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Classical applications of Pattern recognition in image processing and computer

vision have typically dealt with modeling, learning and recognizing static patterns

in images and videos. There are, of course, in nature, a whole class of patterns that

dynamically evolve over time. Human activities, behaviors of insects and animals,

facial expression changes, lip reading, genetic expression profiles are some examples

of patterns that are dynamic. Models and algorithms to study these patterns must

take into account the dynamics of these patterns while exploiting the classical

pattern recognition techniques. The first part of this dissertation is an attempt to

model and recognize such dynamically evolving patterns. We will look at specific

instances of such dynamic patterns like human activities, and behaviors of insects

and develop algorithms to learn models of such patterns and classify such patterns.

The models and algorithms proposed are validated by extensive experiments on



gait-based person identification, activity recognition and simultaneous tracking

and behavior analysis of insects.

The problem of comparing dynamically deforming shape sequences arises re-

peatedly in problems like activity recognition and lip reading. We describe and

evaluate parametric and non-parametric models for shape sequences. In particu-

lar, we emphasize the need to model activity execution rate variations and propose

a non-parametric model that is insensitive to such variations. These models and

the resulting algorithms are shown to be extremely effective for a wide range of

applications from gait-based person identification to human action recognition.

We further show that the shape dynamical models are not only effective for the

problem of recognition, but also can be used as effective priors for the problem

of simultaneous tracking and behavior analysis. We validate the proposed algo-

rithm for performing simultaneous behavior analysis and tracking on videos of bees

dancing in a hive.

In the last part of this dissertaion, we investigate computational imaging, an

emerging field where the process of image formation involves the use of a computer.

The current trend in computational imaging is to capture as much information

about the scene as possible during capture time so that appropriate images with

varying focus, aperture, blur and colorimetric settings may be rendered as required.

In this regard, capturing the 4D light-field as opposed to a 2D image allows us

to freely vary viewpoint and focus at the time of rendering an image. In this

dissertation, we describe a theoretical framework for reversibly modulating 4D

light fields using an attenuating mask in the optical path of a lens based camera.

Based on this framework, we present a novel design to reconstruct the 4D light field

from a 2D camera image without any additional refractive elements as required



by previous light field cameras. The patterned mask attenuates light rays inside

the camera instead of bending them, and the attenuation recoverably encodes the

rays on the 2D sensor. Our mask-equipped camera focuses just as a traditional

camera to capture conventional 2D photos at full sensor resolution, but the raw

pixel values also hold a modulated 4D light field. The light field can be recovered

by rearranging the tiles of the 2D Fourier transform of sensor values into 4D planes,

and computing the inverse Fourier transform. In addition, one can also recover

the full resolution image information for the in-focus parts of the scene.
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Chapter 1

Introduction

1.1 Research Motivation

Classical applications of Pattern recognition in image processing and computer

vision have typically dealt with modeling, learning and recognizing static patterns

in images and videos. There are, of course, in nature, a whole class of patterns

that dynamically evolve over time. Human activities, behaviors of insects and

animals, facial expression changes, lip reading, genetic expression profiles are some

examples of patterns that are dynamic. Models and algorithms to study these

patterns must take into account the nature of the dynamics of these patterns while

exploiting the classical pattern recognition techniques. In the first part of this

dissertation, I will develop and evaluate algorithms to model, learn and recognize

such dynamic patterns. In particular, I pay special attention to modeling and

comparing shape sequences. Several important computer vision applications in

human activity analysis can be formulated as a problem of modeling and comparing

shape sequences. I will demonstrate and evaluate these shape-dynamical models

for computer vision applications such as human action recognition and gait-based
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human identification. Next, I show that execution rate invariance is very important

for human action recognition, and describe an algorithm for enforcing execution

rate invariance. The model which is based on the differential geometry of the

space of execution rate functions leads to a Monte Carlo based algorithm for rate-

invariant classifications of human actions. I will also show that such dynamical

models also act as effective priors for the problem of simultaneous tracking and

recognition of behaviors.

The second part of this dissertation concerns an interesting application in com-

putational imaging. Computational Imaging is an emerging field where the process

of image formation involves the use of a computer. The current trend in compu-

tational imaging is to capture as much information about the scene as possible

during capture time so that appropriate images with varying focus, aperture, blur

and colorimetric settings may be rendered as required. In this regard, capturing

the 4D light-field as opposed to a 2D image allows us to freely vary viewpoint and

focus at the time of rendering an image. I describe a theoretical framework for

reversibly modulating 4D light fields using an attenuating mask in the optical path

of a lens based camera. Based on this framework, we present a novel design to

reconstruct the 4D light field from a 2D camera image without any additional re-

fractive elements as required by previous light field cameras. The patterned mask

attenuates light rays inside the camera instead of bending them, and the attenu-

ation recoverably encodes the rays on the 2D sensor. The mask-equipped camera

focuses just as a traditional camera to capture conventional 2D photos at full sen-

sor resolution, but the raw pixel values also hold a modulated 4D light field. The

light field can be recovered by rearranging the tiles of the 2D Fourier transform

of sensor values into 4D planes, and computing the inverse Fourier transform. In
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addition, one can also recover the full resolution image information for the in-focus

parts of the scene.

1.2 Dissertation Contributions

In this dissertation, I make the following specific contributions,

1. I propose and evaluate several parametric and non-parametric algorithms

for comparing shape sequences. The parametric algorithms are based on

traditional models such as Hidden Markov model (HMM) and Autoregressive

and moving average model (ARMA), while the non-parametric algorithm is

based on dynamic programming. These contributions are described in detail

in Chapter 2.

2. I study and analyse the importance of execution rate variations in human

action analysis and recognition. I model the variations in execution rate by

using a composite model. In the composite model, the variations due to ex-

ternal conditions such as illumination, viewpoint and camera parameters are

modeled as affecting the feature extracted while the variations due to exe-

cution rate are modeled explicitly. The probability distribution of execution

rate variations are learnt explicitly and are used in a Bayesian algorithm for

execution rate-invariant action recognition. The details of the algorithm and

some special cases are discussed in Chapter 3.

3. The importance of shape dynamical models is not restricted to the problem of

activity recognition alone. Accurate shape dynamical models may also serve

as priors that enable accurate tracking of subjects in a video. This leads

to a simultaneous tracking and behavior analysis framework. I describe this
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simultaneous tracking and behavior analysis framework in Chapter 4 and

apply this framework to the problem of tracking and analysis of dances of

bees in a hive.

4. Finally, this dissertation also makes a significant contribution to the emerg-

ing field of computational imaging. I propose a theoretical framework for

reversibly modulating 4D light fields using an attenuating mask in the opti-

cal path of a lens based camera. Based on this framework, I present a novel

design to reconstruct the 4D light field from a 2D camera image without

any additional refractive elements as required by previous light field cam-

eras. The patterned mask attenuates light rays inside the camera instead of

bending them, and the attenuation recoverably encodes the rays on the 2D

sensor. The light field can be recovered by rearranging the tiles of the 2D

Fourier transform of sensor values into 4D planes, and computing the inverse

Fourier transform.

1.3 Comparing Shape Sequences

In typical video processing tasks the input is a video of an object or a set of objects

that deform or change their relative poses. The essential information conveyed by

the video can be usually captured by analyzing the boundary (shape) of each

object as it changes with time. The manner in which this shape change occurs

provides clues about the nature of the object and sometimes even about the activity

performed by the object. There are many such cases where the nature of shape

changes of silhouette of a human provides information about the activity performed

by the human. Consider the images shown in Fig:1.1. It is not very difficult to
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Figure 1.1: Sequence of shapes as a person walks frontoparallely

perceive the fact that these represent the silhouette of a walking human. Apart

from providing information about the activity being performed, there are also

several instances when the manner of shape changes provides valuable insights

regarding the identity of the object. Therefore, it is important to be able to learn

the dynamics of shape changes or at the least be able to compute meaningful

distances between such shape sequences. In Chapter 2 we describe algorithms for

comparing shape sequences and evaluate the performance of these algorithms for

the problem of gait-based person identification.

We begin by providing a literature review of the research in shape analysis. The

interested reader may refer to comprehensive surveys of the field [101], [163]. Since

the experimental results are for the problem of gait recognition we also provide a

brief summary of prior work in gait-based person authentication. Special emphasis

is given to understanding the role of shape and kinematics in gait recognition since

our experiments lead to interesting observations on this issue.
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1.3.1 Previous Work in Shape Analysis

Pavlidis [124] categorized shape descriptors into various taxonomies according to

different criteria. Descriptors that use the points on the boundary of the shape

are called external descriptors (or boundary descriptors) [86] [126] [7] while those

that describe the interior of the object are called internal descriptors (or global

descriptors) [17] [71]. Descriptors that represent shape as a scalar or as a feature

vector are called numeric descriptors while those like the medial axis transform

that describes the shape as another image are called non-numeric descriptors.

Descriptors are also classified as information preserving or not based on whether

the descriptor allows accurate lossless reconstruction of a shape.

Global Methods for shape matching

Global shape matching procedures treat the object as a whole and describe it

using some features extracted from the object. The disadvantage of these methods

is that it assumes that the image given must be segmented into various objects

which by itself is not an easy problem. In general, these methods cannot handle

occlusion and are not very robust to noise in the segmentation process. Popular

moment based descriptors of the object such as [71], [89], [28] are global and

numeric descriptors. Goshtasby [62] used the pixel values corresponding to polar

coordinates centered around the center of mass of the shape, the shape matrix, as

a description of the shape. Parui et. al. [123] used relative areas occupied by the

object in concentric rings around the centroid of the objects as a description of

the shape. Blum and Nagel [17] used the medial axis transform to represent the

shape.
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Boundary methods for shape matching

Shape matching methods based on the boundary of the object or on a set of pre-

defined landmarks on the object have the advantage that they can be represented

using a one dimensional function. In the early sixties, Freeman [53] used chain

coding (a method for coding line drawings) for the description of shapes. Arkin

et al. [6] used the turning function for comparing polygonal shapes. Persoon and

Fu [126] described the boundary as a complex function of the arc length. Kashyap

and Chellappa [86] used a circular autoregressive model of the distance from the

centroid to the boundary to describe the shape. The problem with a Fourier

representation [126] and the autoregressive representation [86] is that the local

information is lost in these methods. Srivastava et al. [148] propose differential

geometric representations of continuous planar shapes.

Recently several authors have described shape as a set of finite ordered land-

marks. Kendall [87] and Bookstein [20] provided a mathematical theory for the

description of landmark based shapes. Later, Dryden and Mardia [43] furthered

the understanding of such landmark based shape descriptions. There has been a

lot of work on planar shapes [129] and [56]. Prentice and Mardia [129] provided a

statistical analysis of shapes formed by matched pairs of landmarks on the plane.

They provided inference procedures on the complex plane and a measure of shape

change in the plane. Berthilsson [8] and Dryden [42] describe a statistical theory

for shape spaces. Projective shape and their respective invariants are discussed

in [8] while shape models, metrics and their role in high level vision is discussed

in [42]. The shape context [7] of a particular point in a point set captures the dis-

tribution of the other points with respect to it. [7] uses the shape context for the

problem of object recognition. The softassign Procrustes matching algorithm [131]
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simultaneously establishes correspondences and determines the Procrustes fit.

Dynamics of shapes

The recent explosion in the area of shape discrimination and shape retrieval can

be attributed to their effectiveness in object recognition and shape-based image

retrieval. Inspite of these recent developments there has been very few studies on

the variation of object shape as a cue for object recognition and activity classifi-

cation. Yezzi and Soatto [175] separate the overall motion from deformation in a

sequence of shapes. They use the notion of shape average to differentiate global

motion of a shape from the deformations of a shape. [103] proposes a notion of

dynamic averages for shape sequences using dynamic time warping for alignment.

Vaswani et al. [157] used the dynamics of a configuration of interacting objects

to perform activity classification. They apply the learned dynamics for the prob-

lem of detecting abnormal activities in a surveillance scenario. Recently, Liu and

Ahuja [97] have proposed using autoregressive models on the Fourier descriptors

for learning the dynamics of a ’dynamic shape’. They use this model for perform-

ing object recognition, synthesis and prediction. Refer to [145], [12] and references

therein for the treatment of some related work in the area of tracking subspaces.

Mowbray and Nixon [105] use spatio-temporal Fourier descriptors to model the

shape descriptions of temporally deforming objects and perform gait recognition

experiments using their shape descriptor.

1.3.2 Prior Work in Gait recognition

The study of human gait has recently been driven by its potential use as a biometric

for person identification. Since we evaluate the methods for comparing shape
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sequences on the problem of gait-based human identification, here we outline some

of the prior work in gait-based human identification.

Shape based methods

Niyogi and Adelson [114] obtained spatio-temporal solids by aligning consecutive

images and use a weighted Euclidean distance for recognition. Phillips et al. [128]

provide a baseline algorithm for gait recognition using silhouette correlation. Han

and Bhanu [67] use the gait energy image while Wang et al. use Procrustes shape

analysis for recognition [167]. Foster et al. [51] use area based features. Bobick

and Johnson [19] use activity specific static and stride parameters to perform

recognition. Collins et al. build a silhouette based nearest neighbor classifier [32]

to do recognition. Several researchers [84] [93] have used Hidden Markov Models

(HMM) for the task of gait based identification. Another shape based method for

identifying individuals from noisy silhouettes is provided in [151].

Kinematics based methods

Apart from these image based approaches Cunado et al. [34] model the movement

of thighs as articulated pendulums and extract a gait signature. But in such an

approach robust estimation of thigh position from a video can be very difficult.

[11] provides a method for gait recognition using dynamic affine invariants. In

another kinematics based approach [10], trajectories of the various parameters of a

kinematic model of the human body are used to learn a dynamical system. A model

invalidation approach for recognition using a model similar to [10] is provided in

[104]. Tanawongsuwan and Bobick [150] have developed a normalization prcedure

that maps gait features across different speeds in order to compensate for the
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inherent changes in gait features associated with the speed of walking. All the

above methods have both static (shape) aspects and dynamic features used for gait

recognition. Yet the relative importance of shape and dynamics in human motion

has not been investigated. The experimental results presented in this dissertation

shed some light on this issue.

Role of shape and kinematics in human gait

Johansson [80] attached light displays to various body parts and showed that hu-

mans can identify motion with the pattern generated by a set of moving dots.

Since Muybridge [108] captured photographic recordings of human and animal

locomotion, considerable effort has been made in the computer vision, artificial

intelligence and image processing communities to the understanding of human ac-

tivities from videos. A survey of work in human motion analysis can be found

in [55].

Several studies have been done on the various cues that humans use for gait

recognition. Hoenkamp [69] studied the various perceptual factors that contribute

to the labeling of human gait. Medical studies [107] suggest that there are 24 dif-

ferent components to human gait. If all these different components are considered

then it is claimed that the gait signature is unique. Since it is very difficult to

reliably extract these components several other representations have been used. It

has been shown [35] that humans can do gait recognition even in the absence of

familiarity cues. Cutting and Kozlowski also suggest that dynamic cues like speed,

bounciness and rhythm are more important for human recognition than static cues

like height. Cutting and Proffitt [36] argue that motion is not the simple compi-

lation of static forms and claim that it is a dynamic invariant that determines
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event perception. Moreover, they also found that dynamics was crucial to gender

discrimination using gait. Therefore, it is intuitive to expect that dynamics also

plays a role in person identification though shape information might also be equally

important. Interestingly, Veres et al. [164] recently did a statistical analysis of the

image information that is important in gait recognition and concluded that static

information is more relevant than dynamical information. In the light of such

developments, our experiments explore the importance of shape and dynamics in

human movement analysis from the perspective of computer vision and analyze

their role in existing gait recognition methodologies.

1.4 Modeling Execution Rate Variations for Ac-

tion Recognition

One of the principal disadvantages of traditional methods for comparing shape

sequences is the inability to account for systematic variations in the execution-

rates. In activity recognition, different instances of the same activity may consist

of varying relative speeds at which the various actions are executed, in addition to

other intra- and inter- person variabilities. Most existing algorithms for activity

recognition, even if robust to intra- and inter-personal changes of the same activity,

are extremely sensitive to warping of the temporal axis due to variations in speed

profile. In Chapter 3, we propose a model that can account for variations in feature

due to execution rate variations in vision based human activity recognition. Here,

we provide a brief literature review of some of the related earlier work in human

activity recognition with special emphasis on execution rate variations.
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1.4.1 Prior Work in Activity Recognition:

Activity recognition has attracted tremendous interest in recent years because of its

potential in applications such as surveillance, security, and human body animation.

Activity recognition has been an active research area since the 90’s. The reader

can refer to the different surveys [4] [25] [54] on activity recognition for a detailed

review of previous research in this area. [4] discusses the important issues in an

action recognition system while [25] provides a detailed review of the motion based

approaches. Broadly, action recognition has either been studied using probabilistic

graphical models such as hidden Markov models [172] [21] [165] [70] and dynamic

Bayesian networks [73] [59] [122] [27] [91]. Since our approach is an attempt to

account for the variabilities that affect action recognition, we provide a more in-

depth review of prior work in this area. Recently, [140] has explicitly enumerated

the three most important sources that contribute to variabilities in human activity

videos as a) Viewpoint change, b) Anthropometry of actors and c) Execution rate.

Viewpoint and Anthropometry

Typical approaches for human action recognition begin by extracting features from

a single frame or a small set of frames. These features could be simple motion-

based features such as optical flow [72], and point trajectories [132], or simple

silhouette-based features such as binary background subtracted images [100] or

shape features [160]. Irrespective of the actual feature used for representation,

it becomes extremely important to ensure that these features are then invariant

to viewpoint of the camera and the body stature of the subject (anthropometry).

Most approaches use simple scaling based laws to account for anthropometry while

more sophisticated approaches including affine invariance are required in order to
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account for view invariance.

The maximal points of 3D space-time curvature of tracked points are shown to

be invariant to viewpoint and therefore used as features for action recognition [132].

Assuming the subject is far enough from the camera, an approach to synthesize

side views of subjects from non-side views is proposed and used for view-invariant

gait recognition in [83]. [121] presents an approach for extracting 3D model based

invariants from 2D images and describes how these invariants may be used in an

action recognition algorithm. Another popular approach for action recognition is

to represent the action as a 3D spatio-temporal volume and then incorporate some

measure of view invariance into features extracted from these 3D spatio-temporal

volumes as described in [30] [176] [16] [37]. Shechtman and Irani [139] present an

approach based on space-time motion based correlation to match actions with a

template. Recently, body stature statistics have been used in order to account for

variations in features due to anthropometry [64].

Execution Rate

Inspite of this large body of work in accounting for viewpoint and anthropometry

invariance, very little has been done to account for the variability in the execution

rate of the actors. Results on gait-based person identification shown in [18] indicate

that it is very important to take into account the temporal variations in the person’s

gait. In [158], we presented some preliminary work indicating that accounting for

execution rate enhances recognition performance for action recognition. Typical

approaches for accounting for variations in execution rate are either directly based

on the dynamic time warping (DTW) algorithm [130] or some variation of this

algorithm [158]. A method for computing an average shape for a set of dynamic
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shapes is provided in [103]. A functional curve synchronisation model to estimate

a longitudinal average (referred to as ”functional convex average”) is presented

in [99]. Neither of these methods address the issue of learning the nature of time-

warping transformations for each class from the data. A method to learn the best

class of time-warping transformations for a given classification problem is proposed

in [134].

1.5 Simultaneous Tracking and Behavior Analy-

sis

Accurate shape dynamical models are not only efficient for the problem of recogni-

tion, but they also serve as effective priors that enable accurate tracking of subjects

in video. In Chapter 4, we show how accurate shape dynamical models can be used

for simultaneous tracking and behavior analysis. We apply these principles to the

problem of tracking the position, orientation and the behavior of bees in a hive.

