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Abstract

Kernel regression techniques like Relevance Vector Ma-
chine (RVM) regression, Support Vector Regression and
Gaussian Processes are widely used for solving many com-
puter vision problems such as age, head pose, 3D human
pose and lighting estimation. However the presence of out-
liers in the training dataset make the estimates from these
regression techniques unreliable. In this paper, we pro-
pose robust versions of the RVM regression that can han-
dle outliers in the training dataset. We decompose the noise
term in the RVM formulation into an (sparse) outlier noise
term and a Gaussian noise term. We then estimate the out-
lier noise along with the model parameters. We explore
two natural approaches for solving this estimation prob-
lem: 1) a Bayesian approach which follows the RVM frame-
work, and 2) an optimization approach based on Basis Pur-
suit Denoising. The Bayesian approach has the advantage
that it can be seamlessly incorporated into the RVM frame-
work and thus inherits the subsequent advancement made
towards faster computations of the RVM. Empirical evalu-
ation of the robust algorithms show that the Bayesian ap-
proach performs better than the optimization approach. We
further show the effectiveness of the Bayesian approach in
solving image denoising and age estimation problems.

1. Introduction
Kernel regression techniques like Support Vector Re-

gression (SVR) [21], Relevance Vector Machine (RVM) re-
gression [17] and Gaussian processes [13] are widely used
for solving many vision problems. Some examples are age
estimation from facial images [11, 10, 7, 8], head pose es-
timation [12], 3D human pose estimation [2] and lighting
estimation [14]. Recently, kernel regression has also been
used for solving some image processing problems such as
image denoising and image reconstruction with a great deal
of success [15, 16]. However, many of these kernel regres-
sion methods, especially the RVM, are not robust to outliers
in the training dataset and hence will produce unreliable es-
timates in the presence of outliers.

In this paper, we explore two robust versions of the RVM
regression that can handle outliers in the training dataset.
We decompose the noise term in the RVM formulation into
an outlier noise term, which we assume to be sparse, and
a Gaussian noise term. We then estimate the outlier noise
along with the model parameters. We explore two natu-
ral approaches for solving this estimation problem: 1) a
Bayesian approach and 2) an optimization approach. In
the Bayesian approach, we assume a joint sparse prior for
the model parameters and the outliers and then solve the
Bayesian inference problem. The mean of the posterior dis-
tribution of the model parameters is then used for predic-
tion. This approach has the advantage that it can be seam-
lessly incorporated into the RVM framework and thus inher-
its the subsequent advancement made towards faster com-
putations of the RVM [18].

In the optimization approach, we attempt to minimize the
L0 norm of the model parameters and the outliers subject
to a certain amount of observation errors (which depends
on the inlier noise variance). However, this minimization
is a combinatorial problem and hence cannot be solved di-
rectly and so we solve a relaxed version of it which is a con-
vex optimization problem known as basis pursuit denoising
[4]. We then empirically evaluate the robust algorithms by
varying three important intrinsic parameters of the robust
regression problem, namely, the outlier fraction, the inlier
noise variance and the number of data points in the train-
ing dataset. These experiments show that the Bayesian ap-
proach performs better than the optimization approach. We
further show the effectiveness of the Bayesian approach in
solving the image denoising and age estimation problems.

Prior Work Robust versions of RVM regression have
been proposed in [6], [19] and [23]. In [6], the noise term
is modeled as a mixture of Gaussian (for the inlier noise)
and uniform or Gaussian with large variance for the outlier
noise. However, because of this mixture density model, in-
ference is difficult. There is no analytic solution and a vari-
ational method is used for solving the problem which makes
it computationally much more costlier than the RVM. In
[19], a Student’s t-distribution is assumed for the noise
and during the inference, the parameters of Student’s t-



distribution is estimated along with the model parameters.
Though, this is a very elegant approach, inference is diffi-
cult. A variational method is used for solving the problem
which, again, like [6] is computationally much more expen-
sive than the RVM. In [23], a trimmed likelihood function
is minimized over a ‘trimmed’ subset that does not include
the outliers. The robust ‘trimmed’ subset and the model
parameters are found by an iterative re-weighting strategy
which, at each iteration solves the RVM regression prob-
lem over the current ‘trimmed’ subset. This method has the
disadvantage that it needs an initial robust estimate of the
‘trimmed’ subset, which will affect the quality of the final
solution. It also needs many iterations in each of which a
RVM regression problem is solved and this makes it very
slow.

