss) WITH THE APPROACHES PROPOSED 1f33] AND [41].

Motifs 1 2 3 4 5 6 7 8 9 10 11
Sit Down 30(28) | 0(0) 0(1) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Get Up 0(0) | 30(30) | 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Turn Around 0(0) 0(0) | 30(30) | 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Check Watch 1(0) 0(0) 0(0) | 29(30) | 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Cross Arms 1(0) 0(0) 0(0) 0(0) | 29(30) | 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Scratch Head 0(0) 0(0) 0(0) 0(0) 0(0) | 30(30) | 0(0) 0(0) 0(0) 0(0) 0(0)
Walk 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) | 30(30) | 0(0) 0(0) 0(0) 0(0)
Wave Hand 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) | 29(29) | 0(0) 0(0) 0(0)
Punch 3(2) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 1(1) | 25(27) | 0(0) 0(0)
Kick 5(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) | 24(30) | 0(0)
Pick Up 1(0) 0(0) 0(0) 0(0) 2(0) 0(0) 0(0) 0(0) 0(0) 0(0) | 27(30)
TABLE 1l
CONFUSION MATRIX USING Pgqyss(OUTSIDE PARENTHESIS ANDPyp; ¢ (INSIDE PARANTHESIS ON THE INRIA
DATASET.

person-specific (e.g., silhouette). The nominal activigjeictory would be individual specific
in this case. Various external conditions (like surfacepedhinduce systematic time-warping
variations within the gait signatures of each individudieTunction space of temporal warpings
for each individual amounts to learning the class of pergaeisic warping functions. By learning
the function space of these variations we are able to acdourthe effects of such external
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conditions. This will allow the same basic approach to beliaggor both action recognition
and activity based person identification by the use of appatgpfeatures.

In order to compare the performance of our algorithm with therent state of the art
algorithms, we also performed a gait-based person ideatiic experiment on the publicly
available USF gait database [30]. The USF database cons$igispeople in the Gallery. Various
covariates like camera position, shoe type, surface arggre varied in a controlled manner to
design a set of challenge experiments[30]. We performediad-wobin recognition experiment
in which one of the challenge sets was used as test while tiex seven were used as training
examples. The process was repeated for each of the sevdendgealsets on which results
have been reported. Table flshows the identification rates of our algorithm with a umnifor
distribution on the space of warp$,;s), our algorithm with a wrapped Gaussian distribution
on the tangent space of warps with shape as a feature and iwdhybmage feature Ko,
and Pgqussim)- FOr comparison the table also shows the baseline algorjd®], simple DTW
on shape features [32] and the image-based HMM [31] algaritn the USF dataset for the 7
probes A-G. Since most of these other algorithms could nob@aat for the systematic variations
in time-warping for each class the recognition experiméeytperformed was not round robin
but rather used only one sample per class for learning. Tdrereto ensure a fair comparison,
we also implemented a round-robin experiment using thatinearping ¢, W).

The average performance of our algorithifis,;; and Pg,.ss are better than all the other
algorithms that use the same feature, (DTW/HMM (Shape)[8d] lanear warpingP;/) and is
also better than the baseline[30] and HMM[31] algorithmest tiise the image as a feature. The
image based pHMM algorithm [18] outperforms our algorithon fhany probes. One reason for
this is that the image as a feature performs better than sisapdeature for the USF dataset. But,
it is a computationally very intensive feature (of the ordenumber of pixels) and consequently
leads to algorithms that are very slow. Therefore, we prieferse the shape as a feature. Inspite
of this obvious handicap, the performance of our algoritsncomparable to the image based
pHMM algorithm for many probes. The improvement in perfonoawhile using binary image as
a feature is shown in the last columAy,.ss1.,). The experimental results presented here clearly
show that using multiple training samples per class anchiegrthe distribution of their time