We present a system that can be used to analyze the behavior of insects and,

more broadly, provide a general framework for the representation and analysis of

complex behaviors.

Behavioral research in the study of the organizational structure and communi-

cation forms in social insects like the ants and bees has received much attention

in recent years [166] [144]. Such a study has provided some practical models

for tasks like work organization, reliable distributed communication, navigation

etc [111] [106]. Usually, when such an experiment to study these insects is set up,

the insects in an observation hive are videotaped. The hours of video data are then

manually studied and hand-labeled. This task of manually labeling the video data
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takes up the bulk of the time and effort in such experiments. In this chapter, we

discuss general methodologies for automatic labeling of such videos and provide

an example by following the approach for analyzing the movement of bees in a

bee hive. Contrary to traditional approaches that first track objects in video and

then recognize behaviors using the extracted trajectories, we propose to simultane-

ously track and recognize behaviors. In such a joint approach, accurate modeling

of behaviors act as priors for motion tracking and significantly enhances motion

tracking while accurate and reliable motion tracking enables behavior analysis and

recognition.

1.5.1 Prior Work in Tracking:

There has been significant work on tracking objects in video. Most tracking

methodologies can be classified as either deterministic or stochastic. Deterministic

approaches solve an optimization problem under a prescribed cost function [66] [33].

Stochastic approaches estimate posterior distribution of the position of the object

in the current frame using a Kalman filter or particle filters [24] [39] [75] [98] [179]

[88]. Most of these do not directly adapt well to tracking insects because they

exhibit very specific forms of motion ( for example, bees can turn by a right angle

within 2 or 3 frames). In order to extend such tracking methods, it is important

to consider the anatomy (body parts) of these insects and incorporate both their

structure and the nature of their motions in the tracking algorithm.

The use of prior shape and motion models to facilitate tracking has been re-

cently explored in several works for the problem of human body tracking. The

shape of the human body has been modeled as anything ranging from a simple

stick-figure model [92] to a complex super-quadric model [142]. Several tracking
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algorithms use motion models (like constant velocity model, random walk model

etc) for tracking [75] [88] [13] [179]. There have also been some recent attempts

to model specific motion characteristics of the human body to aid as priors in

tracking [178] [29] [22] [177] [125].

Previous work on tracking insects has concentrated on speed and reliability of

estimating just the position of the center of insects in videos [88] [115]. Inspired by

the studies in human body tracking mentioned above, we explore the effectiveness

of higher level shape and motion models for the problem of tracking insects in

their hives. We believe that such methods lead to algorithms where tracking and

behavior analysis can both be performed simultaneously i.e., while these motion

priors aid reliable tracking, the parameters of the motion models also encode in-

formation about the nature of behavior being exhibited. We model the behaviors

exhibited by the insect using Markov motion models and use these models as pri-

ors in a tracking framework to reliably estimate the location and the orientation

of the various body parts of the insect. We also show that it is possible to make

inferences about the behavior of the insect using the parameters estimated via the

motion model.

1.5.2 Prior Work in Analyzing Bee Dances

There is a great deal of interest, and a significant need for developing automated

methods for (a) detecting dancing bees in video sequences (b) accurately tracking

dance trajectories and (c) extracting the dance parameters described above. But in

most of these cases, the experimenters manually study the videos of bee dances and

annotate the various bee dances. This is usually time-consuming, tiring and error-

prone. Some recent efforts into automating such tasks have started emerging with
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the advances made in vision based tracking systems. [47] suggests the use of Markov

models for identifying certain segments of the dances but this method relies on the

availability of manually labeled data. [88] suggests the use of a Rao-Blackwellized

particle filter to track the center of the bee during dances. The work does not

address the issue of behavioral analysis once tracking is done. Moreover, some of

the parameters of the dances that are essential for decoding the dance like the

orientation of the thorax during the waggle etc., are not estimated directly. [115]

suggests the use of parametric switched linear dynamical system (p-SLDS) for

learning motions that exhibit systematic temporal and spatial variations. They

use the position tracking algorithm proposed by [88] and obtain trajectories of

the bees in the videos. An Expectation-Maximization based algorithm is used for

learning the p-SLDS parameters from these trajectories. Much in the same spirit,

we also model the various behaviors explicitly using hierarchical Markov models

(which can be viewed as SLDS). Nevertheless, while position tracking and behavior

interpretation are completely independent in their system, here, we close the loop

between position tracking and behavior inference thereby enabling persistent and

simultaneous tracking and behavior analysis. In such a ”simultaneous tracking and

behavioral analysis approach” the behavior modeling enhances tracking accuracy

while the tracking results enable accurate interpretation of behaviors.

1.6 Coded Aperture Imaging for Light-Field Cap-

ture

Another contribution of this dissertation is to the field of computational imaging.

The current trend in computational imaging is to capture more optical information
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at the time of capture to allow greater post-capture image processing abilities. In

this regard, we are interested in the capture of light-fields as opposed to traditional

2D images. Light fields characterizes the irradiance of each ray in space using a 4

dimensional twin plane parameterization (Levoy and Hanrahan [95] and Gortler et.

al. [61]). By capturing a light field of the scene, all information content about the

scene appearance can be obtained. Digital cameras, however, are able to sample

only a 2-dimensional projection of this light-field, as sensors are limited to be 2-

dimensional surfaces and are typically isotropic with respect to direction of incident

rays.

In order to capture the information content in the entire light-field, it is neces-

sary to modulate/transform it so that the information in the angular dimensions

can be sampled by the sensor. Several optical elements perform this modulation

in previously proposed capture devices. A straightforward way to sample angular

dimensions is viewpoint sampling. This can achieved by using a dense array of

cameras, one for each viewpoint as in [171]. Such dense camera arrays, however,

are impractical for consumer applications since they introduce a host of synchro-

nization and networking issues apart from their sheer bulk. In Chapter 5, we

propose ’non-refractive’ modulators and show that these modulators are actually

a very powerful class of modulators that can be used to design many of the opti-

cal devices that were previously designed using precise refractive modulators like

microlens arrays. In particular, we show a design of a light-field camera that uses

just a patterned mask inside a traditional camera. The pattern on the mask acts

as a powerful 4D modulator that modulates the incoming light-field and enables

multiplexing the 4D light-field onto the 2D sensor.
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1.6.1 Related Work

Light Field Acquisition: Integral Photography [96] was first proposed almost a

century ago to undo the directional integration of all rays arriving at one point on

a film plane or sensor, and instead measure each incoming direction separately to

estimate the entire 4D function. For a good survey of these first integral cameras

and its variants, see [79,102,117]. The concept of the 4D light field as a represen-

tation of all rays of light in free-space was proposed by Levoy and Hanrahan [95]

and Gortler et al [61]. While both created images from virtual viewpoints, Levoy

and Hanrahan [95] also proposed computing images through a virtual aperture,

but a practical method for computing such images was not demonstrated until

the thorough study of 4D interpolation and filtering by Isaksen et al. [74]. Simi-

lar methods have also been called synthetic aperture photography in more recent

research literature [94,153].

To capture 4D radiance onto a 2D sensor, following two approaches are popular.

The first approach uses an array of lenses to capture the scene from an orderly

grid of viewpoints, and the image formed behind each lens provides an orderly

grid of angular samples to provide a result similar to integral photography [77,96].

Instead of fixed lens arrays, Wilburn et al. [171] perfected an optically equivalent

configuration of individual digital cameras. Georgiev et al. [57] and Okano et

al. [118] place an array of positive lenses (aided by prisms in [57]) in front of a

conventional camera. The second approach places a single large lens in front of an

array of micro-lenses treating each sub-lens for spatial samples. These plenoptic

cameras by Adelson et al. [2] and Ng et al. [112] form an image on the array

of lenslets, each of which creates an image sampling the angular distribution of

radiance at that point. This approach swaps the placement of spatial and angular
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samples on the image plane. Both these approaches trade spatial resolution for

the ability to resolve angular differences. They require very precise alignment of

microlenses with respect to sensor.

Our mask-based heterodyne light field camera is conceptually different from

previous camera designs in two ways. First, it uses non-refractive optics, as op-

posed to refractive optics such as microlens array [112]. Secondly, while previous

designs sample individual rays on the sensor, mask-based design samples linear

combination of rays in Fourier space. Our approach also trades spatial resolu-

tion for angular resolution, but the 4D radiance is captured using information-

preserving coding directly in the Fourier domain. Moreover, we retain the ability

to obtain full resolution information for parts of the scene that were in-focus at

capture time.

Coded Imaging: In astronomy, coded aperture imaging [141] is used to over-

come the limitations of a pinhole camera. Modified Uniformly Redundant Arrays

(MURA) [63] are used to code the light distribution of distant stars. A coded

exposure camera [133] can preserve high spatial frequencies in a motion-blurred

image and make the deblurring process well-posed. Other types of imaging modu-

lators include mirrors [48], holograms [149], stack of light attenuating layers [180]

and digital micro-mirror arrays [109]. Previous work involving lenses and coded

masks is rather limited. Hiura & Matsuyama [68] placed a mask with four pin

holes in front of the main lens and estimate depth from defocus by capturing mul-

tiple images. However, we capture a single image and hence lack the ability of

compute depth at every pixel from the information in defocus blur. Nayar & Mit-

sunaga [110] place an optical mask with spatially varying transmittance close to

the sensor for high dynamic range imaging.
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Wavefront Coding [40, 41, 154] is another technique to achieve extended

Depth of Field (DOF) that use aspheric lenses to produce images with a depth-

independent blur. While their results in producing extended depth of field images

are compelling, their design cannot provide a light field. Our design provides

greater flexibility in image formation since we just use a patterned mask apart

from being able to recover the light field. Passive ranging through coded apertures

has also been studied in the context of both wavefront coding [81] and traditional

lens based system [46].

Several deblurring and deconvolution techniques have also been used to recover

higher spatial frequency content. Such techniques include extended DOF images

by refocusing a light field at multiple depths and applying the digital photomontage

technique (Agarwala et al. [3]) and fusion of multiple blurred images ( [65]).

1.7 Organization of the Thesis

• Chapter 2 introduces the problem of comparing shape sequences and presents

parametric and non-parametric algorithms for comparing shape sequences.

The presented algorithms are rigorously evaluated on publicly available gait

based person identification datasets. Interesting observations about the role

of shape and kinematics in gait-based person identification are also made.

• Chapter 3 motivates the need to model execution rate variations in order

to perform effective human activity recognition. A model to learn the sys-

tematic execution rate variations in a class specific manner and a Bayesian

algorithm to perform activity recognition in the presence of such execution-

rate variations are presented. A special case which leads to a fast dynamic
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programming based inference algorithm is also highlighted.

• Chapter 4 describes how accurate shape dynamical models may be used

as effective priors for the problem of simultaneous tracking and behavior

analysis. A system is presented where complex behaviors are modeled as

hierarchical markov motion models and these act as priors in a particle filter

based tracking algorithm. These principles are then applied to the problem

of tracking and analysing the behavior of bees in a hive.

• Chapter 5 describes a new theoretical framework for reversibly modulating

4D light fields using an attenuating mask in the optical path of a lens based

camera. Based on this framework, a novel design to reconstruct the 4D light

field from a 2D camera image without any additional refractive elements as

required by previous light field cameras is proposed.

• Finally, Chapter 6 discusses the conclusions of this thesis and postulates

future directions of study.
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Chapter 2

Comparing Shape Sequences

In typical video processing tasks the input is a video of an object or a set of objects

that deform or change their relative poses. The essential information conveyed by

the video can be usually captured by analyzing the boundary (shape) of each

object as it changes with time. The manner in which this shape change occurs

provides clues about the nature of the object and sometimes even about the activity

performed by the object. Consider the manner in which the shape of the lip changes

when we speak. The manner in which the shape of the lip changes during speech

provides significant information about the actual words that are being spoken.

Consider the two words ‘arrange’ and ‘ranger’. If we take discrete snapshots of the

shape of the lip during each of these words we see that the two sets of snapshots will

be identical(or almost identical) though the ordering of the discrete snapshots will

be very different for these two utterances. Therefore any method that inherently

does not learn/use the dynamics information of this shape change will declare

that these two utterances are very close to each other while in reality these are

very different words. Therefore, in cases such as this, where shape change is

critical to recognition, it is important to consider the entire shape sequence, i.e.,
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the shape sequence is more important than the individual shapes at discrete time

instants. There are many such cases where the nature of shape changes of silhouette

of a human provides information about the activity performed by the human.

Consider the images shown in Fig:2.1. It is not very difficult to perceive the fact

that these represent the silhouette of a walking human. Apart from providing

information about the activity being performed, there are also several instances

when the manner of shape changes provides valuable insights regarding the identity

of the object. The discrimination between two such classes is significantly improved

if we take the manner of shape changes into account. Thus it is important to be

able to learn the dynamics of shape changes or at the least to be able to compute

meaningful distances between such shape sequences. We describe both parametric

and non-parametric methods to compute meaningful distance measures between

two such sequences of deforming shapes. The methods provided are generic and

can be used to characterize the time evolution of any set of landmark points, not

necessarily on the silhouette of the object.

2.1 Kendall’s Shape Theory - Preliminaries

2.1.1 Definition of Shape

“Shape is all the geometric information that remains when location, scale and

rotational effects are filtered out from the object” [43]. We use Kendall’s statisti-

cal shape as the shape feature. [43] provides a description of the various tools in

statistical shape analysis. Kendall’s representation of shape describes the shape

configuration of k landmark points in an m-dimensional space as a k×m matrix

containing the coordinates of the landmarks. In our analysis we have a 2 dimen-
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Figure 2.1: Sequence of shapes as a person walks frontoparallely

sional space and therefore it is convenient to describe the shape vector as a k

dimensional complex vector.

The binarized silhouette denoting the extent of the object in an image is ob-

tained. A shape feature is extracted from this binarized silhouette. This feature

vector must be invariant to translation and scaling since the objects identity should

not depend on the distance of the object from the camera. So any feature vector

that we obtain must be invariant to translation and scale. This yields the pre-

shape of the object in each frame. Pre-shape is the geometric information that

remains when location and scale effects are filtered out. Let the configuration of

a set of k landmark points be given by a k-dimensional complex vector containing

the position of the landmarks. Let us denote this configuration as X. Centered

pre-shape is obtained by subtracting the mean from the configuration and then
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scaling to norm one. The centered pre-shape is given by

Zc =
CX

‖ CX ‖ , where C = Ik −
1

k
1k1

T
k , (2.1)

where Ik is a k×k identity matrix and 1k is a k dimensional vector of ones.

2.1.2 Distance between shapes

The pre-shape vector that is extracted by the method described above lies on a

sphere. Therefore a concept of distance between two shapes must include the

non-Euclidean nature of the shape space. Several distance metrics have been de-

fined in [43]. Consider two complex configurations X and Y with corresponding

corresponding preshapes α and β. The full Procrustes distance between the config-

urations X and Y is defined as the Euclidean distance between the full Procrustes

fit of α and β. Full Procrustes fit is chosen so as to minimize

d(Y,X) =‖ β − αsejθ − (a+ jb)1k ‖, (2.2)

where s is a scale, θ is the rotation and (a+ jb) is the translation. Full Procrustes

distance is the minimum Full Procrustes fit i.e.,

dF (Y,X) = inf
s,θ,a,b

d(Y,X). (2.3)

We note that the preshapes are actually obtained after filtering out effects of trans-

lation and scale. Hence, the translation value that minimizes the full Procrustes

fit is given by (a+ jb) = 0, while the scale s = |α∗β| is very close to unity (where

∗ denotes the complex conjugate transpose). The rotation angle θ that minimizes

the Full Procrustes fit is given by θ = arg(|α∗β|).

The partial Procrustes distance between configurations X and Y is obtained by

matching their respective preshapes α and β as closely as possible over rotations,
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but not scale. So,

dP (X,Y ) = inf
ΓǫSO(m)

‖ β − Γα ‖ . (2.4)

It is interesting to note that the optimal rotation θ is the same whether we compute

the full Procrustes distance or the partial Procrustes distance. The Procrustes

distance ρ(X,Y ) is the shortest great circle distance between α and β on the

preshape sphere. The minimization is done over all rotations. Thus ρ is the

smallest angle between complex vectors α and β over rotations of α and β. The

three distance measures defined above are all trigonometrically related as

dF (X,Y ) = sin ρ, (2.5)

dP (X,Y ) = 2 sin(
ρ

2
). (2.6)

When the shapes are very close to each other there is very little difference between

the various shape distances. In our work we have used the various shape distances

to compare the similarity of two shape sequences and obtain recognition results

using these similarity scores. Our experiments show that the choice of shape-

distance does not alter recognition performance significantly for the problem of

gait recognition since the shapes of a single individual lie very close to each other.

We show the results corresponding to the partial Procrustes distance in all our

plots.

2.1.3 The tangent space of the shape space

The shape tangent space is a linearization of the spherical shape space around a

particular pole. Usually the Procrustes mean shape of a set of similar shapes(Yi)

is chosen as the pole for the tangent space coordinates. The Procrustes mean

shape(µ) is obtained by minimizing the sum of squares of full Procrustes distances

27



from each shape Yi to the mean shape, i.e.,

µ = arg inf
µ

Σd2
F (Yi, µ). (2.7)

The pre-shape formed by k points lie on a k− 1 dimensional complex hypersphere

of unit radius. If the various shapes in the data are close to each other then

these points on the hypersphere will also lie close to each other. The Procrustes

mean of this dataset will also lie close to these points. Therefore the tangent

space constructed with the Procrustes mean shape as the pole is an approximate

linear space for this data. The Euclidean distance in this tangent space is a good

approximation to the various Procrustes distances dF , dP and ρ in shape space in

the vicinity of the pole. The advantage of the tangent space is that this space is

Euclidean.

The Procrustes tangent coordinates of a preshape α is given by

v(α, µ) = αα∗µ− µ|α∗µ|2. (2.8)

where µ is the Procrustes mean shape of the data.

2.2 Comparison Of Shape Sequences

In this section we provide a method based on dynamic time warping to compute

distances between shape sequences. We also provide methods based on autore-

gressive and autoregressive moving average models to learn the dynamics of these

shape changes and use the distance measures between models as a measure of sim-

ilarity between these shape sequences. The methods described here can be used

generically for any landmark based description of shapes, not just to silhouettes.
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2.2.1 Non-Parametric method for comparing shape sequences

Consider a situation where there are two shape sequences and we wish to compare

how similar these two shape sequences are. We may not have any other specific

information about these sequences and therefore any attempt at modeling these

sequences is difficult. These shape sequences may be of differing length(number

of frames) and therefore in order to compare these sequences we need to perform

time normalization(scaling). A linear time scaling would be inappropriate because

in most scenarios this time scaling would be inherently non-linear. Dynamic time

warping(DTW) which has been successfully used by the speech recognition [130]

community is an ideal candidate for performing this non-linear time normalization.

However, certain modifications to the original DTW are also necessary in order to

account for the non-Euclidean structure of the shape space.

2.2.2 Dynamic time warping

Dynamic time warping is a method for computing a non-linear time normaliza-

tion between a template vector sequence and a test vector sequence. These two

sequences could be of differing lengths. The algorithm which is based on dynamic

programming computes the best non-linear time normalization of the test sequence

in order to match the template sequence, by performing a search over the space

of all allowed time normalizations. The space of all time normalizations allowed

is cleverly constructed using certain temporal consistency constraints. We list the

temporal consistency constraints that we have used in our implementation of the

DTW below.

• End point constraints: The beginning and the end of each sequence is rigidly

fixed. For example if the template sequence is of length N and the test
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sequence is of length M then only time normalizations that map the first

frame of the template to the first frame of the test sequence and also map

the Nth frame of the template sequence to the Mth frame of the test sequence

are allowed.