Our Contributions:

• Explore two robust versions of the RVM regression:
one based on a Bayesian approach and the other on
an optimization approach. Empirical evaluation shows
that the Bayesian approach performs better than the
optimization one.

• The advantage of the Bayesian approach is that it can
be seamlessly incorporated into the RVM framework
and thus inherits the subsequent advancement made to-
wards faster computations of the RVM [18].

2. Robust RVM Regression
For both the Bayesian approach and the optimization ap-

proach, we replace the Gaussian noise assumption in the
RVM formulation by an ‘implicit’ heavy-tailed distribu-
tion. This is achieved by decomposing the noise term into
a (sparse) outlier noise term and a Gaussian noise term.
The outliers are then treated as unknowns and estimated
together with the model parameters. In the following sec-
tions, we first describe the regression model, followed by
the Bayesian approach and the optimization approach.
2.1. Model Specification

Let (xi, yi), i = 1, 2, ..., N be the given training dataset
with dependent variables yi, i = 1, 2, . . . , N and indepen-
dent variables xi, i = 1, 2, . . . , N . In the RVM formulation,
yi is related to xi by the model

yi =

N∑
j=1

wjK(xi,xj) + w0 + ei (1)

where, with each xj, there is an associated kernel function
K(.,xj) and ei is the Gaussian noise. The objective is to
estimate the weight vector w = [w0, w1, . . . , wN ]T using
the training dataset. Once this is done, we can predict the
corresponding y for any new x by

y =

N∑
i=j

wjK(x,xj) + w0 (2)

In the presence of outliers, Gaussian noise is not an ap-
propriate assumption for ei. We propose to split the noise
ei into two components: a Gaussian component ni and a
component due to outliers si which we assume to be sparse.
With this, we have

yi =

N∑
j=1

wjK(xi,xj) + w0 + ni + si (3)

In matrix-vector form, this is given by

y = Φw + n + s (4)

where y = [y1, . . . , yN ]T , n = [n1, . . . , nN ]T , s =
[s1, . . . , sN ]T and Φ is a N × (N + 1) matrix with
Φ = [φ(x1), φ(x2), . . . , φ(xN)]T wherein φ(xi) =
[1, K(xi,x1), K(xi,x2), . . . , K(xi,xN)]T . The two un-
knowns, w and s, can be augmented into a single unknown
vector ws = [wT sT ]T and the above equation can be writ-
ten as

y = Ψws + n (5)

where Ψ = [Φ|I] is a N × (2N +1) matrix with I a N ×N
identity matrix.

2.2. Robust Bayesian RVM (RB-RVM)
In the Bayesian approach, we, first, estimate the joint

posterior distribution of w and s, given the observations y
and the prior distributions on w and s. We, then, use the
mean of the posterior distribution of w for prediction (2).
The posterior variance, also, provides us with a measure of
uncertainty in the prediction.

The joint posterior distribution of w and s is given by

p(w, s|y) =
p(w, s)p(y|w, s)

p(y)
(6)

where, from (5), the likelihood term p(y|w, s) is given by

p(y|w, s) = N (Ψws, σ
2I) (7)

where σ2 is the (inlier) Gaussian noise variance. To proceed
further, we need to specify the prior distribution p(w, s).
Towards this end, first, we assume that w and s are inde-
pendent, that is, p(w, s) = p(w)p(s). Next we keep the
same ‘sparsity promoting’ prior for w as in RVM [17], that
is,

p(w|α) =

N∏
i=0

N (wi|0, α−1) (8)

where α = [α0, α1, . . . , αN ]T is a vector of (N + 1)
hyper-parameters. A uniform distribution (hyper-prior) is
assumed for each of the αis (For more details, please see
[17]).