INote that the experimental results reported in this table contain varyingramottraining data. While columns 2-6 (Baseline
- pHMM) used only the gallery sequences for training, the results repanteolumns 7-10 Pow - Pgaussim) Used all the
probes except the test probe during training.
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TABLE 1l
COMPARISON OFIDENTIFICATION RATES ON THEUSF DATASET. NOTE THAT THE EXPERIMENTAL RESULTS REPORTED IN
THIS TABLE CONTAIN VARYING AMOUNTS OF TRAINING DATA. WHILE COLUMNS 2-6 (BASELINE - PHMM) USED ONLY
THE GALLERY SEQUENCES FOR TRAINING THE RESULTS REPORTED IN COLUMNS-10 (Prw - Paaussim) USED ALL THE
PROBES EXCEPT THE TEST PROBE DURING TRAINING

Pr- | Base-| DTW | HMM | HMM | pHMM Prw | Punir | Poauss | Poaussim
obe | line | Shape| Shape| Image| [18]
Avg. | 42 42 41 50 65 51.5 59 59 64
A 79 81 80 96 85 68 70 78 82
B 66 74 72 86 89 51 68 68 78
c 56 52 56 74 72 51 81 82 76
D 29 29 22 32 57 53 40 50 48
E 24 20 20 28 66 46 64 51 54
F 30 19 20 17 46 50 37 42 56
G 10 19 19 21 41 42 53 40 55

warps makes significant improvement to gait recognitiomultesWhile most algorithms based
on learning from a single sample led to overfitting and theeperformed much better when the
gallery was similar to the probe (Probe A-C), they also penfedt very poorly when the gallery
and the probes were significantly different. But, since ogoathm has good generalization
ability ( becasue we learn the distribution of time warpsé pgerformance of our algorithm did
not suffer from overfitting and therefore did not drop as mugten moving from probes A-C

to Probles D-G.

The importance of using multiple training samples for thelyem of gait-based human identi-
fication was also recently pointed out in [42]. In order toktadhe lack of training samples, they
combine real templates with synthetic templates generayesimulating silhouette distortion.
They then develop a statistical spatio-temporal gait igration called Gait Energy Image, that
they use in order to perform classification. They show thatglneralizing ability afforded by
learning from multiple training samples helps gait rectigni performance significantly. In our
experiments, we used only the available real sequencesdiirg. It might be an interesting
alternative to use synthetic training sequences as pext@m{42] in cases where the number of
available training samples is limited. Recently, an exiamsif Principal Component analysis for
multi-dimensional data called MPCA (Multilinear Princip@bmponent Analysis) was proposed
[43]. Such tensor based algorithms for dealing with muittrehsional data (such as silhouette
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sequences) are an important ingredient in performing forstetistical estimation for tensor
data. Nevertheless, in its application to gait-based peidentification, such algorithms are still
limited in their ability to tackle non-linear time warpingsce these must first be normalized in a
preprocessing step before the gait sequences are coniredeensor data. In this regard, it might
be an interesting avenue of further study to combine the lmear time-warp normalization
procedure presented in this paper with statistical tensalyais approach presented in [43].

VII. OTHER APPLICATIONS
A. Clustering Activity Sequences

Algorithm for Clustering There are several scenarios where one requires a clustdgog
rithm to be rate-invariant. Under such scenarios it becoreasonable to use the rate-invariant
model for activities described above as the basis for alugie When rate-invariance is not
a desirable property traditional clustering algorithmghswas K-nearest neighbour might be
reasonable choices for clustering. We performed clusiezxperiments on the UMD common
activities dataset and the USF gait database using theridst@nputationally efficient uniform
distribution version of the algorithm denoted W#,;;. The clustering algorithm, based on
expectation maximization (EM) is very similar to the Llojbx algorithm [44] and can be
used to organize a database of sequences for efficientvedtrieet us assume that we know
the number of clustersy and the cluster centeks, ¢, ...cy. Then, each of the sequences in
the database can be associated with onévVoflusters. This can be done using a maximum-
likelihood approach as described earlier in (25). This ®iime Maximization step of the EM
algorithm. The Expectation step of the algorithm involvesamputing the new cluster centers
from cluster memberships evaluated during the Maximirasiep. We iterate thesesteps until
convergence. In all our experiments, we initialized thestgu centers randomly.