• The warping function(mapping function between the test sequence time to

the template sequence time) should be monotonically increasing. In other

words the sequence of ’events’ in both the template and the test sequences

should be the same.

• The warping function should be continuous.

Dynamic programming is used to efficiently compute the best warping function

and the global warping error.

Pre-shape, as we have already discussed lies on a spherical manifold. The

spherical nature of the shape-space must be taken into account in the implemen-

tation of the DTW algorithm. This implies that during the DTW computation

the local distance measure used must take into account the non-Euclidean nature

of the shape-space. Therefore, it is only meaningful to use the Procrustes shape

distances described earlier. It is important to note that the Procrustes distance

is not a distance metric since it is not commutative. Moreover, the nature of the

definition of constraints make the DTW algorithm non-commutative even when

we use a distance metric for the local feature error. If A(t) and B(t) are two shape

sequences then, we define the distance between these two sequences D(A(t), B(t))

as

D(A(t), B(t)) = DTW (A(t), B(t)) +DTW (B(t), A(t)); (2.9)
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where DTW (A(t), B(t)) = 1/T
∑T

t=1 d(A(f(t)), B(g(t))) (f and g being the opti-

mal warping functions). Such a distance between shape sequences is commutative.

The isolation property i.e., D(A(t), B(t)) = 0 iff A(t) = B(t), is enforced by pe-

nalizing all non-diagonal transitions in the local error metric.

2.2.3 Parametric models for shape sequences

In several situations, it is very useful to model the shape deformations over time.

If such a model could be learned either from the data or from the physics of the

actual scenario, then it would help significantly in problems such as identification

and for synthesizing shape sequences. We describe both autoregressive(AR) and

autoregressive and moving average(ARMA) models on tangent space projections

of the shape. We describe methods to learn these models from sequences and

compute distances between models in this parametric setting. Our approach for

parametric modeling differs from that of [97] in two important ways. The shape

feature on which we build parametric models preserves locality while the Fourier

descriptors that they use is a global shape feature. Therefore our method can

in principle capture the dynamics of shape sequences locally and is better suited

for applications where different local neighborhoods of the shape exhibit different

dynamics. We use parametric modeling for modeling human gait, a very specific

example where different local neighborhoods(different parts of the body) exhibit

different dynamics. Moreover, we also extend the parametric modeling from AR

to the ARMA model. The advantage of the ARMA model is that it can be used

to characterize systems with both poles and zeros while the AR model can be used

to characterize systems with zeros only.
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2.2.4 AR Model on tangent space

The AR model is a simple time-series model that has been used very successfully

for prediction and modeling especially in speech. The probabilistic interpretation

of the AR model is valid only when the space is Euclidean. Therefore, we build an

AR model on the tangent space projections of the shape sequence. Once the AR

model is learned we can use this either for synthesis of a new shape sequence or for

comparing shape sequences by computing distances between the model parameters.

The time series of the tangent space projections of the pre-shape vector of each

shape is modeled as an AR process. Let, sj, j = 1, 2, ...M be the M such sequences

of shapes. Let us denote the tangent space projection of the sequence of shape sj

by αj. Now, the AR model on the tangent space projections is given by,

αj(t) = Ajαj(t− 1) + w(t) (2.10)

where, w is a zero mean white Gaussian noise process and Aj is the transition

matrix corresponding to the jth sequence. For convenience and simplicity Aj is

assumed to be a diagonal matrix.

For all the sequences in the gallery, the transition matrices are obtained and

stored. Given a probe sequence, the transition matrix for the probe sequence

is computed. The distances between the corresponding transition matrices are

added to obtain a measure of the distance between the models. If A and B (for

j = 1, 2, ...N) represent the transition matrices for the two sequences, then the

distance between the models is defined as D(A,B)

D(A,B) = ||Aj −Bj||F , (2.11)

where ||.||F denotes the Frobenius norm. The model in the gallery that is closest

to the model of the given probe is chosen as the correct identity.
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2.2.5 ARMA Model

We pose the problem of learning the nature of a shape sequence as one of learning

a dynamical model from shape observations. We also regard the problem of shape

sequence based recognition as one of computing the distances between the dynam-

ical models thus learned. The dynamical model is a continuous state, discrete

time model. Since the parameters of the models lie in a non-Euclidean space, the

distance computations between the models is non-trivial. Let us assume that the

time-series of tangent projections of shapes(about its mean as the pole) is given

by α(t), t = 1, 2, , , , , τ . Then an ARMA model is defined as [23] [10]

α(t) = Cx(t) + w(t);w(t) ∼ N(0, R) (2.12)

x(t+ 1) = Ax(t) + v(t); v(t) ∼ N(0, Q). (2.13)

Also, let the cross correlation between w and v be given by S. The parameters of

the model are given by the transition matrix A and the state matrix C. We note

that the choice of matrices A,C,R,Q, S is not unique. However, we can transform

this model to the “innovation representation” [120] which is unique.

2.2.6 Learning the ARMA model

We use the tools from the system identification literature to estimate the model

parameters.The estimation is closed form and therefore simple to implement. The

algorithm is described in [120] and [143]. Given observations α(1), α(2), .....α(τ),

we have to learn the parameters of the innovation representation given by Â, Ĉ

and K̂(K̂:Kalman gain matrix of the innovation representation [120]). Note that

in the innovation representation, the state covariance matrix limt→∞E[x(t)xT (t)]

is asymptotically diagonal. Let [α(1)α(2)α(3).....α(τ)] = UΣV T be the singular
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value decomposition of the data. Then

Ĉ(τ) = U (2.14)

Â = ΣV TD1V (V TD2V )−1Σ−1 (2.15)

where D1 = [0 0;Iτ−1 0] and D2 = [Iτ−1 0;0 0].

2.2.7 Distance between ARMA Models

Subspace angles [58] between two ARMA models are defined as the principal an-

gles (θi, i = 1, 2, ....n) between the column spaces generated by the observability

spaces of the two models extended with the observability matrices of the inverse

models [31]. The subspace angles between two ARMA models ([A1, C1, K1] and

[A2, C2, K2] can be computed by the method described in [31]. Using these sub-

space angles θi, i = 1, 2, ...n, three distances, Martin distance(dM), gap distance(dg)

and Frobenius distance(dF ) between the ARMA models are defined as follows:

d2
M = ln

n
∏

i=1

1

cos2(θi)
, (2.16)

dg = sin θmax, (2.17)

d2
F = 2

n
∑

i=1

sin2 θi. (2.18)

The various distance measures do not alter the results significantly. We show the

results using the Frobenius distance(d2
F ).

2.3 Note on the limitations of Proposed Tech-

niques

The parametric models AR and ARMA were both done on the tangent space of

the shape manifold with the mean shape of the sequence being the pole of the
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tangent space. In problems like gait analysis, where the several shapes in the

sequence lie close to each other, this would be sufficient. But to model sequences

where the shapes vary drastically within a sequence, it might be necesssary to

develop tools to translate the tangent vectors appropriately so that modeling is

performed on a tangent space that varies with time. Preliminary experiments in

this direction indicate that performing such complex non-stationary modeling for

a single activity like gait leads to over-fitting while for studying multiple activities

this is significantly helpful.

The AR model for shape sequences due to its inherent simplicity might not

be able to capture all the temporal structure present in activities such as gait.

But, as is shown in [97], it can handle stochastic shape sequences with little or

no spatial structure. In fact, [97] also used a similar AR model as a generative

model for the synthesis of a fire boundary sequence. The ARMA model is better

able to capture the structure in motion patterns such as gait since the ”C” matrix

encodes such structural details. The DTW algorithm can also handle such highly

structured shape sequences such as gait, but is not directly interpretable as a

generative model.

For the AR and ARMA models the shapes are initially projected to the tangent

spaces of their respective mean shape. Models are fitted in these tangent spaces

and their parameters are learnt. If the mean shapes for different sequences are

different, then these parameters are modeling systems in two different subspaces.

This fact must be borne in mind while computing distances between models. The

ARMA model elegantly does this by invoking the theory of comparing models on

different subspaces from system identification literature. Thus, it is able to handle

modeling on different subspaces. (Note that the C matrix encodes the subspace

35



and is used in the ARMA distance computation). The AR model does not account

for modeling in different subspaces and therefore produces meaningful distance

measures only when the two mean shapes are similar. The DTW method works

directly on the shape manifold and not on the tangent space. Therefore, the DTW

is also general and does not suffer from the above-mentioned limitation of the AR

model.

2.4 Experiments and Conclusions

We describe the various experiments we designed using the algorithms previously

discussed in order to study gait-based human recognition. We also show an exten-

sion of the same analysis for the problem of activity recognition. The goals of the

experiments were:

1. Show the efficacy of our algorithms in comparing shape sequences by applying

it to the problem of automated gait recognition.

2. Study the role of shape and kinematics in automated gait recognition algo-

rithms.

3. Make a similar study on the role of shape and kinematics for activity recog-

nition.

Continuing our approach in [161] we use a purely shape based technique called the

Stance Correlation to study the role of shape in automated gait recognition.

The algorithms for comparing shape sequences were applied on two standard

databases. The USF database [128] consists of 71 people in the Gallery1. Vari-

1A more expanded version is available on which we haven’t yet experimented.However we do

not expect our conclusions to alter significantly.
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ous covariates like camera position, shoe type, surface and time were varied in a

controlled manner to design a set of challenge experiments2 [128]. The results are

evaluated using cumulative match scores3(CMS) curves and the identification rate.

The CMU database [32] consists of 25 people. Each of the 25 people perform four

different activities(slow walk, fast walk, walking on an inclined surface and walk-

ing with a ball). For the CMU database we provide results for recognition both

within an activity and across activities. We also provide some results on activity

recognition on this dataset.

2.4.1 Feature Extraction

Given a binary image consisting of the silhouette of a person, we need to extract

the shape from this binary image. This can be done either by uniform sampling

along each row or by uniform arc-length sampling. In uniform sampling, landmark

points are obtained by identifying the edges of the silhouette in each row of the

image. In uniform arc length sampling, the silhouette is initially interpolated

using critical landmark points. Uniform sampling on this interpolated silhouette

provides us with the uniform arc-length sampling landmarks. Once the landmarks

are obtained, the shape is extracted using the procedure described in 2.1. The

procedure for obtaining shapes from the video sequence is graphically illustrated

in Figure 2.2. Note that each frame of the video sequence maps to a point on the

spherical(hyper-spherical) shape manifold.
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Figure 2.2: Graphical illustration of the sequence of shapes obtained during gait
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Figure 2.3: Cumulative Match Scores on the USF gait database using (a)Dynamic

Time Warping on shape space and (b)ARMA model on tangent space

2.4.2 Results on the USF Database

On the USF database we conducted experiments on recognition performance us-

ing these methods- Stance Correlation, DTW on shape space, Stance based AR(a

slight modification of the AR model [161]) and ARMA model. Gait recognition

experiments were designed for challenge experiments A-G. These experiments fea-

tured and tested the recognition performance against various covariates like camera

angle, shoe type, surface change etc. Refer to [128] for a detailed description of the

various experiments and the covariates in these experiments. Figure 2.3 shows the

CMS curves for the challenge experiments A-G using the Dynamic time warping

and the ARMA model. The recognition performance of the DTW based method is

comparable to the state of art algorithms that have been tested on this data [84].

The performance of the ARMA model is lower since human gait is a very complex

action and the ARMA model is unable to capture all these details.

2Challenge Experiments:Probes A-G in increasing order of difficulty.

3Plot of percentage of recognition Vs rank.
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Figure 2.4: Results on the USF Gait database. (a)Average CMS curves(Percentage

of Recognition Vs Rank) and (b)Bar Diagram comparing the identification rate

In order to understand the significance of shape and kinematics in gait recog-

nition, we ran the same experiments with other purely shape and purely dynam-

ics based methods as described in [161]. Figure 2.4(a) shows the average CMS

curves(average of the 7 Challenge experiments:Probes A-G) for the various shape

and kinematics based methods.

The following conclusions are drawn from Figure 2.4(a):

• The average CMS curve of the Stance Correlation method shows that shape with-

out any kinematic cues provides recognition performance below baseline. The

baseline algorithm is image correlation based and can be found in [128].

• The average CMS curve of the DTW method is better than that of Stance Corre-

lation and close to baseline.

• The improvement in the average CMS curve in the DTW over that of the Stance

Correlation method can be attributed to the presence of this implicit kinematics,

because the algorithm tries to synchronize two warping paths.
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• Both methods based on kinematics alone(Stance based AR and ARMA model) do

not perform as well as the methods based on shape.

• The results support our belief that kinematics helps to boost recognition perfor-

mance but is not sufficient as a stand-alone feature for person identification.

• The performance of the ARMA model is better than that of the Stance based

AR model. This is because the observation matrix(C) encodes information about

the features in the image, in addition to the dynamics encoded in the transition

matrix(A).

• Similar conclusions may be obtained by looking at the CMS curves for the 7

experiments(Probes A-G) separately. We have shown the average CMS curve for

simplicity.

2.4.3 Results using Joint angles

In this section we describe experiments designed to verify the fact that our inference

about the role of kinematics in gait recognition was not dependent on the feature

that we chose for representation (Kendall’s statistical shape). In order to test

this, we performed some experiments on the actual physical parameters that are

observable during gait i.e., the joint angles at the various joints of the human body.

We used the manually segmented images provided in the USF dataset for these

experiments. We inferred the angles (angle in the image plane) of eight joints

(both shoulders, both Elbows, both Hips and both Knees) as the subjects walked

frontoparallel to the camera. We used these angles (which are physically realizable

parameters) as the features representing the kinematics of gait. We performed

recognition experiments using the DTW directly on this feature. Figure 2.5(a)

shows the CMS curves for three probes for which the manual segmented images

41



were available. The recognition performance is comparable to purely kinematics

based methods using our shape feature vector (refer to Figure 2.3(b) ).

We also generated synthetic images of an individual walking using a truncated

elliptic cone model for the human body and using the joint angles extracted from

the manually segmented images. Figure 2.6 shows some sample images that were

generated using this truncated elliptic cone model. We also performed recogni-

tion experiments on this simulated data using the DTW based shape sequence

analysis method described in section 4.1. Figure 2.5(b) shows the CMS curves for

this experiment. The results of these experiments are consistent with the experi-

ments described earlier (2.3(b) and 2.5(a)), indicating that for the purposes of gait

recognition, the amount of discriminability provided by the dynamics of the shape

feature is similar to the discriminability provided by the dynamics of physical pa-

rameters like joint angles. This means that there is very little (if any) loss in using

the dynamics of the shape feature instead of dynamics of the human body parts.

Therefore, our inferences about the role of kinematics will most probably remain

unaffected irrespective of the features used for representation.

2.4.4 Results on the CMU Dataset

The CMU dataset has 25 subjects performing four different activities- fast walk,

slow walk, walking with a ball and walking on an inclined plane. We perform

an experiment on the recognition performance(i.e., identification rate) using two

methods - the Stance Correlation(pure shape) method and ARMA model. The

results on the CMU dataset are shown in Table 1.
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Figure 2.5: CMS curve using (a) DTW on joint angles and (b) Shape sequence

DTW on simulated data

Figure 2.6: Sequence of silhouettes simulated using joint angles and truncated

elliptic cone human body model
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Activity Slow Fast Walk with Inclined

Walk Walk Ball plane

Slow Walk 100(100) 80(72) 48(64) 48

Fast Walk 84(75) 100(100) 48(60) 28

Walk with Ball 68(70) 48(50) 92(100) 12

Inclined plane 32 44 20 92

Table 2.1: Identification rates on the CMU Data: Numbers outside braces are

obtained using Stance Correlation while those within the braces are obtained using

the ARMA model.

2.5 Conclusions and Future Work

We have proposed novel methods for comparing two stationary shape sequences

and shown their applicability to problems like gait recognition and activity recog-

nition. The non-parametric method, using DTW is applicable to situations where

there is very little domain knowledge and therefore parametric modeling of shape

sequences is difficult. We have also used parametric AR and ARMA models on

the tangent space projections of a shape sequence. The ability of these methods

to serve as pattern classifiers for sequences of shapes has been shown by applying

them to the problem of gait and activity recognition. We are currently working

on building complex parametric models that capture more details about the ap-

pearance and motion of objects and models that can handle non-stationary shape

sequences. We are also attempting to build models on the shape space instead of

working with the tangent space projections. Moreover, our experiments on gait

recognition lead us to make an interesting observation about the role of shape

and kinematics in human movement analysis from video. The experiments on gait
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recognition indicate that body shape is a significantly more important cue than

kinematics for automated recognition, but using the kinematics of human body

improves the person identification capability of shape based recognition systems.
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Chapter 3

Modeling Execution Rate

Variations for Action Recognition

Pattern Recognition in videos is gaining momentum in recent years because of its

applicability to several problems such as gait-based person identification, activity

modeling and recognition, video-based face recognition etc. Pattern recognition

in video streams is often a very challenging task because of the multitude of spa-

tiotemporal changes that can occur in a video capturing the exact same event.

Several algorithms and methods account for the spatial variations due to changes

in lighting, pose and appearance of individual objects. Nevertheless, very little

work has been done to account for the complex temporal variations that occur in

videos. For example, in activity recognition, different instances of the same activity

may consist of varying relative speeds at which the various actions are executed,

in addition to other intra- and inter- person variabilities. Most existing algorithms

for activity recognition are not very robust to intra- and inter-personal changes of

the same activity, and are extremely sensitive to warping of the temporal axis due

to variations in speed profile.

46



In this chapter, we study the variations due to execution rate in a systematic

way. We model an action sequence as a composition of these two sources of vari-

ability - variability on the feature space and variability due to execution rate. By

keeping the model on the feature space completely independent of the model on

the space of execution rates, we are then able to exploit any of the above mentioned

viewpoint invariant features in our method. Therefore, as more sophisticated fea-

tures become available our model will be able to exploit the characteristics of those

features while retaining the ability to deal with variations in execution rate. We

explicitly model execution rates and derive a Baysian classification algorithm for

action recognition. If the chosen features are viewpoint and anthropometry in-

variant, then the resulting algorithm becomes invariant to all the three significant

modes of variations - viewpoint, anthropometry and execution rate. Moreover,

since the model developed is general and not necessarly restricted to action recog-

nition, we believe that similar models may be used for other applications which

require rate-invariance.

Motivation: Consider the INRIA iXmas activity recognition dataset. Shown

in Figure 3.1(L) is the distribution of the number of frames in different executions

of the same activity for four distinct activities. Figure 3.1(L) clearly shows that

for the same activity the rate of execution and consequently the number of frames

during the execution varies significantly. Moreover, in most realistic scenarios this

temporal warping might also be inherently non-linear making simple resampling

methods ineffective. This implies that for uncontrolled scenarios the variations

due to temporal warpings could be even more significant. Ignoring this temporal

warping might lead to structural inconsistencies apart from providing poor recog-

nition performance. The sequence of images shown in the first two rows of Figure
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Figure 3.1: (L) Histogram of the number of frames in different executions of the

same action in the INRIA iXmas dataset. The histograms for 4 different activities

are shown. (a) Cross Arms (b) Sit Down (c) Get Up (d) Wave hands. (R) Row 1,

Row 2: Two instances of the same activity. Row 3: A simple average sequence.

Row 4:Average Sequence after accounting for time warps.

3.1(R) correspond to two different instances of the same individual performing the

same activity. There is an obvious temporal warping between the two sequences.

If this temporal warping is ignored, the distance between these two sequences will

be large, leading to incorrect matching. Moreover, if we are looking for some sta-

tistical description of the activity like an average sequence, ignoring the temporal

warping could lead to structural inconsistencies like the presence of four arms and

two heads in the average sequence, shown in the third row of Figure 3.1(R). If we

do account for temporal warping then such inconsistencies are avoided and the dis-

tance between the two sequences is rightly small. The fourth row shows a typical

average sequence obtained by our method after accounting for time warping.