For s, we specify a similar sparsity promoting prior given
by:

p(s|β) =

N∏
i=0

N (si|0, β−1) (9)

where β = [β1, β2, . . . , βN ]T is a vector of N hyper-
parameters, where each of the βis follows a uniform dis-
tribution. The reason we chose a ‘sparsity promoting’ prior
for s is because we generally expect outliers to be sparse,
that is, we expect most of the data to be inliers with only
some data as outliers. This completes the description of the
prior p(w, s) and the likelihood p(y|w, s). Next we pro-
ceed to the inference stage.

2.2.1 Inference

Our inference method follows the RVM inference steps.
We, first, find point-estimates for the hyper-parameters
α, β and the inlier noise variance σ2, by maxi-
mizing p(y|α, β, σ2) with respect to these parameters.
p(y|α, β, σ2) is given by

p(y|α, β, σ2) =

∫
p(y|w, s, σ2)p(w|α)p(s|β) dwds

(10)
Since, all the distributions in the right hand side are Gaus-
sian with zero mean, it can be shown that p(y|α, β, σ2) is
a zero-mean Gaussian distribution with covariance matrix
σ2I+ΨAΨT , where A = diag(α0, . . . , αN , β1, . . . , βN ).
The maximization of p(y|α, β, σ2) with respect to the
hyper-parameters α, β and the noise variance σ2 is known
as evidence maximization and can be done by an EM algo-
rithm [17] or a faster implementation proposed in [18]. We
will refer to these estimated parameters as αMP , βMP and
σ2

MP .
With this point estimation of the hyper-parameters and

the noise variance, the (conditional) posterior distribution
p(w, s|y, αMP , βMP , σ2

MP ) is given by

p(y|w, s, σ2

MP )p(w|αMP )p(s|βMP )

p(y|αMP , βMP , σ2

MP )
(11)

Since, all the terms in the numerators are Gaussian, it can
be shown that this is again a Gaussian distribution with co-
variance and mean given by

Σ = (σ−2ΨT Ψ + AMP)−1 and µ = σ−2ΣΨT y (12)

where AMP = diag(αMP0, . . . , αMPN , βMP1, . . . , βMPN ).
To obtain the posterior distribution p(w, s|y) we need to

integrate out α, β, σ2 from p(w, s|y, α, β, σ2), that is,

p(w, s|y) =

∫
p(w, s|y, α, β, σ2)p(α, β, σ2|y) dαdβdσ2

(13)
However, this is analytically intractable and it has
been empirically observed in [17], that for predictive

purposes p(α, β, σ2|y) is very well approximated by
δ(αMP , βMP , σ2

MP ). With this approximation, we have

p(w, s|y) = p(w, s|y, αMP , βMP , σ2

MP ) (14)

Thus, the desired posterior distribution of w, s is a Gaussian
distribution with the posterior covariance and mean given
by (12). This is the mean and covariance that we will use
for prediction, which we describe next.

2.2.2 Prediction

We use the prediction model (2) to predict ŷ for any new
data x̂. The predictive distribution of ŷ is given by

p(ŷ|y, αMP , σ2

MP ) =

∫
p(ŷ|w, σ2

MP )p(w|y, αMP ) dw

(15)
where, the posterior distribution of w, p(w|y, αMP ), can
be easily obtained from the joint posterior distribution
p(w, s|y, αMP , βMP , σ2

MP ). This is a Gaussian distribu-
tion with mean and covariance corresponding to the param-
eter part, w, of the ws vector, that is,

Σw = Σ(1 : N + 1, 1 : N + 1) and µw = µ(1 : N + 1)
(16)

It can be easily shown that the predictive distribution of ŷ is
a Gaussian distribution with mean µ̂ and variance σ̂2 given
by

µ̂ = µw
T φ(x̂) and σ̂2 = σ2

MP + φ(x̂)T Σwφ(x̂) (17)