Clustering on Common Activities DatasetWe performed a clustering experiment on e
activity sequences collected as a part of the Common Adw/itlataset. We chose the number
of clustersV to be10 since there were( different activities. If clustering were perfect, then the
100 activity sequences would be clustered intbdifferent clusters, each cluster containing
sequences that correspond to that particular activity. Boeality, clustering would be imperfect
and some of thel00 sequences would be misaligned in the wrong cluster. We tepdahae
clustering experiment several (about 50) times, with a eoamdhitialization of cluster centers
during each trial. On an average, the algorithm convergeabout10 iterations and aboui2%
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of the sequences were clustered correctly. Even during saverse initializations the clustering
performance was greater th#&i%.

B. Organizing a Large Database of Activities

With the decreasing cost of storage, the size of activityloiases is increasing rapidly. For
example, the complete USF gait database [30] consists aftdBd classes and a total of more
than1000 sequences. As the size of the database increases, the mfifthstance’ computations
that must be performed on every query also increases lineatth the size of the database. This
poses a significant bottleneck for practical activity reatign systems. We show that organizing
the database of sequences using the clustering algoriteonilded in Section VII-A decreases this
computational burden significantly. The price paid is a $aedrease in recognition performance.
We organize the database of activities in the form of a degrdra as shown in Figure 4.
At each level of the dendrogram the number of branches Was set to3. The number of
levels to which the dendrogram is ‘grown’ determines theld@raff between computation and
accuracy. As the number of levels is increased, the numbelisthnce’ computations that must
be performed before finding the class membership of a giv&rseguence decreases. Therefore,
the computational burden of the algorithm also decreasestH&imight introduce a decrease
in classification performance. When the dendrogram is futtynap (i.e., when each leaf of the
dendrogram represents one activity), there willdg; NV, levels and therefor&logg N ‘distance
computations’. Let us consider the USF database which stnsf 122 subjects and a total of
1870 sequences. A nearest neighbour classifier on this database parform1870 distance
computations in order to classify a new test sequence. Bukeifagsume that we organize the
database in the form of a ‘fully grown dendrogram’, with edeaf node representing each of
the 122 individuals, then one would just have to perform ab@ibgg N = 3 * log3122 ~ 14
‘distance computations’. This is a very significant compatel saving.

We performed an experiment to evaluate the efficiency ofromyag the database on a subset
of the USF database as in Section VI-C. In our experiments, e ¢he dendrogram uptd
levels. We measure efficiency of organizatioy) &s a ratio of the recognition rate before and

after organization. e L
g Identification rate after organization

Identification rate before organization
The efficiencyy is strongly related to clustering performance and it iseeable to expect the

n = 100 * (26)

efficiencyn to increase with better clustering. Table IV shows the efficy of organization for
the various probes in the USF dataset. On this data, the dgrain organization of the database
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Level 1

Level 2

F‘TFTFHT M FWT mn HTLM‘E

Fig. 4. Dendrogram for organizing an activity database

reduced the computational time by a factor of ab@utThis means that the processing time for
large databases will be reduced from the order of days to gematthours. For such significant

reduction in processing time, the Table IV shows that theedese in recognition performance
is not drastic.

TABLE IV
EFFICIENCY OFORGANIZATION ON THE USFDATASET

Probel A B| C| D | E| F | G|Awg
n 76| 81|84 | 100| 82| 100| 95| 89

VIIl. SUMMARY AND CONCLUSIONS

In this paper, we address an important but often neglectgalgan in modeling an activity, that
of temporal warping of the activity trajectories. Our mott®l an activity describes each activity
using a nominal activity trajectory and a probability distition on the space of permissible
temporal warpings. We discuss the case of a parametericpgda@aussian distribution on the
tangent space of time-warps and derive Monte Carlo samplasgd Bayesian algorithm for
classification. We then discuss the spacial case of a corniéaron distribution on the space
of time-warps and show that this special case allows us tovel@omputationally efficient
algorithms for a slight decrease in modeling efficieny araksification performance. Finally,
we present several experimental results on publicly aviglaction recognition and gait-based
person identification datasets.
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