Why should the distribution of time-warps be class-specific? To answer this, let

us consider the activity of ‘jumping’. The subject may in principle speed up certain
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portions of the activity relative to the others. But, during the actual moments the

subject has no contact with the ground, the only external forces on the subject are

those from gravitation and therefore, much as he/she might attempt to, he/she

will not be able to change the execution speed during such times. There are thus

physical, aesthetic and structural constraints that force different activities to have

different warping functions. The constraints themselves vary with each activity

and therefore the eventual probability distribution on warping functions varies

from one activity to another.

3.0.1 Contributions of this chapter

• We propose a systematic generative model for activities that accounts for

variations in speed profile of an activity. The model is composed of a nominal

activity trajectory and a probability distribution on the function space of

temporal warpings capturing the permissible activity-specific time warping

transformations. We show how one can efficiently impose a Riemannian

metric and perform exact and efficient statistical inference efficiently and

correctly using the square-root density form of the time warp functions. We

then derive a Bayesian solution for a rate-invariant classification of activities.

• We highlight a special case of this approach where we assume a uniform

distribution on a convex subset of the warping functions and derive compu-

tationally efficient algorithms for learning and inference.

3.0.2 Outline of the chapter

We begin by providing a formal statement of the problem addressed in this chapter

in Section 3.1. Section 3.2 describes the geometry of the space of time warps

49



and presents algorithms for computing geodesics, distances and prior probability

distributions on this space. Section 3.3 describes how these tools may be used in

order to learn the model parameters. Section 3.4 describes the special case of the

model when the probability distribution on the space of time warpings is uniform.

In Sections 3.5 and 3.6, we discuss how both the models developed earlier can be

used in a Bayesian recognition framework in order to perform activity analysis,

recognition and activity-based person identification. Finally, in Section 3.7, we

present the conclusions and future research directions.

3.1 Problem Statement

Let C1, C2, ..., CM be M classes (in our case M different activity labels). Here

we wish to tackle two tasks while accounting for time-warping - 1. Given several

instances of an activity, we would like to build a model for that activity and 2.

Given a test sequence, we would like to classify the sequence to one of the models

in the database.

3.1.1 Feature for representation

Observations of an activity are typically obtained using video cameras and they

are in the form of video frames. Raw videos are not appropriate features for rep-

resentation. In principle, the feature chosen to describe the action units must

have physical significance and one must be able to directly identify the relation-

ship between the features extracted and the basic human pose. For the problem

of activity recognition, 3-D joint angles would be ideal features. Unfortunately,

estimating features like 3-D joint angles from images is extremely difficult and un-
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reliable. So researchers have used several other features for describing the action

units [132] [103] [136] [84]. Since the USF gait database consists of monocular

video, we use the shape of the silhouette (along with the appropriate Procrustes

distance ) as a feature [161] for the gait-based person identification experiments.

The INRIA iXmas dataset contains synchronized videos from multiple views and

therefore allows us to compute and use the 3D Fourier based shape features de-

scribed in [170]. We refer the interested reader to [43] [161] and [170] for details

about the shape feature and the 3D circular FFT feature respectively.

For now let us assume that for each frame of the video, an appropriate feature

has been extracted and that the video data has now been converted into a feature

sequence given by f 1, f 2, ..., for frames 1, 2, ... respectively. We will use F to denote

the feature space associated with the chosen feature.

3.1.2 Model for warping functions

Let γ be a diffeomorphism (A diffeomorphism is a smooth, invertible function with

a smooth inverse.) from [0, 1] to itself with γ(0) = 0 and γ(1) = 1. Also, let Γ be

the set of all such functions. We will use elements of Γ to denote time warping

functions. Our model for an activity consists of an average activity sequence given

by a : [0, 1] → F , a parameterized trajectory on the feature space. Any time-

warped realization of this activity is then obtained using:

r(t) = a(γ(t)), γ ∈ Γ . (3.1)

We note in passing that Γ is a group with composition as the group operation

and the function γ(s) = s as the identity element. Equation 3.1 actually defines

an action of Γ on F [0,1], the space of all continuous activities. In our model, the

variability associated with γ in each class will be modeled using a distribution Pγ
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on Γ. For the convenience of analysis and computation ( refer Section 3.2 ), we

prefer to work with ψ = +
√
γ̇ instead of γ directly. There is a bijection between γ

and ψ and the probability models on ψ directly relate to equivalent models on γ.

Thus, we will introduce probability distributions Pψ on the set of all ψs, for each

activity class.

The parameters of this model are a(t), the nominal activity trajectory, and Pψ,

the probability distribution on square-root representations of time warping func-

tions. In general, the nominal activity trajectory a(t) can also be chosen to be

random. But, here, we restrict our analysis to cases where, the nominal activity

trajectory a(t) is deterministic but unknown. We will consider parametric forms

of densities for Pψ and reduce the problem of learning Pψ to one of learning the

parameters of the distribution Pψ. In particular, we highlight (in Section 3.4) a

special-case of a uniform distribution on the space of time warpings (called ’func-

tion space of an activity’). This particular special-case appeared as a preliminary

conference paper [158].

Physical Significance of the Model: The nominal activity trajectory, a(t)

and the probability distribution on the space of time-warps, Pψ together capture

all the possible realizations of the activity and provide the description of the ac-

tivity under different variabilities. In general, the nominal activity trajectories

of two different activities will be vastly different. The nominal activity trajec-

tory for ‘walking’ would consist of key postures like heel-strike, toe-off, mid-stance

etc., while that of ‘sit down’ would consist of the following actions - bend knee,

lower body, settle on chair and rest back on backrest. The distribution of activity-

specific temporal warpings Pψ, represents the space of all permissible time-warping

transformations for each activity. By learning this space, we are able to ‘interpo-
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late’ appropriately between training sequences. Suppose there is a test sequence

that is within this space, but was not a part of the training sequences. Most tem-

plate sequence based recognition techniques tend to misclassify such test sequences.

Learning the function space of an activity provides our algorithm with the gener-

alization power necessary to correctly classify such test sequences. Moreover, by

learning this warping space formally, in a class specific manner, we also obtain bet-

ter discriminative power than other heuristic techniques for handling time-warping.

The model M={a, Pψ} represents a function space of activities whose elements are

composed of functions a(γ(t)), ∀ γ ∈ Γ.

3.1.3 Problems

Here, we state informal descriptions of the various problems we wish to tackle.

The Learning Problem

Given N labeled realizations r1, r2, r3, ...rN , of an activity, we would like to learn

the model for this activity. This is equivalent to learning the nominal activity

trajectory a(t) and the distribution on the warping parameters given by Pψ.

The Classification Problem

Suppose we have models for M different activities {ai, P i
ψ}Mi=1. Given a test se-

quence r(t), we would like to classify this test sequence as belonging to one of the

M models.
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Clustering Problem

Given several realizations from K different activities with no class labeling, we

would like to cluster these sequences into K distinct clusters such that sequences

within the same cluster are maximally similar while sequences in different clusters

are dissimilar. Moreover, unlike traditional clustering algorithms this similarity

is invariant to changes in exectution rate of the action since the model for each

cluster is built to be rate-invariant.

3.2 Differential geometric tools on the space of

time-warping functions

The model for a random observation of an activity class consists of a(γ(t)), where a

is the average of that class and γ is a warping function. In order to classify activities

at variable execution rates, we need to analyze the warping functions as random

functions. However, the space of warping functions is not a vector space and that

rules out the use of classical functional analysis for this task. One alternative is

to utilize the differential geometry of this space, impose a Riemannian structure

on it, and use appropriate tools to perform calculus and statistics of warping

functions. In particular, we can compute distances between warping functions,

estimate sample means for given warping functions, and impose parametric and

non-parametric probability distributions on the space of warping functions.

The next question is: What Riemannian structure on the space of warping

functions is suitable and convenient for activity recognition? The Fisher-Rao met-

ric is often used for analyzing probability density functions. (The Cramer-Rao

lower bound on estimation of parameters is derived using this metric.) One major
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reason for its popularity is that it is invariant to arbitrary warpings of the functions

involved. In other words, under this metric the distance between any two warping

functions γ1(t) and γ2(t) is same as that between γ1(γ(t)) and γ2(γ(t)) for any

arbitrary warping function γ(t). This point is important in activity recognition

because, as we will point out in Section 3.3.4, the representation of an activity

model is not unique, i.e. there is no canonical choice of γ for representing activity

models. The choice of Fisher-Rao metric implies that the resulting distances are

same irrespective of the baseline time axis chosen to represent activity models.

The Fisher-Rao metric, when applied to different mathematical representations

of γ, i.e. γ, γ̇, log γ̇, or
√
γ̇, takes different forms. Interestingly, in the case of

ψ ≡ √
γ̇, this metric simplifies to the familiar and convenient L

2 metric [9, 146].

Furthermore, the space of all warping functions, represented by their square-root

density forms, under the Fisher-Rao metric, becomes a unit sphere. This is because

‖ψ‖2 =

∫ 1

0

|ψ(t)|2dt =

∫ 1

0

|γ̇(t)|dt = γ(1) − γ(0) = 1 .

For these two reasons – invariance to arbitrary time scalings and the spherical

nature of the resulting space, we choose the square-root density form to represent

and analyze variability associated with the warping functions.

Let the space of all square-root density forms be given by

Ψ = {ψ : [0, 1] → R|ψ ≥ 0,

∫ 1

0

ψ2(t)dt = 1} . (3.2)

This is the positive orthant of a unit hypersphere in the Hilbert space of all square-

integrable functions on [0, 1]. Let Tψ(Ψ) be the tangent space to Ψ at any given

point ψ. Then, for any v1 and v2 in Tψ(Ψ), the Fisher-Rao metric is given by

〈v1, v2〉 =

∫ 1

0

v1(t)v2(t)dt. (3.3)
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Since Ψ is a sphere, its geometry is well known and we can directly use known

expressions for tools such as geodesics, exponential maps, and inverse exponential

maps on Ψ. Consequently, the algorithms for computing sample statistics, defining

probability density functions, and generating inferences also become straightfor-

ward.

We begin by describing some elements of differential geometry of Ψ.

3.2.1 Geometry of Ψ

One way to quantify the differences between two warping functions is to compute

the distance between their corresponding representations in Ψ. This distance is

given by the length of a geodesic, the shortest path connecting those two points in

Ψ. We know that the geodesics on a sphere are the great circles and the geodesic

distance is simply the length of the shorter arc connecting the two points on a

great circle. Given two warping functions γ1 and γ2, and their square-root density

forms, ψ1 and ψ2 in Ψ, the geodesic distance between them on Ψ is given by

d(ψ1, ψ2) = cos−1(〈ψ1, ψ2〉), (3.4)

where 〈ψ1, ψ2〉 =
∫ 1

0
ψ1(t)ψ2(t)dt.

The geodesic path itself can also be computed rather simply. Take the radial

projection of the chord joining points ψ1 and ψ2 onto the unit sphere results in

the geodesic. The chord joining ψ1 and ψ2 is given by (1 − s)ψ1 + sψ2 where s is

the parameter that identifies various points on this chord. The radial distance of

a point on this chord is given by s2 + (1− s)2 + 2s(1− s)(〈ψ1, ψ2〉). Therefore, we

can analytically write the geodesic connecting ψ1 and ψ2 as: X : [0, 1] → Ψ,

X(s) =
(1 − s)ψ1 + sψ2

s2 + (1 − s)2 + 2s(1 − s)(〈ψ1, ψ2〉)
,
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such that X(0) = ψ1 and X(1) = ψ2. Another way to specify a geodesic path in

Ψ is by giving a starting point ψ ∈ Ψ and a starting direction v ∈ Tψ(Ψ):

X(s) = cos(s‖v‖)ψ + sin(s‖v‖) v

‖v‖ , (3.5)

where ‖v‖ =
√

∫ 1

0
v(t)2dt.

One use of geodesics is to define and compute the exponential map from Tψ1
(ψ)

to ψ. It is simply the value reached at s = 1 by a geodesic that starts from ψ in

the direction v and moves at a constant speed. We can evaluate the exponential

map using:

expψ(v) = cos(‖v‖)ψ + sin(‖v‖) v

‖v‖ . (3.6)

Similarly the inverse of the exponential map exp−1
ψ1

(ψ2) = v ∈ Tψ1
(ψ) can also be

computed analytically using

u = ψ2 − 〈ψ2, ψ1〉ψ1 (3.7)

v =
u cos−1(〈ψ1, ψ2〉)

√

〈u, u〉
. (3.8)

3.2.2 Statistical Analysis on Ψ

With the geometry of Ψ as specified above, let us derive some tools for statistical

analysis of data. Given a number of observed warping functions, we will esti-

mate the sample mean and covariance, use these estimates to define a ”wrapped-

Gaussian” density function and derive Bayesian classification algorithms using

these distributions as priors.

To compute the sample means of elements of Ψ, we will use the notion of

Karcher mean [85] that has been used frequently for defining means on nonlin-

ear manifolds. Suppose, we have n different square-root density forms, given by
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ψ1, ψ2, ...ψn. Then, their Karcher mean ψ̄ is defined as the element that minimizes

the sum of squares of geodesic distances:

ψ̄ = arg min
ψ∈Ψ

n
∑

i=1

d(ψ, ψi)
2) (3.9)

where, d is the geodesic distance defined in (3.4). Note that the Karcher mean may

not be unique and can instead be a set of elements. A commonly used approach

for finding a Karcher mean is to use the gradients and this is where the exponential

map and its inverse are needed. The iterative update to the current value of mean

is given by:

ψ̄ → expψ̄(ǫv), where v =
1

n

n
∑

i=1

exp−1
ψ̄

(ψi) (3.10)

and where ǫ is usually 0.5. The next step is to define and compute a sample

covariance for the observed ψs. The key idea here is to use the fact that the

tangent space Tψ̄(Ψ) is a vector space. Using a finite-dimensional approximation,

say V ⊂ Tψ̄(Ψ), we can use the classical multivariate calculus for this purpose. In

practice, we obtain a natural restriction when v is observed at a finite number, say

T , of times leading to an observation {v(ti)|i = 1, 2, . . . , T}. With a slight abuse

of notation, we will denote this vector by v ∈ R
T . The resulting sample covariance

matrix is given by: Σ̄ = 1
n−1

∑n

i=1 viv
T
i , where each vi is a T -dimensional sample of

the function exp−1
ψ̄
ψi. Note that by definition, the mean of vis should be zero. In

cases where the number of samples n is smaller than T , one can apply an additional

dimension-reduction tool to work on a smaller space. For instance, we can use the

singular value decomposition (SVD) of the sample covariance matrix Σ̄ and retain

only the top m significant singular values and the corresponding singular vectors.

In such cases, the covariance matrix is indirectly stored using λ1, λ2, ...λm singular

values and their corresponding singular vectors u1, u2, ...um.

Next, we define a “wrapped-Gaussian” probability density on Ψ. We say
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“wrapped-Gaussian” because Ψ is a non-Euclidean space and it is not possible to

define a Gaussian density here. We follow the tangent PCA (TPCA) approach [147]

for defining probability densities on nonlinear manifolds. In this approach, one de-

fines a Gaussian probability density on a tangent space of the manifold and then

projects it onto the manifold using the exponential map. However, in our case

we will need only the samples from the eventual density function and the explicit

functional form of that projected density is not needed. In fact, we will apply one

more transformation in taking the samples on Ψ to obtain samples on Γ. For a

mean µ and covariance Σ, we can define a normal density function N(v|µ,Σ) on

the elements of V ⊂ Tµ(Ψ). In case the data is available in the form of prior

samples, we can use the sample means and covariances to define this density on

the space V . The exponential map: expψ̄ : Tψ̄(Ψ) → Ψ maps this density to the

spherical space of square-root forms, and the mapping ψ 7→ γ(t) =
∫ t

0
|ψ(τ)|2dτ

takes it further to the space of warping functions. The exponential map results in

wrapping the Gaussian density on the tangent space onto the sphere and therefore

the name wrapped-Gaussian. We will denote the resulting densities on Ψ and Γ

by Pψ and Pγ, respectively.

For a Bayesian classification of activities, as described later in this paper, we

will need to estimate the posterior probability of different classes given the observed

data. In this calculation, the warping function is considered a nuisance variable

that needs to be integrated out. Using a Monte Carlo approach, we will generate

samples from the prior on γ and use those samples to approximate the nuisance

integral. Thus, we have a need to generate samples from the class-specific priors

Pγ on Γ. This, in turn, requires sampling from the probability density Pψ, which

is accomplished as follows. Let ψ̄ and Σ̄ be the sample mean and the sample
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covariance of the square-root forms observed in a particular class. Assume that

the covariance is stored in the form of m singular values λis and corresponding

singular vectors uis. In such cases, a random sample from the model Pψ is given

as

ψ ∼ expψ̄(v) where v ∼
m

∑

i=1

zi
√

λiui and zi ∼ N(0, 1) (3.11)

This random sample can then be converted into a warping function using the

partial integration ψ 7→ γ such that γ(t) =
∫ t

0
|ψ(τ)|2dτ .

Toy Example Consider the toy example shown in Figure 3.2. Figure 3.2(a)

shows 30 sample time-warping functions from each of three different classes (color

coded). The corresponding square-root density forms are shown in 3.2(b). For

each class using the samples of the square-root density forms we can compute the

Karcher mean and the covariance. The Karcher means are shown in 3.2(d). The

mean time-warping functions for each class obtained by partially integrating the

Karcher means are shown in 3.2(c). The model for each class of time-warping

functions is encoded in the form of the corresponding Karcher means and covari-

ances. Now one can generate random samples from this model as described above.

Shown in 3.2(f) are sample square-root density forms generated using the model

parameters for each class (i.e., the Karcher mean and covariances). As before the

corresponding time-warping functions maybe computed via partial integration and

are shown in 3.2(e).

3.2.3 Global Speed of activity

We have restricted our attention to time-warping functions from [0, 1] to itself, i.e

the functions that do not contract or dilate the full duration of the activity. We

claim that this is not restrictive, since any other time-warping transformation can
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Figure 3.2: Figure is Color coded - Each color represents a different class (a)

Random samples of time-warping functions belonging to 3 different classes (color

coded) (b) Corresponding samples of square-root density forms (c) Mean time-

warping function for each class computed by partial integration of the class-specific

Karcher mean (d) Class specific Karcher mean computed using the samples shown

in (b) (e) Random samples generated from the stored model (f) Random samples

of ψ generated from the stored Karcher means and covariance.
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be decomposed into two parts: a global linear scaling of the temporal axis and

the non-linear time-warping functions that we have addressed so far. The effect of

such a linear global temporal scaling is identical to the effect of changing the rate

of sampling.

Let a(t), for 0 ≤ t ≤ Ta, be a vector valued function of time. Let b(t), for

0 ≤ t ≤ Tb, be a time-warped version of a(t), with the warping function given by

w(t), i.e., b(t) = a(w(t)), w(t) : [0, Tb] → [0, Ta]. Now w(t) can be decomposed

as w(t) = Taγ(t/Tb) where γ : [0, 1] → [0, 1] i.e., a global linear dilation (or

contraction) and a non-linear warping γ. Without loss of generality we will use

the word time-warping transformation to synonymously denote the non-linear time

warping function given by γ. In all our experiments we have first identified the

global temporal scaling factor by identifying the start and stop instants of each

activity. The identification of the start and stop instants of each activity is also

done automatically by template matching. Once the global temporal scaling factor

is found, each realization of the activity is temporally dilated or contracted linearly

so that the total duration of the activity is a constant for all realizations of the

activity.