2.2.3 Advantage over other Robust RVM Algorithms

The proposed robust Bayesian formulation, RB-RVM, can
be be seamlessly incorporated into the original RVM for-
mulation. All we have to do is, instead of inferring just the
parameter vector w, infer the joint parameter-outlier vec-
tor ws by replacing the Φ matrix with the corresponding
Ψ = [Φ|I] matrix and use only the parameter part of the
estimated ws for prediction. It is this simple modification
of the original RVM that gives RB-RVM the computational
advantage over [6, 19, 23] because we can, now, use the fast
algorithm for RVM, proposed in [18], for solving the robust
RVM problem.
2.3. Basis Pursuit RVM (BP-RVM)

A very similar objective, as the Bayesian approach, can
be achieved by solving the following optimization problem:

min
ws

||ws||0 subject to ||y −Ψws||2 ≤ ε (18)

where, ||ws||0 is the L0 norm which counts the number of
non-zero elements in ws. The cost function promotes a
sparse solution for ws and the constraint term is, basically,
the likelihood term of the Bayesian approach, with ε related
to the inlier noise variance σ2. w obtained after solving this
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Figure 1. Prediction by the three algorithms: RVM, RB-RVM and BP-
RVM in the presence of symmetric outliers for N = 100, f = 0.2 and
σ = 0.1. Data which are enclosed by a box are the outliers found by the
robust algorithms. Prediction error are also shown in the figures. RB-RVM
gives the best performance.
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Figure 2. Prediction by the three algorithms: RVM, RB-RVM and BP-
RVM in the presence of asymmetric outliers for N = 100, f = 0.2 and
σ = 0.1. Data which are enclosed by a box are the outliers found by the
robust algorithms. Prediction error are also shown in the figures. Clearly,
RB-RVM gives the best performance.

problem can, then, be used for prediction. However, this is
a combinatorial problem and, hence, cannot be solved di-
rectly. This problem has been studied extensively in sparse
representation literature [4, 22]. In one of the approaches, a
convex relaxation of the problem is solved

min
ws

||ws||1 subject to ||y − Ψws||2 ≤ ε (19)

where, the L0 norm in the cost function is replaced by the
L1 norm which makes it a convex problem and, hence, can
be solved in polynomial time. This approach is closely re-
lated to Basis Pursuit Denoising [5, 4] and we will refer
to the robust algorithm that uses this approach as the Basis
Pursuit RVM (BP-RVM). Initially, the justification for using
the L1 norm approximation was based on empirical obser-
vations [4]. However, recently, in [3, 5] it has been shown
that if ws was sparse to begin with, then, under certain con-
dition (‘Restricted Isometry Property’ or ‘incoherence’) on
the matrix Ψ, (18) and (19) will have the same solution up
to a bounded uncertainty due to ε. However, in our case the
matrix Ψ depends on the training dataset and the associated

kernel function and it might not satisfy those conditions.

3. Empirical Evaluation
In this section, we empirically evaluate the proposed ro-

bust versions of the RVM with respect to the baseline RVM.
As noted earlier, we will refer to the robust Bayesian ver-
sion of the RVM, described in section 2.2, as ‘RB-RVM’
and the optimization version, described in section 2.3, as
‘BP-RVM’. We consider three important intrinsic parame-
ters of the robust regression problem, namely, the outlier
fraction (f ), the inlier noise variance (σ2) and the number
of training data points (N ) and study the performance of the
three algorithms (RVM, RB-RVM, BP-RVM) for different
settings of these parameters.1 Next, we describe the experi-
mental setup, which is quite similar to that of [6].

We generate our training data using the normalized sinc
function sinc(x) = sin(πx)/(πx). yi of the inlier data are
obtained by adding a Gaussian noise N (0, σ2) to sinc(xi).
For the outliers, we consider two generative models: 1)
symmetric and 2) asymmetric. In the symmetric model, yi

of the outlier data is obtained by adding a uniform noise of
range [−1, +1] to sinc(xi) and in the asymmetric model,
yi is obtained by adding a uniform noise of range [0, +1] to
sinc(xi). We associate a Gaussian kernel with each train-
ing data xj , that is, K(x, xj) = exp (−(x − xj)

2/r2) with
r = 2. Figure 1 and 2 show the performance of the three
algorithms for the symmetric and asymmetric outlier cases
for N = 100, f = 0.2 and σ = 0.1. The performance
criteria used for comparison is the root mean square (RMS)
prediction error. Note that RB-RVM performs very well
for both the cases. In the following sections, we study the
performance of the algorithms by varying the intrinsic pa-
rameters: f , σ and N .