3.3 Learning and Classification Algorithms

Given N realizations r1, r2, r3, ...rN , of an activity, we need to learn the parameters

of the model for this activity. This amounts to learning the nominal activity

trajectory a(t) and the probability distribution Pψ.
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3.3.1 Estimating Pψ given a(t)

Let us assume that the nominal activity trajectory a(t) is known. Now we need to

estimate the parameters of the warping distribution which is given by Pψ. In order

to learn Pψ, we first warp each of the observed realizations of the activity to the

known nominal activity trajectory given by a(t). This warping can be performed

using the DTW algorithm. The DTW algorithm provides us with corresponding

warping functions γi(t) such that
∫ 1

0
‖ri(t) − a(γi(t))‖2dt is minimized. Then, we

can compute ψis using ψi =
√
γ̇i.

Now, we have several samples ψ1, ψ2, ... to estimate the distribution Pψ. As-

suming a ”wrapped-Gaussian” distribution on Ψ, this amounts to estimating the

sample mean and the sample covariance of the observed ψis. As described in

Section3.2.2, we can define and compute the Karcher mean of given ψis using the

exponential and the inverse exponential maps. The covariance is obtained simi-

larly by restricting to a T -dimensional approximation V of the vector space Tψ̄(Ψ).

Using SVD of observations in V , one ends up with the singular values λ1, λ2, ...λm

and their corresponding singular vectors u1, u2, ...um.

Thus, given the nominal activity trajectory a(t), we can estimate the parame-

ters of the warping distribution Pψ, namely its Karcher mean ψ̄K and its covariance

stored indirectly using m singular values λ1, λ2, ...λm and corresponding singular

vectors u1, u2, ...um.

3.3.2 Estimating a(t) assuming known warping functions

For the given observations r1, r2, . . . , of an activity, assume that the corresponding

warping functions γ1, γ2, . . . , are also given. Then, we can estimate the nominal
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or average activity trajectory a(t) using

ā(t) =
1

N

N
∑

i=1

ri(γ
−1
i (t)) (3.12)

3.3.3 Iteratively estimating a(t) and Pψ

Given N realizations r1, r2, r3, ...rN , of the same activity, we would like to learn

the parameters of the model for this activity. We do this by iteratively estimating

Pψ and refining our estimate of the nominal activity trajectory ā(t) using the steps

described in the previous two sections. We first initialize the nominal activity

trajectory to one of the realizations say ainit(t) = r1(t). Then we estimate Pψ

using the method described in Section 3.3.1. We then refine the estimate of the

nominal activity trajectory using the method described in Section 3.3.2. These two

steps are iterated till convergence. In practice, we find that the iterations converge

very quickly (within 4 or 5 iterations).

3.3.4 Uniqueness of the Model parameters

The model parameters given by a(t) and Pψ ≈ {ψ̄K ,Σψ} are not unique. Two

different sets of model parameters M1 = {a1(t), Pψ1
} and M2 = {a2(t), Pψ2

}, could

lead to the same distribution on the observation space. That is, the two models

may lead to the same distribution on the space of all activity realizations. This

could happen if the corresponding nominal activity trajectory and the distribution

on the space of warping transformations are related as

a2(t) = a1(γ(t)) ψ̄1 =
√

˙̄γ1 ψ̄2 =
√

˙̄γ2 γ̄2(t) = γ̄1(γ̄
−1(t)) Σ2 = Σ1

(3.13)

When the conditions listed in (3.13) are satisfied, we notice that a2(γ̄2(t)) =

a1(γ̄1(t)), i.e., the mode of the activity trajectories is the same for both models.
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Moreover, since the covariance matrices for the two models are identical (Σ1 = Σ2),

this means that samples for either of these models will have identical distributions

and would therefore be indistinguishable. In practice this means that there is an

equivalence class of models such that any two models from the same equivalence

class are indistinguishable. The conditions for belonging to the same equivalence

class are those stated in (3.13). While performing classification and inference based

on these model parameters it becomes essential to maintain uniqueness of model

parameters. Therefore, once we learn the model parameters we always choose a

single canonical representation for each equivalence class. Note that the choice of

this canonical representation does not affect the performance of the algorithm at

all as long as this choice is consistent. We choose the model with γ̄K(t) = t, such

that the Karcher mean of the warping distribution corresponds to simple linear

warping and the covariance matrix of the warping transformations encodes all the

non-linearities in the warping distributions. The canonical model parameters are

unique and can be directly used for classification and inference.

3.3.5 Generating activity samples from the model

The model for an activity is given by the nominal activity trajectory a(t) and

the distribution on warping transformations given by Pψ. We can use this model

to generate random samples from the model. We first generate random samples

ψ1, ψ2, .....ψM from the warping distribution Pψ as described in Section 3.2.2. The

corresponding time warp for each ψ is computed. Let γ1, γ2, ...γM be the corre-

sponding time warps. Then realizations from the model may be drawn as

rj(t) = a(γj(t)) + w(t) where w ∽ N(0,Σ). (3.14)
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3.3.6 Classification Algorithm

Let us assume that we have K different models M1,M2, ...MK given by their ap-

propriate nominal activity trajectories a1, a2, ...aK and corresponding Pψ given by

P 1
ψ, P

2
ψ, ..., P

K
ψ . Given a test sequence r(t), we would like to classify r(t) to one of

the K possible classes. This classification task can be accomplished using MAP

estimation, i.e.,

ID = arg max
i=1,2,..K

P (Mi|r) = argi=1,2,..K maxP (r|Mi)P (Mi). (3.15)

The likelihood P (r|Mi) can be computed as,

P (r|Mi) =

∫

ψ

P (r|Mi, ψ)P (ψ|Mi)dψ where P (ψ|Mi) = P i
ψ. (3.16)

This integral can be estimated using Monte Carlo sampling methods. We draw N

samples from the model Mi as described in Section 3.3.5. Using these samples we

estimate the likelihood P (r|Mi) as

P (r|Mi) =
1

N

j=N
∑

j=1

P (r|ai, ψj) where ψj ∽ P (ψ) = P i
ψ (3.17)

In order to compute the summation described above, we need a model for com-

puting the conditional likelihood P (r|Mi, ψj). The conditional warp probability is

inversely proportional to the distance between the warped nominal activity trajec-

tory and the test sequence, i.e.,

P (r|Mi, ψj) = e−αD(r,ai(γj)) where D(r, ai(γj)) =

∫ 1

0

(r(t) − ai(γj(t)))
2dt

(3.18)

and α is a suitably chosen constant. As the number of samples N increases the

accuracy of the approximation improves. One can also improve the accuracy of

the approximation by performing importance sampling [38]. Let us assume that
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the proposal distribution from which the samples of the ψ are drawn is given by

G(ψ). Then we draw N samples of ψ from G and the integral is approximated as

P (r|Mi) =
1

N

j=N
∑

j=1

P (r|Mi, ψj)
P (ψj|Mi)

G(ψj)
where ψj ∽ G(ψ). (3.19)

In practice, using importance sampling significantly improves the accuracy of the

approximation when using a finite number of samples. The effectiveness of the

importance sampling also critically depends upon the proposal distribution. The

proposal distribution or the importance distribution should ideally be as close to

the posterior distribution we wish to approximate. In practice, we first estimate

the mode of this posterior by computing the best warping transformation between

the nominal activity trajectory of the model (ai(t)) and the test sequence (r(t)).

We set the mean of the importance distribution to be this warping transformation

while letting the covariance of the importance distribution to be the same as the

covariance of the model. We have experimentally found that this choice of impor-

tance distribution enables us to effectively approximate the integrals using Monte

Carlo methods with a reasonable number of random samples.

3.4 Function Space of Time-Warps

The model described in the previous sections represents an activity using a nominal

activity trajectory a(t) and a probability distribution on the space of time warpings

Pψ. There are two inherent difficulties in practical implementations of such a

model inspite of its rigour. Firstly, since the model attemps to learn a probability

distribution on the space of permissible time-warping functions, the algorithm

for learning this Pψ requires a reasonable number of sample realizations of each

action. In the presence of very few samples, the learning algorithm might lead to
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underfitting of the data. Moreover, as inference using this model is done using

Monte Carlo methods, the algorithms for inference are computationally expensive.

Suppose we relax the assumption about learning the probability distribution of

permissible time-warps and instead attempt to learn a subset in the time-warping

space and assume that the probability distribution of time-warps is uniform within

the learnt subset. Each activity can now be represented by using a nominal ac-

tivity trajectory given by a(t) and W , the set containing all the time warping

transformations permissible for that activity. Each realization of an activity is

given by a trajectory r(t) = a(f(t)) where f ∈ W . Such a model is a special case

of learning Pψ where, we assume that the probability distribution is uniform on a

subset W ∈ Γ in the space of time-warpings. The advantage of using such a model

where the probability distribution is assumed uniform is that both the learning and

the inference algorithms become simple dynamic programming problems when we

constrain the set W to be a convex set.

3.4.1 Activity specific time-warping space (W )

Even though Γ represents the space of all plausible time-warping transformations,

every individual activity may only be able to access a subset W of the candidate

functions in Γ because of the physical constraints imposed on the actor and the

activity. We can then model the activity using a uniform distribution on this

subset W . Then learning the parameters of the uniform distribution boils down

to learning this subset W . Below, we discuss and visualize some properties of this

activity specific time warping space W .

1. W is a subset of Γ, i.e., W ⊂ Γ.
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2. γ(t) = t is a candidate function in W , i.e., γ(t) = t ∈W . This represents no time

warping.

3. It is reasonable to assume that W is convex, i.e., ∀ γ1, γ2 ∈ W and α ∈ (0, 1),

γ = αγ1 + (1 − α)γ2 ∈ W . Since the derivative is a linear operator, this means

that if the rate of execution of some action unit can be speeded up by factors α1

and α2 then it can also be speeded up by any factor β in between α1 and α2. This

is not just reasonable but in fact desirable.

This implies that W can be bounded above and below by functions u, l ∈ W such

that

u(t) ≥ t ≥ l(t) ∀t ∈ (0, 1) and u ≥ γ ≥ l ∀γ ∈ W (3.20)

where γ1 ≥ γ2 =⇒ γ1(t) ≥ γ2(t) ∀t ∈ (0, 1). So, we can now index any such convex

space W by the functions u and l and call it Wul and learning W is essentially the

same as learning the upper and lower bounding functions u and l.

3.4.2 Symmetric representation of an Activity Model

As described for the ”wrapped-Gaussian” distribution, the representation of the

activity model given by M1 = {a(t),Wul} is not unique. Let unew(t) = f−1(u(t))

and lnew(t) = f−1(l(t)) and let f be a member function in Wul. Consider the new

model M2 ={b(t),Wunewlnew
}= {a(f(t)),Wunewlnew

}. For every realization of the

model M1, i.e., a(γ1(t)) there exists a corresponding realization of the model M2

given by b(f−1(γ1(t))). Therefore the two models M1 and M2 are equivalent. As

before, we will resolve this ambiguity by specifying a synchronizing time such that

the average of all the warping functions in Ws is the identity warping function.

The symmetric representation of the model is such that unew(t) − t = t − lnew(t).
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Therefore the activity specific warping space can be represented as Ws = Wunewlnew

where s(t) = unew(t) − t = t − lnew(t), represents the extent of possible temporal

warpings. This symmetric representation of the model is unique, i.e., if M1 =

{a1(t),Ws1} and M2 = {a2(t),Ws2}, then M1 = M2 ⇐⇒ a1 = a2 and s1 = s2.

Given a non-symmetric representation of the model, i.e., M1 = {a(t),Wul},

we still need to determine a time-warping function f such that upper and lower

bounding functions of the new model are symmetric about the diagonal. This is

achieved as

unew(t) − t = t− lnew(t) (3.21)

(Substituting for unew(t) and applying the u−1 operator)

⇒ f(t) = {2u−1(t) − f−1(l(u−1(t)))}−1

This implicit function equation can be solved by fixed point iterations as f(i)(t) =

{2u−1(t)− f−1
(i−1)(l(u

−1(t)))}−1, where f(i) represents the approximation of f in the

ith iteration. We initialize the iteration with f(0)(t) = u(t)+l(t)
2

. We observe that

it converges within very few iterations with such an initialization. Once we have

obtained this symmetrizing time warp f then any non-symmetric model parameters

M1 = {a(t),Wul} can be transformed to its symmetric (unique) counterpart as

M = {b(t),Ws}, where b(t) = a(f(t)) and s(t) = unew(t) − t = t − lnew(t) =

f−1(u(t)) − t.

3.4.3 Learning Model Parameters

Learning the model parameters can be done as before by iterating between the two

unknowns ( a(t) and Pγ ). Learning the nominal activity trajectory a(t) is done as
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described in Section 3.3.2. The only difference between earlier and now is during

the estimation of the parameters Pψ. Earlier we computed the Karcher mean

and the covariance of Pψ for the wrapped-Gaussian distribution, here since the

parameters of Pγ are given by the upper and lower bounding functions we need to

estimate them. Given an estimate of the activity trajectory a(t) and corresponding

warping functions γi(t) for each realization, the the upper and the lower bounding

functions for the activity specific time-warping set can be estimated as

û(t) = max
i=1,2,...N

γi(t), ∀t ∈ (0, 1) and l̂(t) = min
i=1,2,...N

γi(t), ∀t ∈ (0, 1).

(3.22)

Since each γi is constrained to be monotonously increasing and the end points are

fixed, it is easy to see that the estimates û(t) and l̂(t) also inherit these properties.

Thus the estimated model M̂ is given by M̂ = {b̂(t),Wul}. This model param-

eters correspond to the non-symmetric version of the model and can be easily

transformed to the equivalent symmetric version of the model using the procedure

described in Section 3.4.2.

3.4.4 Classification using the model

The primary advantage of using the uniform distribution on the space of time-

warping functions instead of learning a class-specific probability density function

is that the classification algorithm becomes computationally efficient. While clas-

sification in the general case is dependent on Monte-carlo methods, we show how

a simple dynamic programming based algorithm will suffice for classification us-

ing the uniform distribution based model. Suppose we have M different activity

models given by Mi = {ai(t),Wsi
} for i = 1, ..M . Given a test sequence h(t), the

activity recognition problem is one of identifying the model that generated the test
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sequence h(t). We do this in two steps. Firstly, assuming that the test sequence

h(t) is generated from the model Mi, we estimate the best warping transformation

f̂i from Wsi
that would warp ai to h, i.e.,

f̂i = min
f∈Wsi

dist(h(t), ai(f(t))) (3.23)

Î = arg min
i=1,...M

dist(h(t), ai(f̂i(t))) (3.24)

Activity recognition is performed by minimizing the warping error between the

nominal activity trajectory and the test sequence. Note that the search of warp-

ing functions is performed only over the corresponding activity specific warping

set. The above-mentioned intuitive idea for activity recognition can be easily im-

plemented by a simple variation of the DTW. In the DTW algorithm, instead of

arbitrarily limiting the warping function to lie within some window (typical choices

are uniform window and parallelogram window), we replace the window constraints

by the upper and lower bounds for the warping function that we have learnt for

each model. Thus, the DTW algorithm with the window width being given by

u(t) = s(t) + t and l(t) = t − s(t) computes the distance that is being minimized

in (3.24).

Î = min
i=1,...M

DTW (ai, h, s) (3.25)

where, DTW (ai, h, s) stands for the implementation of the DTW algorithm with

the warping window constraints given by u(t) = s(t) + t and l(t) = t− s(t).

3.5 Experiments

We tested the algorithms on three different datasets - UMD Common Activities

dataset, the INRIA iXmas dataset and the USF gait dataset. We used a warpped-

Gaussian probability distribution for Pψ with its parameters stored using a set of
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tangent plane vectors uψ and their covariance matrix Σψ. We denote the experi-

mental results using this algorithm as PGauss in the results. We also implemented

the uniform distribution on the space of time-warping functions using dynamic

programming and performed maximum likelihood inference using this model. We

denote the results using this method as PUnif in the results.

3.5.1 Common Activities Dataset

We used the UMD common activities dataset [158], a dataset of common activities

to perform preliminary experiments to validate our model. The dataset consists of

10 activities and 10 different instances of each activity. We partition the dataset

into 10 disjoint sets each containing 1 instance of every activity. In order to test the

recognition for each set, we first learn the model parameters from the remaining

nine sets and then perform recognition for the test sequences. We repeat the

process for each of the 10 sets. Thus we ensure that there is no overlap between the

training set and the test sequences. Figure 3.3 shows the 10 X 100 similarity matrix

for using the function space algorithm with the uniform distribution on the space

of temporal warps. Each column corresponds to a different test sequence while

each row corresponds to a different activity. The strongly block diagonal nature

of the similarity matrix indicates that the recognition algorithm performs well. In

fact, on this database we obtained 100% recognition using both our algorithms.

3.5.2 INRIA iXmas dataset

The INRIA multiple-camera multiple video database of the PERCEPTION group

consists of 11 daily-live motions performed each 3 times by 10 actors. The actors

freely change position and orientation. Every execution of the activity is done at
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(f)  Kick                   (g) Bend to the side    (h) Throw      (i) Turn around     (j) Talk on Cellphone
(a) Pick up Object    (b) Jog in Place          (c) Push        (d) Squat             (e) Wave                  

(a) (b) (c) (e) (f) (g) (h) (j)(i)(d)

Figure 3.3: 10 X 100 Similarity matrix of 100 sequences and 10 different activities

using the function space algorithm.

a different rate. For this dataset, we extract 16 × 16 × 16 circular FFT features

as described in [170]. Since the actors were free to perform the actions the rate

at which these actions were performed varied significantly as was shown in Figure

3.1. So most approaches that cannot handle this vast temporal rate variations,

instead model the entire segment as a single motion history volume [170]. Instead,

we build a time series of the circular FFT features described in [170]. This allows

us to learn the nature of the temporal rate changes between various executions

of an action. Using these features, we performed a recognition experiment on the

provided data similar to those done in [170]. For the recognition experiment, we

used only one segment for each activity which best represented that activity as

in [169]. The recognition results are summarized in table 5. We used 16× 16× 16

circular FFT features in all our experiments here while the results reported in [170]

used 32 × 32 × 32 features. The confusion matrix showing confusion between the

activities using both the wrapped-Gaussian and the dynamic programming based

uniform distribution model are shown in Table 3.2. Note that uniform distribution

based model described in Section 3.4 is significantly more computationally effi-

cient compared to the Monte-Carlo based inference using the wrapped-Gaussian

distribution on the tangent space of warp space.
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Activity PCA

[170]

Mahalanobis

[170]

LDA

[170]

System

Dis-

tance

[152]

PUnif

(This

paper)

PGauss

(This

paper)

1 Check Watch 53.33 73.33 76.67 93.33 100 93.33

2 Cross Arms 23.33 86.67 100 100 100 100

3 Scratch Head 46.67 86.67 80 76.67 100 100

4 Sit Down 66.67 93.33 96.67 93.33 96.67 100

5 Get Up 83.33 93.33 93.33 86.67 96.67 100

6 Turn Around 80 96.67 96.67 100 100 100

7 Walk 90 100 100 100 100 100

8 Wave Hand 50 70 73.33 93.33 96.67 96.67

9 Punch 70 86.67 83.33 93.33 83.33 90

10 Kick 50 86.67 90 100 80 100

11 Pick Up 60 90 86.67 96.67 90 100

Average 61.21 87.57 88.78 93.93 94.85 98.18

Table 3.1: Comparison of view invariant recognition of activities in the INRIA dataset

using our approaches (PUnif and PGauss) with the approaches proposed in [170] and [152].

Motifs 1 2 3 4 5 6 7 8 9 10 11

Sit Down 30(28) 0(0) 0(1) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Get Up 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Turn Around 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Check Watch 1(0) 0(0) 0(0) 29(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Cross Arms 1(0) 0(0) 0(0) 0(0) 29(30) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Scratch Head 0(0) 0(0) 0(0) 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0) 0(0)

Walk 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 30(30) 0(0) 0(0) 0(0) 0(0)

Wave Hand 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 29(29) 0(0) 0(0) 0(0)

Punch 3(1) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 1(1) 25(27) 0(0) 0(0)

Kick 5(0) 0(0) 0(0) 0(0) 1(0) 0(0) 0(0) 0(0) 0(0) 24(30) 0(0)

Pick Up 1(0) 0(0) 0(0) 0(0) 2(0) 0(0) 0(0) 0(0) 0(0) 0(0) 27(30)

Table 3.2: Confusion matrix using PGauss(outside parenthesis and PUnif (inside paran-

thesis) on the INRIA dataset.
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3.5.3 USF Gait Database

Note on gait-based person identification Since the model for learning the

function space time-warpings is not explicitly dependent on the choice of features,

one could potentially use the same model to learn individual specific function spaces

in order to perform activity-based person identification. The only difference would

be that we would choose a feature that is person-specific (e.g., silhouette). The

nominal activity trajectory would be individual specific in this case. Various exter-

nal conditions (like surface, shoe) induce systematic time-warping variations within

the gait signatures of each individual. The function space of temporal warpings for

each individual amounts to learning the class of person specific warping functions.

By learning the function space of these variations we are able to account for the

effects of such external conditions. This will allow the same basic approach to be

applied for both action recognition and activity based person identification by the

use of appropriate features.

In order to compare the performance of our algorithm with the current state of

the art algorithms, we also performed a gait-based person identification experiment

on the publicly available USF gait database [136]. The USF database consists

of 71 people in the Gallery. Various covariates like camera position, shoe type,

surface and time were varied in a controlled manner to design a set of challenge

experiments [136]. We performed a round-robin recognition experiment in which

one of the challenge sets was used as test while the other 7 were used as training

examples. The process was repeated for each of the 7 challenge sets on which results

have been reported. Table 3.3 shows the identification rates of our algorithm with

a uniform distribution on the space of warps (PUnif ), our algorithm with a wrapped

Gaussian distribution on the tangent space of warps with shape as a feature and
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with binary image feature (PGauss and PGaussIm). For comparison the table also

shows the baseline algorithm [136], simple DTW on shape features [161] and the

image-based HMM [84] algorithm on the USF dataset for the 7 probes A-G. Since

most of these other algorithms could not account for the systematic variations in

time-warping for each class the recognition experiment they performed was not

round robin but rather used only one sample per class for learning. Therefore, to

ensure a fair comparison, we also implemented a round-robin experiment using the

linear warping (PLW ).

Table 3.3: Comparison of Identification rates on the USF dataset

Pr- Base- DTW HMM HMM pHMM PLW PUnif PGauss PGaussIm

obe line Shape Shape Image [100]

Avg. 42 42 41 50 65 51.5 59 59 64

A 79 81 80 96 85 68 70 78 82

B 66 74 72 86 89 51 68 68 78

C 56 52 56 74 72 51 81 82 76

D 29 29 22 32 57 53 40 50 48

E 24 20 20 28 66 46 64 51 54

F 30 19 20 17 46 50 37 42 56

G 10 19 19 21 41 42 53 40 55

The average performance of our algorithms PUnif and PGauss are better than all the

other algorithms that use the same feature, (DTW/HMM (Shape) [161] and Linear

warping PLW ) and is also better than the baseline [136] and HMM [84] algorithms

that use the image as a feature. The image based pHMM algorithm [100] outper-

forms our algorithm. One reason for this is that the image as a feature performs
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better than shape as a feature for the USF dataset. But, it is a computationally

very intensive feature (of the order of number of pixels) and consequently leads to

algorithms that are very slow. Therefore, we prefer to use the shape as a feature.

Inspite of this obvious handicap, the performance of our algorithm is compara-

ble to the image based pHMM algorithm for many probes. The improvement in

performance while using binary image as a feature is shown in the last column

(PGaussIm). The experimental results presented here clearly show that using mul-

tiple training samples per class and learning the distribution of their time warps

makes significant improvement to gait recognition results. While most algorithms

based on learning from a single sample led to overfitting and therefore performed

much better when the gallery was similar to the probe (Probe A-C), they also per-

formed very poorly when the gallery and the probes were significantly different.

But, since our algorithm had significant generalization ability ( becasue we learn

the distribution of time warps ) the performance of our algorithm did not suffer

from overfitting and therefore did not drop as much when moving from probes A-C

to Probles D-G.

3.6 Other applications

3.6.1 Clustering Activity Sequences

Algorithm for Clustering There are several scenarios where one requires a clus-

tering algorithm to be rate-invariant. Under such scenarios it becomes reasonable

to use the rate-invariant model for activities described above as the basis for clus-

tering. When rate-invariance is not a desirable property traditional clustering

algorithms such as K-nearest neighbour might be reasonable choices for clustering.
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We performed clustering experiments on the UMD common activities dataset and

the USF gait database using the fast and computationally efficient uniform distri-

bution version of the algorithm denoted by PUnif . The clustering algorithm, based

on expectation maximization (EM) is very similar to the Lloyd-Max algorithm [78]

and can be used to organize a database of sequences for efficient retrieval. Let us

assume that we know the number of clusters, N and the cluster centers c1, c2, ...cN .

Then, each of the sequences in the database can be associated with one of N clus-

ters. This can be done using a maximum-likelihood approach as described earlier

in (3.25). This forms the Maximization step of the EM algorithm. The Expec-

tation step of the algorithm involves recomputing the new cluster centers from

cluster memberships evaluated during the Maximization step. We iterate these 2

steps until convergence. In all our experiments, we initialized the cluster centers

randomly.

Clustering on Common Activities Dataset We performed a clustering

experiment on the 100 activity sequences collected as a part of the Common Ac-

tivities dataset. We chose the number of clusters N to be 10 since there were

10 different activities. If clustering were perfect, then the 100 activity sequences

would be clustered into 10 different clusters, each cluster containing 10 sequences

that correspond to that particular activity. But in reality, clustering would be im-

perfect and some of the 100 sequences would be misaligned in the wrong cluster.

We repeated the clustering experiment several (about 50) times, with a random

initialization of cluster centers during each trial. On an average, the algorithm

converged in about 10 iterations and about 92% of the sequences were clustered

correctly. Even during some adverse initializations the clustering performance was

greater that 80%.
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3.6.2 Organizing a Large Database of Activities

With the decreasing cost of storage, the size of activity databases is increasing

rapidly. For example, the complete USF gait database [136] consists of about 122

classes and a total of more than 1000 sequences. As the size of the database in-

creases, the number of ‘distance’ computations that must be performed on every

query also increases linearly with the size of the database. This poses a significant

bottleneck for practical activity recognition systems. We show that organizing the

database of sequences using the clustering algorithm described in Section 3.6.1 de-

creases this computational burden significantly. The price paid is a small decrease

in recognition performance. We organize the database of activities in the form of

a dendrogram as shown in Figure 3.4. At each level of the dendrogram the num-

ber of branches (B) was set to 3. The number of levels to which the dendrogram

is ‘grown’ determines the trade-off between computation and accuracy. As the

number of levels is increased, the number of ‘distance’ computations that must be

performed before finding the class membership of a given test sequence decreases.

Therefore, the computational burden of the algorithm also decreases. But this

might introduce a decrease in classification performance. When the dendrogram

is fully grown (i.e., when each leaf of the dendrogram represents one activity),

there will be logBN , levels and therefore BlogBN ‘distance computations’. Let

us consider the USF database which consists of 122 subjects and a total of 1870

sequences. A nearest neighbour classifier on this database must perform 1870 dis-

tance computations in order to classify a new test sequence. But if we assume that

we organize the database in the form of a ‘fully grown dendrogram’, with each

leaf node representing each of the 122 individuals, then one would just have to

perform about BlogBN = 3 ∗ log3122 ≈ 14 ‘distance computations’. This is a very
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Level 2
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Figure 3.4: Dendrogram for organizing an activity database

significant computational saving.

We performed an experiment to evaluate the efficiency of organizing the database

on a subset of the USF database as in Section 3.5.3. In our experiments, we grow

the dendrogram upto 2 levels. We measure efficiency of organization (η) as a ratio

of the recognition rate before and after organization.

η = 100 ∗ Identification rate after organization

Identification rate before organization
(3.26)

The efficiency η is strongly related to clustering performance and it is reasonable

to expect the efficiency η to increase with better clustering. Table 3.4 shows the

efficiency of organization for the various probes in the USF dataset. On this data,

the dendrogram organization of the database reduced the computational time by

a factor of about 30. This means that the processing time for large databases

will be reduced from the order of days to a matter of hours. For such significant

reduction in processing time, the Table 3.4 shows that the decrease in recognition

performance is not drastic.

Table 3.4: Efficiency of Organization on the USF dataset

Probe A B C D E F G Avg

η 76 81 84 100 82 100 95 89
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3.7 Summary and conclusions

In this chapter, we addressed an important but often neglected problem in mod-

eling activity, that of temporal warping of the activity trajectories. Our model

for an activity describes each activity using a nominal activity trajectory and a

probability distribution on the space of permissible temporal warpings. We dis-

cussed the case of a parameteric wrapped-Gaussian distribution on the tangent

space of time-warps and derive Monte Carlo sampling-based Bayesian algorithm

for classification. We then discussed the spacial case of a convex uniform distribu-

tion on the space of time-warps and show that this special case allows us to derive

computationally efficient algorithms for a slight decrease in modeling efficieny and

classification performance. Finally, we showed several experiments on publicly

available action recognition and gait-based person identification datasets.
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Chapter 4

Simultaneous Tracking and

Behavior Analysis

Accurate shape dynamical models are not only efficient for the problem of recogni-

tion, but they also serve as effective priors that enable accurate tracking of subjects

in video. In this chapter, we show how accurate shape dynamical models can be

used for simultaneous tracking and behavior analysis. We apply these principles

to the problem of tracking the position, orientation and the behavior of bees in a

hive. We present a system that can be used to analyze the behavior of insects and,

more broadly, provide a general framework for the representation and analysis of

complex behaviors.

Behavioral research in the study of the organizational structure and communi-

cation forms in social insects like the ants and bees has received much attention

in recent years [166] [144]. Such a study has provided some practical models

for tasks like work organization, reliable distributed communication, navigation

etc [111] [106]. Usually, when such an experiment to study these insects is setup,

the insects in an observation hive are videotaped. The hours of video data are then
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manually studied and hand-labeled. This task of manually labeling the video data

takes up the bulk of the time and effort in such experiments. In this chapter, we

discuss general methodologies for automatic labeling of such videos and provide

an example by following the approach for analyzing the movement of bees in a

bee hive. Contrary to traditional approaches that first track objects in video and

then recognize behaviors using the extracted trajectories, we propose to simultane-

ously track and recognize behaviors. In such a joint approach, accurate modeling

of behaviors act as priors for motion tracking and significantly enhances motion

tracking while accurate and reliable motion tracking enables behavior analysis and

recognition.

We present a system that can be used to analyze the behavior of insects and,

more broadly, provide a general framework for the representation and analysis of

complex behaviors. Such an automated system significantly speeds up the analy-

sis of video data obtained from experiments and also reduces manual errors in the

labeling of data. Moreover, parameters like the orientation of various body parts

of the insects (which are of great interest to behavioral researchers) can be au-

tomatically extracted using such a framework. The system requires the technical

input of a behavioral researcher (who would be the end user) regarding the type

of behaviors that would be exhibited by the insect being studied.

The salient characteristics are the following:

• We suggest a joint tracking and behavior analysis instead of the traditional

”track and then recognize” approach for activity analysis. The principles for

simultaneous tracking and behavior analysis presented in this paper should

be applicable in a wide range of scenarios like analyzing sports videos, activity

monitoring, surveillance etc.
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• We show how the method can be extended to tackle multiple behaviors using

hierarchical Markov models to model various behaviors. We define instanta-

neous low level motion states like hover, turn, waggle etc., and model each of

the dances as a Markov model over these low level motion states. Switching

between behaviors (dances) is modeled as another Markov model over the

discrete labels corresponding to the various dances.

• We also present methods for detecting and characterizing abnormal behav-

iors.

• In particular, we study the simultaneous tracking and analysis of bee dances

in their hive. This is an appropriate setting in which to study the ”track

and recognize simultaneously” approach suggested by this paper since a)

The extreme clutter and presence of several similar bees make traditional

tracking in such videos extremely difficult and consequently most tracking

algorithms suffer frequent missed tracks and b) The rich variety of structured

behaviors that the bees exhibit enables a rigorous test of behavior modeling.

We have modeled a few of the dances of the foraging bees and estimated the

parameters of the waggle dance.

4.1 Bee Dances as a means of communication

When a worker honeybee returns to her nest after a visit to a nourishing food

source, she performs a so-called ’dance’, on the vertical face of the honeycomb, to

inform her nest mates about the location of the food source [166]. This behavior

serves to recruit additional workers to the location, thus enabling the colony to

exploit the food source effectively. Bees perform essentially two types of dances,
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in the context of communicating the location of food sites. When the site is very

close to the nest (typically within a radius of 50 metres), the bee performs a so-

called ’round dance’. This dance consists of a series of alternating left-hand and

right-hand loops, as shown in Figure 4.1(a). It informs the nest mates that there

is an attractive source of food located within a radius of about 50 m from the

nest. When the site is at a considerable distance away from the nest (typically

greater than 100 meters) the bee performs a different kind of dance, the so-called

’waggle dance’, as shown in Figure 4.1(b). In this dance, the transition between

one loop and the next is punctuated by a ’waggle phase’ in which the bee waggles

her abdomen from side to side whilst moving in a more-or-less straight line. Thus,

the bee executes a left-hand loop, performs a waggle, executes a right-hand loop,

performs a waggle, executes a left-hand loop, and so on. During the waggle phase,

the abdomen is waved from side to side at an approximately constant frequency of

about 12 Hz. The waggle phase contains valuable information about the location

of the food source: The duration of the waggle phase (or, equivalently, the number

of waggles in the phase) is roughly proportional to the bee’s perceived distance of

the food source: the longer the duration, the greater the distance. The orientation

of the waggle axis (the average direction of the bee’s long axis during the waggle

phase) with respect to the vertically upward direction conveys information about

the direction of the food source. The angle between the waggle axis and the

vertically upward direction is equal to the azimuthal angle between the sun and

the direction of the food source. Thus, the waggle dance is used to convey the

position of the food source in a polar co-ordinate system (in terms of distance and

direction), with the nest being regarded as the origin and the sun being used as a

directional compass [166]. The ’attractiveness’ of the food source is also conveyed
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Figure 4.1: Illustration of the ’round dance’, the ’waggle dance’ and their meaning.

in the waggle dance: the greater the attractiveness, the greater is the number of

loops that the bee performs in a given dance, and the shorter the duration of the

return phase (the non-waggle period) of each loop. The waggle frequency of 12 Hz is

remarkably constant from bee to bee and from hive to hive [166]. The attractiveness

of a food source, however, may depend upon the specific foraging circumstances,

such as the availability of other sources and their relative profitability, as well as

an individual’s knowledge and experience with the various sites. Thus, the number

of dance loops and the duration of the return phase may vary from bee to bee, and

from one day to the next in a given bee [166].

There are additional dances that bees use to communicate other kinds of infor-

mation [166]. For example, there is the so-called ’jostling dance’, where a returning

bee runs rapidly through the nest, pushing nest mates aside, apparently signaling

that she has just discovered an excellent food source; the ’tremble’ dance [138],

where a returning forager shakes her body from side to side, at the same time

rotating her body axis by about 50 deg every second or so, is used by a returning
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bee to inform her nest mates that there is too much nectar coming in, and she is

consequently unable to unload her food to a food-storing bee [138]; the ’grooming

dance’ in which a standing bee raises her middle legs and shakes her body rapidly

to and fro, beckoning other bees to assist her with her grooming activities; and the

’jerking dance’, performed by a queen, consisting of up-and-down movements of the

abdomen, usually preceding swarming or a nuptial flight. However, the pinnacle of

communication in insects resides undoubtedly in the waggle dance. The surpris-

ingly symbolic and abstract way in which this dance is used to convey information

about the location of a food source has earned it the status of a ’language’ [166].

4.1.1 Organization of the chapter

In Section 4.2, we discuss the shape model to track insects in videos and show

how using the model helps in inferring parameters of interest about the motions

exhibited by the insects. Section 4.3 discusses the issue of modeling behaviors,

detecting and characterizing abnormal behaviors. Section 4.4 discusses the tracking

algorithm. Detailed experimental results for the problem of tracking and analysing

bee dances are provided in Section 4.5.

4.2 Anatomical/Shape Model

Modeling the anatomy of insects is very important for reliable tracking, because

the structure of their body parts and their relative positions present some physical

limits on their possible relative orientations. In spite of their great diversity, the

anatomy of most insects is rather similar. All insects possess six legs. An insect

body has a hard exoskeleton protecting a soft interior. The body is divided into
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Figure 4.2: A Bee, an Ant, a Beetle and Shape Model

three main parts- the head, thorax and the abdomen. The abdomen is divided into

several smaller segments. Figure 4.2 shows the image of a bee, an ant and a beetle.

Though there are individual differences in their body structure, the three main

parts of the body are evidently visible. Each of these three parts can be regarded

as rigid body parts for the purposes of video based tracking. The interconnection

between parts provide some physical limits for the relative movement of these

parts. Most insects also move towards the direction of their head. Therefore,

during specific movements such as turning, the orientation of the abdomen usually

follows the orientation of the head and the thorax with some lag. Such interactions

between body parts can be easily captured using a structural model for insects.

We model the bees with three ellipses, one for each body part. We neglect the

effect of the wings and legs on the bees. Figure 4.2 shows the shape model of a

bee. Note that the same shape model can be used to adequately model most other

insects also. The dimensions of the various ellipses are fixed during initialization.

Currently the initialization for the first frame is manual. It consists of clicking two

points to indicate the enclosing rectangle for each ellipse. Automatic initialization

is a challenging problem in itself and is outside the scope of our current work.

The location of the bee and its parts in any frame can be given by five parameters-
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namely, the location of the center of the thorax(2 parameters), the orientation of

the head, the orientation of the thorax and the orientation of the abdomen (refer

Figure 4.2). Tracking the bee over a video essentially amounts to estimating these

five model parameters(X = [x1 x2 x3 x4 x5]
′) for each frame. This 5−parameter

model has a direct physical significance in terms of defining the location and the

orientation of the various body parts in each frame. These physical parameters

are of importance to behavioral researchers.

4.2.1 Limitations of the Anatomical Model

We have assumed that the actual sizes of these ellipses do not change with time.

This would of course be the case as long as the bee remains at the same distance

from the camera. Since the behaviors we study in our work (like the waggle

dance) are performed on a vertical plane inside the beehive, and the optical axis

of the video camera was perpendicular to this plane, the bees projected the same

part sizes during the entire length of video captures. Nevertheless, it is very easy

to incorporate the effect of distance from the camera in our shape model, by

introducing a scale factor as one more parameter in our state space. Moreover,

the bees are quite small and were far enough from the camera that perspective

effects could be ignored. The spatial resolution with which the bees appear in the

video also limit the accuracy with which the physical model parameters can be

recovered. For example, when the spatial resolution of the video is low, we may

not be able to recover the orientation of the body parts individually.
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4.3 Behavior Model

Insects, especially social insects like bees and ants, exhibit rich behaviors as de-

scribed in Section 4.1. Modeling such behaviors explicitly is helpful in accurate and

robust tracking. Moreover, explicitly modeling such behaviors also leads to algo-

rithms where position tracking and behavior analysis are tackled in a unified frame-

work. Several algorithms use motion models (like constant velocity model, random

walk model etc) for tracking [75] [88] [13] [179]. We propose the use of behavioral

models for the problem of tracking insects. Such behavioral models have been

used for certain other specific applications like human locomotion [22] [177] [125].