Varying the Outlier fraction: We vary the outlier frac-
tion f , with N = 100 and σ = 0.1. Figure 3 shows the
prediction error vs. outlier fraction for the symmetric and
asymmetric outliers cases. For both the cases, RB-RVM
gives the best performance. For the symmetric case, the
performance of the BP-RVM is better than that of the RVM
but for the asymmetric case they give similar performance.

Varying the Inlier Noise Std: We vary the inlier noise
standard deviation σ, with N = 100 and f = 0.2. Fig-
ure 4 shows that that RB-RVM gives a good performance
until about σ = 0.2 after which RVM gives better perfor-
mance. This is because, for our experimental setup, at ap-
proximately σ = 0.3 the distinction between the inliers and
outliers cease to exist. For Gaussian distribution, most of
the probability density mass lies within 3σ of the mean and
any data within this region can be considered as inliers and
those outside as outliers. Thus, for σ = 0.3, 3σ = 0.9 and

1For solving RVM and RB-RVM, we have used the publicly available
code in http://www.vectoranomaly.com/downloads/downloads.htm.
For solving BP-RVM, we have used l1-magic:
http://www.acm.caltech.edu/l1magic/
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Figure 3. Prediction error vs. outlier fraction for the symmetric and asym-
metric outlier cases. RB-RVM gives the best result for both the cases. For
the symmetric case, the performance of the BP-RVM is better than that of
the RVM but for the asymmetric case they give similar performance.

most of the outliers will be within this range and, hence,
will effectively act as inliers.
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Figure 4. Prediction error vs. inlier noise standard deviation for the sym-
metric and asymmetric outlier cases. RB-RVM gives a good performance
until about σ = 0.2 after which RVM gives better performance. This is
because, for our experimental setup, at approximately σ = 0.3 the distinc-
tion between the inliers and outliers cease to exist.

Varying the Number of Data Points: We vary the num-
ber of data points N , with f = 0.2 and σ = 0.1. Figure 5
shows that the performance of all the algorithms improve
with increasing N . The curves show an asymptotic nature
which nears its limiting value for N as low as 200.
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Figure 5. Prediction error vs. number of data points for the symmetric and
asymmetric outlier cases. For all algorithms, the performance improves
with increasing N . The curves show an asymptotic nature which nears its
limiting value for N as low as 200.

Discussion: From the above study, we conclude that RB-
RVM and BP-RVM perform better than the RVM in the
presence of outliers. RB-RVM is better than BP-RVM in
all aspects and we will consider only this Bayesian robust
version of the RVM for solving the image denoising and age
regression problems.

4. Robust Image Denoising
Recently, kernel regression has been used for solving

a number of traditional image processing tasks like image
denoising, image interpolation and super-resolution with a
great deal of success [15, 16]. The success of these ker-
nel regression methods prompted us to test RB-RVM for

Figure 6. Salt and pepper noise removal experiment: the figure shows
original image, noisy image and denoised images by RVM, RB-RVM, me-
dian filter and Gaussian filter. The corresponding RMSE values are also
shown in the figure. Clearly, RB-RVM gives the best denoising result.

solving the problem of image denoising in the presence of
salt and pepper noise. Salt and pepper noise are randomly
occurring white and black pixels in an image and can be
considered as outliers.