The difference between motion models and behavioral models is the range of time

scales at which modeling is done. Motion models typically model the probability

distribution (pdf) of the position in the next frame as a function of the position in

the current frame. Instead, behavioral models capture the probability distribution

of position over time as a function of the behavior that the tracked object is ex-

hibiting. We believe that the use of behavioral models presents a significant layer

of abstraction that enhances the variety and complexity of the motions that can

be tracked automatically.

4.3.1 Deliberation of the Behavior model

The state space for tracking the position and body angles of the insect in each frame

of the video sequence is determined by the choice of the shape model. In our specific

case, this state space comprises of the x,y position of the center of the thorax and

the orientation of the three body parts in each frame (X = [x1 x2 x3 x4 x5]
′). A

given behavior can be modeled as a dynamical model on this space. At one extreme

one can attempt to learn a dynamical model like an autoregressive model or an

92



autoregressive and moving average (ARMA) model directly on this state space. A

suitably and carefully selected model of this form might be able to capture large

time scale interactions that are a characteristic of complex behaviors. But these

models constructed directly on the position state space suffer from two significant

handicaps. Firstly, to incorporate long range interactions these models would

necessarily have a large number of parameters and learning all these parameters

from limited data would be brittle. It would be nice to somehow learn a compact set

of parameters that can capture such large time range interactions. Secondly, these

models are opaque to the behavioral researcher who is continuously interacting

with the system during the learning phase. Since the system does not replace the

behavioral researcher but rather assists him by tracking and analyzing behaviors

of bees that the researcher selects, it is very important for the model to be easily

amenable to the intended user of the system.

One can achieve both these objectives by abstracting out local motions like

turning, hovering, moving straight ahead etc, and modeling the behavior as a dy-

namical model on such local motions. Such a model would be simple and intuitive

to the behavior researcher and the number of parameters required to model behav-

iors would be dependent only on the number of local motions modeled. When the

need to specify and learn new behaviors arises, he/she would have to focus only on

the dynamical model of the local motions, since the model for the local motions

themselves would already be a part of system. In short, the local motions act as

some sort of a vocabulary that enables the end user to effectively interact with the

system.
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4.3.2 Choice of Markov Model

As described in the previous section, we first define probability distributions for

some basic motions such as moving straight ahead, turning, waggle and hovering

at the same location. Once these descriptions have been learnt we define each

behavior using an appropriate model on this space of possible local motions. Prior

work [47] on analyzing the behaviors of bees has used Markov models to model the

behaviors. That study reports promising results on recognizing behaviors using

such Markov models. More recently, [115] used SLDS to model and analyze bee

dances. They then noted that the models can be made more specific and accurate

by incorporating a duration model within the framework of a linear dynamical

system. They use this parametrized duration modeling with a switched linear

dynamical system and show improved performance [116]. We could in principle

choose any of these models for analyzing bee dances. Note that the tracking

algorithm would be identical irrespective of the specific choice of model since it is

based on particle filtering and therefore just requires that we be able to efficiently

sample from these motion models. The various dances that the bees perform are

very structured behaviors and consequently we need these models to have enough

expressive power to capture these structures. Nevertheless, we also note that at

this stage these models are acting as priors to the tracking algorithm and therefore

if these models were very peaky/specific, then even a small change in the actual

motion of the bees might cause a loss of track. Therefore, the model must also be

fairly generic, in the sense that it must be able to continue tracking even if the

insect deviates from the model. Taking these factors into account we used Markov

models very similar to those used by [47] to model bee behaviors. We noticed

that even such a simple Markov model significantly aided tracking performance
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and enabled the tracker to continue to maintain track in several scenarios where

the traditional tracking algorithms failed (see Section 4.5.4). Another significant

advantage of choosing a simple Markov model to act as behavior priors rather

than more sophisticated and specific models, is the fact that the very generality

of the model makes the tracking algorithm fairly insensitive with respect to the

initialization of the model parameters. In practice, we found that the tracking

algorithm was fairly insensitive to the initialization of the model parameters and

was quickly able to refine the corresponding model parameters within about 100-

200 frames.

4.3.3 Mixture Markov Models for Behavior

Mixture models have been proposed and used successfully for tracking [76] [14].

Here, we advocate the use of Markovian mixture models in order to enable persis-

tent tracking and behavior analysis. Firstly, basic motions are modeled creating a

vocabulary of local motions. These basic motions are then regarded as states and

behaviors are modeled as being Markovian on this motion state space. Once each

specific behavior has been modeled as a Markov process, then our tracking system

can simultaneously track the position and the behavior of insects in videos.

We model the probability distributions of location parameters X for certain ba-

sic motions(m1−m4). We model four different motions- 1) Moving straight ahead,

2) Turning, 3) Waggle, and 4) Motionless. The basic motions, straight, waggle

and motionless are modeled using Gaussian pdfs (pm1, pm3, pm4) while a mixture

of two Gaussians (pm2) is used for modeling the turning motion (to accommodate
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the two possible turning directions).

pmi(Xt/Xt−1) = N(Xt−1 + ~µmi,Σmi); for i = 1, 3, 4. (4.1)

pm2(Xt/Xt−1) = 0.5N(Xt−1 + ~µm2,Σm2) +

0.5N(Xt−1 − ~µm2,Σm2) (4.2)

Each behavior Bi is now modeled as a Markov process of order Ki on these

motions, i.e.,

st =

Ki
∑

k=1

AkBi
st−k; (4.3)

where st is a vector whose jth element is P (motion state = mj) and Ki is the model

order for the ith behavior Bi. The parameters of each behavior model are made of

autoregressive parameters AkBi
for k = 1..Ki. We discuss methods for learning the

parameters of the behavior model later.

We have modeled three different behaviors - the waggle dance, the round dance

and a stationary bee using a first order Markov model. For illustration, we discuss

the manner in which the waggle dance is modeled. Figure 4.3 shows the trajectory

followed by a bee during a single run of the waggle dance. It also shows some

followers who follow the dancer but do not waggle. A typical Markov model for

the waggle dance is also shown in Figure 4.3.

The trajectory of the bee can now be viewed as a realization from a random

process following a mixture of behaviors. In addition, we assume that the behavior

exhibited by the bee changes in a Markovian manner, i.e.,

Bt = TBBt−1; (4.4)

where TB is the transition probability matrix between behaviors. Note that TB has

a dominant diagonal. Estimating the trajectory and the specific behavior exhibited
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by the bee at any instant is then a state inference problem. This can be solved

using one of several techniques for estimating the state given the observations.

Thus the model consists of a 3 tier hierarchy. At the first level, the dynamics

of local motions are characterized. These act as a vocabulary enabling the behav-

ior researcher to easily interact with the system in order to add new behaviors,

and analyze the output of the tracking algorithm without being bogged down by

the particulars of the data capture. Behaviors that bees exhibit are modeled as

Markovian on the space of local motions forming the second tier of the hierarchy.

Finally, switching between behaviors is modeled as a diagonal dominant Markov

model completing the model. The first two tiers of the hierarchy, dynamics and

behavior may be collapsed into a single tier. But this would be disadvantageous

since it would a) couple the specifics of data capture with the behavior models and

b) also make it significantly more difficult for the behavior researcher (end user)

to efficiently interact with the system.

4.3.4 Limitations and Implications of the choice of Behav-

ior model

As described above, the choice of Markov model on a vocabulary of a set of low level

motions was motivated primarily from two design considerations - a) ease of use for

the end user b) generality of the model allowing the tracking algorithm to be robust

to initialization parameters. But this choice also leads to certain limitations. For

one, it might indeed be possible to collapse the entire three tier hierarchy of motion

modeling into one large set of motion models all at the dynamics stage. But, such

a model would suffer from significant disadvantages since the number of required

parameters would significantly increase. Moreover, each new behavior must be
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modeled from scratch, while if we maintained the hierarchy, then the vocabulary

of local motions learnt at the lower tiers of the hierarchy can be used to simplify

the learning problem for new behaviors. [50] provides a detailed characterization of

the limitations and expressive power of such hierarchical Markov models while [90]

describes a methodology to analyze such linear hybrid dynamical systems. The

hierarchical model also assumes that the various tiers of the hierarchy are semi-

independent and that the particular current motion state does not have a direct

influence on the behavior in subsequent frames. This would not necessarily be

true, since particular behaviors might have specific end patterns of motion. In

future, we would like to study how one might introduce such state based transition

characteristics into the behavior model, while retaining both the hierarchical nature

of the model itself and keeping complexity of the model manageable.

4.3.5 Learning the parameters of the Model

Learning the behavior model is now equivalent to learning the autoregressive pa-

rameters AkBi
for k = 1..Ki. for each behavior Bi and also learning the transition

probability matrix between behaviors given by TB. This step can either be super-

vised or unsupervised.

Unsupervised Learning/Clustering

In unsupervised learning we are provided only the sequence of motion states that

are exhibited by the bee for frames 1 to N , i.e., we are provided with a time

series s1, s2, s3, ...., sN , where each si is one of the motion states m1...m4. We are

not provided with any annotation of the behaviors exhibited by the bee, i.e., we

do not know the behavior exhibited by the bee in each of these frames. This is
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essentially a clustering problem. A maximum likelihood approach to this clustering

problem involves maximizing the probability of the state sequence given the model

parameters.

Q̂ = arg max
Q

P (s1:N/Q); (4.5)

where Q = [AkBi
]i=1:B
k=1..Ki

represents the model parameters. Such an approach to

learning the parameters of a mixture model for a ”juggling sequence” was shown

in [15]. They show how expectation-maximization(EM) can be combined with

CONDENSATION to learn the parameters of a mixture model. But as they point

out there is no guarantee that the clusters found will correspond to semantically

meaningful behaviors. For our specific problem of interest, viz., tracking and

annotating activities of insects we would like to learn models for specific behaviors

like waggle dance. Therefore, we use a supervised method to learn the parameters

of each behavior. Nevertheless, unsupervised learning is useful while attempting

to learn anomalous behaviors and we will revisit this issue later.

Supervised Learning

Since it is important to maintain the semantic relationship between learnt models

and actual behaviors exhibited by the bee, we resort to supervised learning of

the model parameters. For a small training database of videos of bee dances, we

obtain manual tracking and labeling of both the motion states and the behaviors

exhibited, i.e., for a training database we first obtain the labeling over the three

tiers of the hierarchy. For each frame j of the training video we have the position

Xj, the motion state mj and the behavior Bj.

Learning Dynamics: The first tier of the three tier model involves the local

motion states like moving straight, turning, waggle and motionless. As described in
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(4.1) and (4.2), each of these local motion states is modeled either using a Gaussian

or using a mixture of Gaussians. The mean and the variance of the corresponding

Normal distributions are directly learnt from the training as

µ̂mi = E[(Xj −Xj−1)|mj = i] (4.6)

=
1

Ni

mj=mi
∑

j=1,2,...N

(Xj −Xj−1) (4.7)

Σmi = E[(Xj −Xj−1 − µmi)(X
j −Xj−1 − µmi)

T ] (4.8)

=

∑mj=mi
j=1,2,...N (Xj −Xj−1 − µ̂mi)(X

j −Xj−1 − µ̂mi)
T

Ni − 1
(4.9)

where, the summations are carried out only for the frames in which the annotated

motion state for that frame is mi, and the total number of such frames is denoted

by Ni. In the case of a mixture of Gaussians model (for turning), we use the EM

algorithm to learn the model parameters. In practice, learning dynamics is the

simplest of the three tiers of learning.

Learning Behavior: The second tier of the hierarchy involves the Markov

model for each behavior. For the ith behavior Bi we learn the model parameters

using maximum likelihood estimation. As an example let us assume that the insect

exhibited behavior Bi for frame 1 to N . In the training database, we have obtained

a corresponding sequence of motion states s1, s2, s3, ...., sN where sj is one of the

four possible motion states (straight,turn,waggle,motionless) exhibited in frame j.

We can learn the model parameters of the Markov model for behavior Bi by

Q̂i = arg max
Qi

P (s1:N/Qi); (4.10)

where Qi = [AkBi
]k=1..Ki represents the model parameters for behavior Bi. In our

current implementation, we have modeled behaviors for waggle dance, round dance

and a stationary bee. We have used Markov models of order 1, so that we need

to only estimate the transition probabilities between each motion state. These are
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estimated as given below.

ÂBi
(l, k) = E(P (st = k/st−1 = l)) (4.11)

=
Nkl

Nl

(4.12)

where, E is the expectation operator, Nl is the number of frames in which the

annotated motion state was ml and Nkl is the number of times in which the an-

notated motion state mk appeared immediately after motion state ml. Note that

since this step of the learning procedure concerns only a particular behavior Bi,

only the frames whose annotated behavior is Bi are taken into account. Learn-

ing the model parameters of a particular behavior depends upon two factors -the

inherent variability in the behavior and the amount of training data available for

that particular behavior. Some behaviors have significant variability in their ex-

ecutions and learning model parameters for these behaviors could be unreliable.

Moreover, some behaviors are uncommon and therefore, the amount of training

data available for these behaviors might be too little to accurately learn the model

parameters. Experiments to indicate the minimum number of frames one needs to

observe a behavior before one can learn the model parameters are shown in Section

4.3.7.

Switching between behaviors The third tier of the model involves the

switching between behaviors. The switching between behaviors is also modeled

as being Markovian with the transition matrix denoted as TB. The transition

matrix TB can be learned as,

T̂B(l, k) = E[Bj = k|Bj−1 = l]. (4.13)

Learning the switching model is the most challenging part of the learning phase.

Firstly, within a given length of training data, there might be very few transitions
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observed and therefore, sufficient data might not be available to learn the switching

matrix TB accurately. Secondly, there is really no particular ethological justifica-

tion to model the transitions between behaviors using a Markov model, though

in practice the model seems adequate. Therefore, once we learn the transition

matrix TB from the training data, we also ensure that every transition is possible,

i.e., TB(l, k) 6= 0∀(l, k), by adding a small value ǫ to every element in the matrix

and then normalizing the matrix so that it still represents a transition probability

matrix (sum of each row = 1 ).

4.3.6 Discriminability among Behaviors

The disadvantage in using supervised learning is that since learning for each be-

havior is independent of others, there is no guarantee that the learnt models are

sufficiently distinct for us to be able to distinguish among different behaviors.

There is reason, however, to believe that this would be the case since in actual

practice these behaviors are distinct enough. Nevertheless we need some quantita-

tive measure to characterize the discriminability between models. This would be

of great help especially when we have several behaviors.

Rabiner-Juang Distance

There are several measures for computing distances between Hidden Markov Mod-

els. In particular, one distance measure that is popular is the Rabiner-Juang

distance [82]. But such a distance measure is based on the KL distance and there-

fore captures the distance between the asymptotic observation densities. However,

in actual practice, we are always called upon to recognize the source model using

observation or state sequences of finite length. In fact, in our specific scenario, we
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need to re-estimate the behavior exhibited by the bee every few frames. There-

fore, in such situations we need to know how long a state/observation sequence is

required before we can disambiguate between two models.

Probability of N-Misclassification

Suppose we have D different Markov models M1..MD, Mi being of order Ki. We

define the Probability of N-Misclassification for Model Mi as the probability that a

state sequence of length N that is generated by model Mi is misclassified to some

model Mj, j 6= i using a maximum likelihood rule.

PMi
(NMiscl) = 1 −

∑

s1:N

P (s1:N/Mi)I(s1:N , i) (4.14)

where the summation is over all state sequences of length N and I(s1:N , i) is an

indicator function which is 1 only when P (s1:N/Mi) is greater than P (s1:N/Mj) for

all j 6= i. The number of terms in the summation is SN where S is the number

of states in the state space. Even for moderate sizes of S and N , this is difficult

to compute. But the summation will be dominated by few of the most probable

state sequences. So a tight lowerbound can be obtained by Monte Carlo methods

of sampling. An approximation to Probability of N-Misclassification can also be

obtained using Monte-Carlo sampling methods. This is done by generating K

independent state sequences Seq1, Seq2..SeqK each of length N randomly using

model Mi. For reasonably large K,

PMi
(NMiscl) ≈ 1 − 1/K

∑

k=1,...K

I(Seqk, i) (4.15)

Figure 4.4 shows the Probability of N-Misclassification for the three modeled be-

haviors Waggle, Round and the Stationary bee for different values of N . We choose

a window length N = 25 which provides us with sufficiently low misclassification
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Figure 4.4: Probability of N-Misclassification

errors while being small enough compared to average length of behaviors so as to

not smooth across behaviors.

4.3.7 Detecting/Modeling Anomalous Behavior

A change in behavior of the insect would result in the behavior model not being

able to explain the observed motion of the insect. When this happens we need to

be able to detect and characterize these abnormal behaviors so that the tracking

algorithm is able to continue to maintain track. A change in behavior can either

be slow or drastic. We use the observation likelihood and the ELL (Expected

negative log-likelihood of the observation given the model parameters) as proposed

in [156] [155] in order to detect drastic and slow changes in behavior.

Drastic Change: When there is a drastic change in the behavior of the insect,
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this would cause the tracking algorithm to lose track. Once it loses track, the image

within the shape model of the bee does not resemble the bee anymore. Therefore,

the observation likelihood decreases rapidly. This can be used as a statistic to

detect drastic changes in behavior. Once the anomalous behavior is detected, it

would of course be left to the expert to manually identify and characterize the

newly observed behavior.

Slow Change: When the change in system parameters is slow, i.e., the anoma-

lous behavior is not drastic enough to cause the tracker to lose track, we use a

statistic very closely related to the ELL proposed in [156] [155]. Let us assume

that we have modeled behavior M0. Supposing the actual behavior exhibited by

the insect is M1. We are required to decide whether the behavior exhibited is M0

or not with knowledge of the state sequence x1:N alone. Let Hypothesis H0 be

that the behavior being exhibited is M0 while Hypothesis H1 be that the behav-

ior exhibited is not M0, i.e.,M0. The likelihood ratio test for such a hypothesis is

given below. The state sequence x1:N was generated by model M0 iff,

P (M0/x1:N)

P (M0/x1:N)
≥ η η > 0 (4.16)

⇒ 1 − P (M0/x1:N)

P (M0/x1:N)
≥ η η > 0 (4.17)

⇒ P (M0/x1:N) ≤ 1/(η + 1) (4.18)

⇒ P (x1:N/M0)P (M0)/P (x1:N) ≤ 1/(η + 1) (4.19)

⇒ P (x1:N/M0) ≤ β β > 0 (4.20)

⇒ D = −log(P (x1:N/M0)) ≥ T T = −log(β) (4.21)

where, D is the decision statistic and T is the decision threshold.

When the bee exhibits an anomalous behavior, then the likelihood that the

state sequence observed was generated by the original model decreases as shown
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Figure 4.5: Abnormality Detection Statistic

above. Therefore, we can use D as a statistic to detect slow changes. When

D increases beyond a certain threshold T we detect anomalous behavior. Once

slow changes are detected, they can then be automatically modeled. This can be

done by learning a mixture model for the observed state sequence using principles

outlined in [15].

Since we did not have any real video sequence of an abnormal behavior we

performed an experiment on synthetic data. We generated an artificial sequence

of motion states for 500 frames. The first 250 frames correspond to the model

learnt for the waggle dance. The succeeding 250 frames were from a Markov

model of order 1, with transition probability matrix A. We computed the nega-

tive log-likelihood of the windowed state sequence, with a window length of 25.

This statistic D is shown in figure 4.5. Changes in model parameters are clearly
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visible at around frame 250 resulting in an increase in the negative log-likelihood

(equivalent to an exponential decrease in the probability of the windowed sequence

being generated from the waggle model). The anomalous behavior was automati-

cally detected at frame 265. Moreover, we also used the next 150 frames to learn

the parameters of the anomalous model(A). The estimated transition probability

matrix(Â) was very close to the actual model parameters.