Any image I(x, y) can be considered as a surface over
a 2D grid. Given a noisy image, we can use regression
to learn the relation between the intensity and the 2D grid
of the image. If some kind of a local smoothness is im-
posed by the regression machine, we can use it for denois-
ing the image. Here, we consider RVM and RB-RVM for
achieving this purpose. We divide the image into many
(overlapping) patches and for each patch we infer the pa-
rameters of RVM and RB-RVM. We, then, use the inferred
parameters for predicting the intensity of the central pixel
of the patch, which is the denoised intensity at that pixel.
This is done for all the pixels of the image to obtain the
denoised image. Motivated by [15], we consider a com-
position of Gaussian kernel and polynomial kernel for the
choice of kernel in our regression machines. Gaussian



kernel is defined as Kg(x,xj) = exp (−||x − xj||2/r2),
where r is the scale of the Gaussian kernel, and polyno-
mial kernel is defined as Kp(x, xj) = (xT xj + 1)p, where
p is the order of the polynomial kernel. We consider the
composition of Gaussian and polynomial kernels given by
K(x,xj) = Kg(x,xj)Kp(x,xj).

To test the proposed kernel denoising algorithms, we fol-
low the experimental setup of [15]. We add 20% salt and
pepper noise to the original image, shown in figure 6. For
RVM and RB-RVM, we chose patch size of 6 × 6, r = 2.1
and p = 1. Figure 6 shows the image denoising result by
the RVM, RB-RVM, 3 × 3 median filter and the Gaussian
filter (with standard deviation 2.1). The denoised images
and the corresponding RMSE values, clearly, shows that
RB-RVM gives the best denoising result. Table 1, further,
compares RB-RVM with other kernel regression algorithms
(taken from [15]), which shows that RB-RVM is better than
all the algorithms, except, for the l1 steering kernel regres-
sion. Figure 7 shows some more denoising results. Next,
we vary the amount of salt and pepper noise and obtain the
mean RMSE over seven commonly used images of Lena,
Barbara, House, Boat, Baboon, Pepper and Elaine. Figure 8
shows that the RB-RVM gives better result than the median
filter, which is the most commonly used filter for denoising
images with salt and pepper noise. Further, we test the RB-
RVM for the case where an image is corrupted by a mixture
of Gaussian and salt and pepper noise. Figure 9 shows the
denoised images obtained by the RVM and the RB-RVM
when a mixture of Gaussian noise of σ = 5 and 5% salt and
pepper noise is added to the original image.
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Figure 8. Mean RMSE over seven images vs. percentage of salt and pep-
per noise. RB-RVM gives the best performance followed by the median
filter.

5. Robust Facial Age Estimation
The goal of facial age estimation is to estimate the age of

a person from his/her image. The most common approach
for solving this problem is to extract some relevant features
from the image and then learn the functional relationship
between these features and the age of the person using re-
gression techniques [11, 10, 7, 8]. Here, we intend to test
the RB-RVM regression for the robust age estimation prob-
lem. For our experiments, we use the publicly available
FG-Net dataset [1], which contains 1002 images of 82 sub-
jects, at different ages, along with their ages. As a choice

Figure 9. Mixture of Gaussian and salt and pepper noise removal exper-
iment: denoised images by RVM and RB-RVM with their corresponding
RMSE values in the figure. This experiment, again, shows that the RB-
RVM based denoising algorithm gives much better result than the RVM
based one.

of features, we use ‘geometric’ features obtained by com-
puting the flow field at 68 fiducial points with respect to a
reference face image [20].

To decide on a particular kernel for regression, we per-
form leave-one-person-out testing, by RB-RVM, for differ-
ent choices of kernel. Table 2 shows the mean absolute error
(MAE) of age prediction for different scale parameters r of
the Gaussian kernel. r = 0.2 gives the best result and we
use this value of r for all the subsequent experiments. We
have also tried polynomial kernels of different orders but
the best of the Gaussian kernels out performed that of the
polynomial kernels. Next, we use the RB-RVM to catego-
rize the whole dataset into inliers and outliers. The algo-
rithm detected 90 outliers. Some of the inliers and outliers
are shown in figure 10. With this knowledge of the inliers
and the outliers, we perform the leave-one-person-out test
again. Table 3 shows the mean absolute error (MAE) of age
prediction for the inliers and the outliers separately. The
small prediction error for the inliers and the large predic-
tion error for the outliers indicates that the inlier vs. outlier
categorization, by the RB-RVM algorithm, was good. Ta-
ble 3, also, shows that the prediction error of the RB-RVM
for the whole dataset is lower than that of the RVM which,
clearly, establishes the superiority of the RB-RVM over the
RVM. To put the numbers in the table in context, the state-
of-the-art algorithm [8] gives a prediction error of 5.07 as
compared to prediction error of 4.61 obtained for the inliers
by the RB-RVM.

r 0.1 0.2 0.3 0.4
MAE 7.10 6.52 6.54 6.62

Table 2. Mean absolute error (MAE) of age prediction for different values
of the scale r of the Gaussian kernel. The prediction errors are for the
leave-one-person-out testing by RB-RVM. r = 0.2 gives the best result
and we use this r for all subsequent experiments.

To further test RB-RVM, we add various amount of con-
trolled outliers. Before doing this, we remove the outliers
detected in the previous experiment. We use 90% of this
new dataset as the training set and the remaining 10% as the
test set. We introduce controlled outliers only in the training



RB-RVM Wavelet [9] l2 Classic [15] l2 steering [15] l1 steering [15]
9.24 21.54 21.81 21.06 7.14

Table 1. RMSE values for RB-RVM, Wavelet, l2 Classic, l2 steering, and l1 steering. RB-RVM is better than all the algorithms, except, for the l1 steering
kernel regression.

Figure 7. Some more results on Salt and pepper noise removal: first column: RVM, second column: RB-RVM, third column: Median filter, fourth column:
Gaussian filter. The RMSE values are also shown in the figure. RB-RVM gives the best result.

Inlier MAE Outlier MAE All MAE
RB-RVM 4.61 25.87 6.52

RVM N.A. N.A. 6.80
Table 3. Mean absolute error (MAE) of age prediction for the inliers,
outliers and the whole dataset using RB-RVM. Since, RVM does not dif-
ferentiate between inliers and outliers, we only show the prediction error
for the whole dataset. The small MAE for the inliers and the large MAE
for the outliers indicates that the inlier vs. outlier categorization, obtained
by RB-RVM, was good. Further, the prediction error of the RB-RVM for
the whole dataset is lower than that of the RVM which, clearly, establishes
the superiority of the RB-RVM over the RVM.

set and perform age prediction on the test set by both RVM
and RB-RVM. We vary the fraction of the outliers on the
training set and measure the age prediction error on the test
set. Figure 11 shows that RB-RVM gives much lower pre-
diction error as compared to RVM. This experiment, again,
suggests that RB-RVM should be preferred over RVM for
the age estimation problem.

6. Discussion and Conclusion

We explored two natural approaches for incorporating
robustness to the Relevance Vector Machine (RVM) regres-
sion : a Bayesian approach and an optimization approach.
The Bayesian approach, which we referred to as RB-RVM,
has the advantage that it can be seamlessly incorporated into
the original RVM regression formulation and, thus, inherits
the subsequent advancement made towards faster computa-
tions of the RVM [18]. The optimization approach, which
we referred to as BP-RVM, was based on the basis pursuit
denoising algorithm [4]. Empirical evaluations of the two
robust algorithms showed that the RB-RVM performs better
than the BP-RVM. We, then, used the RB-RVM to solve the
image denoising problem in the presence of salt and pepper
noise and the robust age estimation problem which, clearly,
demonstrated the superiority of RB-RVM over the original
RVM.



Figure 10. Some inliers and outliers found by RB-RVM. Most of the out-
liers were images of older subjects like Outlier A and B. This is because
there are less number of samples of older subjects in the FG-Net database.
Outlier C has an extreme pose variation from the usual frontal faces of the
database and, hence, is an outlier. The facial geometry of Outlier D is very
similar to that of younger subjects, such as big forehead and small chin,
and, hence, is classified as an outlier.
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Figure 11. Mean absolute error (MAE) of age prediction vs. fraction
of controlled outliers added to the training dataset. RB-RVM gives much
lower prediction error as compared to the RVM. Also, note that the predic-
tion error is reasonable even with outlier fraction as high as 0.7.
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