A =



















.30 .30 .20 .20

.20 .25 .25 .30

.80 .10 .05 .05

.50 .10 .20 .20



















Â =



















.30 .22 .23 .25

.30 .18 .22 .30

.78 .13 .04 .05

.47 .06 .28 .19



















4.4 Shape and Behavior Encoded Particle Filter

We address the tracking problem as a problem of estimating the state X t
1 given the

image observations Y t
1 . Since both the state transition model and the observation

model are non-linear, methods like the Kalman filter are inadequate.

The particle filter [60] [39] [75] provides a method for recursively estimating

the posterior pdf P (Xt/Y
t
1 ) as a set of N weighted particles {X(i)

t , π
(i)
t }Ni=1., from

a collection of noisy observations Yt
1. The state parameters to be estimated are

the position and orientation of the bee in the current frame (X). The observation

is the color image of each frame (Yt) from which the appearance of the bee (Z
(i)
t )

can be computed for each hypothesised position(X
(i)
t ). The state transition and

the observation models are given by,

State Transition Model: Xt = FB(Xt−1, Nt) (4.22)

Observation Model: Yt = G(Xt,Wt) (4.23)
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where, Nt is the system noise and Wt is the observation noise. The state

transition function FB characterizes the state evolution for a certain behavior B.

In usual tracking problems, the motion model is used to characterize the state

transition function. In our current algorithm, the behavioral model described in

Section 3.1 is used as the state transition function. Therefore, the state at time t,

(Xt) depends upon the state at the previous frame (Xt−1), the behavioral model

and the system noise. The observation function G models the appearance of the

the bee (in the current frame) as a function of its current position(state Xt), and

observation noise. Once such a description for state evolution has been made, the

particle filter provides a method for representing and estimating the posterior pdf

P (Xt/Y
t
1 ) as a set of N weighted particles {X(i)

t , π
(i)
t }Ni=1. Then the state Xt can

be estimated as the MAP estimate as given below,

X̂MAP
t = arg max

Xt

π
(i)
t (4.24)

The complete algorithm is given below

1. Initialize the tracker with a sample set according to a prior distribution p(X0).

2. For Frame = 1, 2, ...

(a) For sample i = 1, 2, 3, ...N

• Resample Xt−1 = {π(i)
t−1}

• Predict the sample X
(i)
t by sampling from FB(X

(i)
t−1, Nt) where FB is a Markov

model for the behavior B estimated in the previous frame.

• Compute Weights for the particle using the likelihood model i.e., π
(i)
t =

p(Yt/X
(i)
t ). This is done by first computing the predicted appearance of the bee

using the function G and then evaluating its probability from the observation

noise model.

(b) Normalize the weights using π
(i)
t = π

(i)
t /

∑N

i=1 π
(i)
t so that the particles represent

a probability mass function.
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(c) Estimate the MAP or MMSE estimate of the state Xt. using the particles and

their weights.

(d) Compute the maximum likelihood estimate (ŝt)for the current motion state given

the position and orientation in the current and previous frame.

(e) Estimate the behavior of the bee using a ML estimate from the various behavior

models as B̂ = arg maxj P (ŝt
t−24/Bj)., where Bjforj = 1, 2, .. indicate the behaviors

modeled.

4.4.1 Prediction and Likelihood Model

In typical tracking applications it is customary to use motion models for prediction

[75] [88] [13] [179]. We use behavioral models in addition to motion models. The

use of such models for prediction improves tracking performance significantly.

Given the location of the bee in the current frame (Xt) and the image observa-

tion given by (Yt), we first compute the appearance (Zt) of the bee in the current

frame (i.e., the color image of the three ellipse anatomical model of the bee ).

Therefore, given this appearance (Z
(i)
t ) for each hypothesised position X

(i)
t , the

weight for the ith particle (π
(i)
t ) is updated as

π
(i)
t = p(Yt/X

(i)
t ) = p(Z

(i)
t /X

(i)
t ) (4.25)

where, Yt is the observation. Since the appearance of the bee changes drastically

over the video sequence, we use an appearance model consisting of multiple color

exemplars(A1, A2, .., A5). The RGB components of color are treated independently

and identically. The appearance of the bee in any given frame is assumed to be

Gaussian centered around one of these five exemplars, i.e.,

P (Zt) =
1

5

i=5
∑

i=1

0.2 N(Z;Ai,Σi) (4.26)
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whereN(Z;Ai,Σi) stands for the Normal distribution with mean Ai and covariance

Σi. In practice, we modeled the covariance matrix as a diagonal matrix with equal

elements on the diagonal, i.e., Σi = σI, where I is the identity matrix. The mean

observation intensities A1 − A5 are learnt by specifying the location of the bee

in 5 arbitary frames of the video sequence. In practice, we also used 4 of these 5

exemplars from the training database, while the 5th exemplar was estimated from

the initialization provided in the first frame of the current video sequence. In either

case the performance was similar. For extremely challenging sequences, with large

variations in lighting the former method performed better than the latter.

4.4.2 Inference of Dynamics, Motion and Behavior

Inference on the three tier hierarchical model is performed using a greedy approach.

The inference for the lower tiers is first performed independently and these esti-

mates are then used in the inference for the next tier. Estimating the current

position and orientation of the insect (X̂ t) is performed using a particle filter with

observation and state transition models as described in the previous section. Once

the position and the orientation are estimated using the particle filter, we then use

these estimates to infer about the current motion state. The maximum likelihood

estimate for the current motion state given the position and orientation in the

current and previous state is estimated as

ŝtML = arg max
mi i=1,2,3...

P (X̂ t − X̂ t−1|st = mi) (4.27)

Finally, we also need to estimate the behavior of the insect in the current frame.

Once again, we assume that the inference for the lower tiers has been completed

and based on the estimated motion states ŝ1:t, we infer the maximum likelihood

estimate for the current behavior. In order to perform this, we also need to decide
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an appropriate window length W . From section 4.3.7, we see that a window length

W of 25 is a good trade-off between recognition performance and smoothing across

behavior transitions. Therefore, we do a maximum likelihood estimation for the

behavior using a window length of 25 frames as

B̂ = arg max
j
P (ŝtt−W+1|Bj). (4.28)

Since the behavior model Bj, is a simple Markov model of order 1 given by the

transition matrix TBj
, this maximum likelihood estimate is easily obtained as

B̂ = arg max
j
P (ŝtt−W+1|TBj

) (4.29)

= arg max
j

∏

i=1,2,..W

TBj
(ŝt−i, ŝt+1−i) (4.30)

4.5 Experimental Results

4.5.1 Experimental Methodology

For a training database of videos, manual tracking was performed, i.e., at each

frame the position, motion and the behavior of the bee was manually labeled.

Following the steps outlined in Section 4.3.5, the model for dynamics, behavior

and the behavior transitions was learnt. During the test phase, for every test video

sequence, the user first identifies the bee to be tracked and initializes the position

of the bee by identifying four extreme points on the abdomen, thorax and head

respectively. Then the tracking algorithm uses this initialization with a suitably

chosen variance, as the prior distribution p(X0) and automatically tracks both the

position and the behavior of the bee as described in Section 4.4. This is a significant

difference in experimental methodology from most other previous work. In [47],

they first obtain manually tracked data for the entire video sequence to be analysed.
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Then the Markov model is used in order to classify the various behaviors. In other

related work, like [115] and [116], for each test video sequence, the tracking is

independently accomplished using a tracking algorithm [88], that has no knowledge

of the behavior models. Once the entire video sequence is tracked, then analysis of

the tracked data is performed using specific behavior models. The training phase

for our algorithm is similar to those in [47], [115] and [116] in the sense that all

these algorithms use some kind of labeled data to learn the model parameters for

each behavior. But, our algorithm differs from all the others mentioned above in

that the behavior model thus learnt is used as a prior for tracking, thus enhancing

the tracking accuracy. Moreover, this also means that manual labeling is required

only for the training sequences and not for any of the test videos.

4.5.2 Relation to Previous Work

Previous work in tracking and analyzing the behaviors of bees, have dealt either

with the visual tracking problem [88] or with that of accurately modeling and

analyzing the tracked trajectories of the insects [115] [116] [47]. This is the first

study that tackles both tracking and behavior modeling in a closed loop manner.

By closing the loop, and enabling the tracking algorithm to be aware of the behavior

models, we have improved the tracking performance significantly. Experiments in

the next section will demonstrate the improvement of the tracking performance for

two video sequences that have drastic motions. Once the results of the tracking

algorithm are available, one can in principle analyze the tracked trajectories using

any appropriate behavior model - the hierarchical Markov model or the p-SLDS. In

all the experiments reported in this paper, we have used the hierarchical Markov

motion model to analyze the behavior of the bees.
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4.5.3 Tracking dancing bees in a hive

We conducted tracking experiments on video sequences of bees in a hive. In all the

experiments reported the training data and the test data were mutually exclusive.

In the videos, the bees exhibited three behaviors- the waggle dance, the round

dance and a stationary bee. In all our simulations we used 300 to 600 particles.

The video sequences ranged between 50 frames to about 700 frames long. It is

noteworthy that when a similar tracking algorithm without a behavioral model

was used for tracking, it lost track within 30-40 frames (See Table 4.1 for details).

With our behavior-based tracking algorithm, we were able to track the bees during

the entire length of these videos. We were also able to extract parameters like

the orientation of the various body parts during each frame over the entire video

sequences. We used these parameters to automatically identify the behaviors. We

also verified this estimate manually and found it to be robust and accurate.

Figure 4.6 shows the structural model of the tracked bee superimposed on the

original image frame. In this particular video, the bee was exhibiting a waggle

dance. The results are best viewed in color since the tracking algorithm had

color images as observations. The figure shows the top five tracked particles (

blue being the best particle and red being the fifth best particle). As is apparent

from the sample frames the appearance of the dancer varies significantly within

the video. These images display the ability of the tracker to maintain track even

under extreme clutter and in the presence of several similar looking bees. Frames

30-34 show the bee executing a waggle dance. Notice that the abdomen of the bee

waggles from one side to another.
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Figure 4.6: Sample Frames from a tracked sequence of a bee in a beehive. Images

show the top 5 particles superimposed on each frame. Blue denotes the best

particle while red denotes the fifth best particle. Frame Numbers row-wise from

top left :30, 31, 32, 33, 34 and 90. Figure best viewed in color.

Occlusions

Figure 4.7 shows the ability of the behavior based tracker to maintain track during

occlusions in two different video sequences. There is significant occlusion in frames

170, 172 and 187 of video sequence 1. In fact, in fame 172, occlusion forces the

posterior pdf to become bimodal (another bee in close proximity). But we see

that the track is regained when the bee emerges out of occlusion in frame 175.

In frame 187, we see that the thorax and the head of the bee are occluded while

the abdomen of the bee is visible. Therefore the estimate of the abdomen is very

precise (all five particles shown indicate the same orientation of abdomen). Since

the thorax is not visible we see that there is a high variance in the estimate of the

orientation of the thorax and the head. Structural modeling has ensured that, in
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Figure 4.7: Ability of the behavior based tracker to maintain tracking during

occlusions in two different video sequences. Images show the top 5 particles super-

imposed on each frame- Blue denotes the best particle and red denotes the fifth

best particle. Row 1: Video 1- Frames 170, 172, 175 and 187 and Row 2: Video

2- Frames 122, 123, 129 and 134. Figure best viewed in color.

spite of the occlusion, only physically realizable orientations of the thorax and the

head are maintained. In frame 122 of video sequence 2, we see that another bee

completely occludes the bee being tracked. This creates confusion in the posterior

distribution of the position and orientation. But, behavior modeling ensures that

most particles still track the correct bee. Moreover, at the end of occlusion in

frame 123, the track is regained. Frame 129 in video sequence 2, shows another

case of severe occlusion. But, once again, we see that the tracker maintains track

during occlusion and immediately after occlusion ( Frame 134). Thus behavior

modeling helps to maintain tracking under extreme clutter and severe occlusions.
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Table 4.1: Comparison of our Behavior based tracking algorithm(BT) with Visual

tracking (VT) [179] and the same visual tracking algorithm enhanced with our

shape model (VT-S)

Video Name Video 1 Video 2

Total Frames 550 200

Algorithm VT VT-S BT VT VT-S BT

Number of 500 500 500 500 500 500

Particles

Successful No No Yes No No Yes

Tracking

Number of 14 10 0 5 5 0

Missed Tracks

Average No. of 37 50 550 33 33 200

Frames Tracked

4.5.4 Importance of Shape and behavioral Model for Track-

ing

To quantify the importance of the shape and the behavioral model in the

above-mentioned tracking experiments, we also implemented another recent and

successful tracking algorithm also based on a particle-filter based inference. We

implemented the visual tracking algorithm based on an adaptive appearance model

described in [179]. We also implemented a minor variation of this algorithm by

incorporating our shape model within their framework. In either case we spent a

significant amount of time and effort in varying the parameters of the algorithm so
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as to obtain the best possible tracking results with these algorithms. We compare

the performance of our tracking algorithm to the two approaches mentioned above

on two different video sequences in Table 4.1. Both these videos consisted of a

hand-held camera held over the vertical face of the bee-hive. There were several

bees within the field of view of each of these videos, but we were interested in track-

ing the dancing bees in both videos. So, we initialized the tracking algorithm on the

dancers in all these experiments. Moreover, these video sequences were also specif-

ically chosen since the bees exhibited drastic motion changes during the videos and

the illumination and lighting remained fairly consistent during the course of these

videos. This gives us a nice testbed to evaluate the performance of the shape and

behavior model fairly independent of other challenges in tracking like illumina-

tion. The incorporation of the shape constraints improves the performance of the

tracking algorithm showing that an anatomically correct model improves tracking

performance. We declared that a tracking algorithm ”Lost Track” when the dis-

tance between the estimated position of the bee and the actual position of the bee

on the image was greater than half the length of the bee. We see that while the

proposed tracking algorithm was able to successfully track the bee over the length

of the entire video sequences, the other approaches implemented were not able to.

The table also clearly shows that the behavior aided tracking algorithm that we

propose significantly outperforms the adaptive appearance based tracking [179].

4.5.5 Comparison with Ground Truth

We validated a portion of the tracking result by comparing it with a ”ground

truth” track obtained using manual (”point and click”) tracking by an experienced

human observer. We find that the tracking result obtained using the proposed
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method is very close to manual tracking. The mean differences between manual

and automated tracking using our method are given in Table 4.2. The positional

differences are small compared the average length of the bee, which is about 80

pixels (from front of head to tip of abdomen).

Table 4.2: Comparison of our tracking algorithm with Ground Truth

Average positional difference

between Ground Truth

and our algorithm

Center of Abdomen 4.5 pixels

Abdomen Orientation 0.20 radians (11.5 deg)

Center of Thorax 3.5 pixels

Thorax orientation 0.15 radians (8.6 deg)

4.5.6 Modes of failure

Even in the presence of the improved behavior model based tracking algorithm,

there are some extremely challenging video sequences, where the improved tracking

algorithm resulted in some missed tracks. The primary modes of failure are

• Illunination: We are interested in studying and analyzing bee dances. Bee

dances are typically performed in the dark environment of the bee-hive.

Since the bees typically prefer to dance only in minimal lighting, some of

the videos end up being quite dark. Moreover, there are also significant il-

lumination changes depending upon the exact position of the dancer on the
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bee hive. These illumination changes posed the most significant challenge for

the tracking algorithm and most of the tracking failures can be attributed to

illumination based challenges in tracking. Even in such videos, the tracking

algorithm with the behavior and anatomical model, outperforms the adap-

tive appearance based tracking algorithm [179]. Recently, a lot of research

effort has been invested in studying and developing appearance models that

are either robust or invariant to illumination changes [52] [173]. Augmenting

the appearance model with illumination invariant appearance models might

reduce some of the errors caused due to illumination changes. Since the focus

of this work was on behavior modeling, we did not systematically analyze

the effect of incorporating such illumination invariant appearance models in

our algorithm.

• Occlusions: Another reason for some of the observed tracking failures, is

occlusions. The bee hive is full of several bees which are very similar in

appearance. Sometimes, the dancing bee disappears below other bees and

then reappears after a few frames. As described in Section 4.5.3, when the

dancing bee is occluded for a relatively small number of frames, the algorithm

is able to regain track when the bee emerges out of occlusions (refer Figure

4.7). But in some videos, the dancing bee remains occluded for over 30 frames

or more. during such cases of extreme occlusions, the tracking algorithm is

unable to regain track. During such cases of extreme occlusions, the only

reasonable way to regain track would be to design an initialization algorithm

that can potentially discover dancing bees in a hive. This would be an

extremely challenging task, considering the complex nature of motions in a

bee hive and the fact that there are several moving bees in every frame of the
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video. In practice, it might be a good idea to perform manual reinitialization

in such videos.

4.5.7 Estimating Parameters of the Waggle Dance

Foraging honeybees communicate the distance, direction and the attractiveness of

the food source through the waggle dance. The details of the waggle dance were

discussed in detail in Section 4.1. The duration of the waggle portion of the dance

and the orientation of the waggle axis are some of the parameters of interest while

analyzing the bee dances. The duration of the waggle portion of the dance may be

estimated by carefully filtering the orientation of the thorax and the abdomen of

a honeybee as it moves around in its hive. Moreover, the orientation of the waggle

axis can also be estimated from the orientation of the thorax during the periods

of waggle.

Figure 4.8 shows the estimated orientation of the abdomen and the thorax in a

video sequence of around 600 frames. The orientation is measured with respect to

the vertically upward direction in each image frame and a clockwise rotation would

increase the angle of orientation while an anticlockwise rotation would decrease the

angle of orientation.

The waggle dance is characterized by the central waggling portion which is

immediately followed by a turn, a straight run another turn and a return to the

waggling section as shown in Figure 4.3. After every alternate waggling section the

direction of the turning is reversed. This is clearly seen in the orientation of both

abdomen and the thorax. The sudden change in slope (from positive to negative

or vice-versa) of the angle of orientation denotes the reversal of turning direction.

During the waggle portion of the dance, the bee moves its abdomen from one side
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Figure 4.8: The orientation of the Abdomen and the Thorax of a bee in a video

sequence of about 600 frames

to another while continuing to move forward slowly. The large local variation in

the orientation of the abdomen just before every reversal of direction shows the

waggling nature of the abdomen. Moreover, the average angle of the thorax during

the waggle segments denotes the direction of the waggle axis.

In order to estimate the parameters of the waggle dance, we use some heuristics

described below. During the waggling portion of the dance, the bee moves its

abdomen from one side to another in the direction transverse to the direction of

motion. The average absolute motion of the center of the abdomen about an axis

transverse to the axis of motion is used as a waggle detection statistic. When this

statistic is large then the probability of waggle during that particular frame is large.
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Table 4.3: Comparison of Waggle Detection with hand labeling by expert

Automated Labeling Expert Labeling

(Frame Numbers) (Frame Numbers)

Waggle 1 46 - 55 46 - 56

Waggle 2 88 - 95 89 - 97

Waggle 3 127 - 141 127 - 140

Waggle 4 171 - 180 171 - 181

Waggle 5 210 - 222 211 - 222

Waggle 6 255 - 274 257 - 274

Waggle 7 406 - 424 407 - 423

Waggle 8 444 - 461 444 - 461

Waggle 9 486 - 502 486 - 502

Waggle 10 532 - 543 534 - 544

Moreover, we also recognize that the waggle portion of the dance is followed by a

change in the direction of turning. Therefore, only those frames that are followed

by a change in direction of turning and have a high ’waggle detection statistic’ are

labeled as waggle frames. Once the frames in which the bee waggles are estimated,

it is then relatively straightforward to estimate the waggle axis. The waggle axis

is estimated as the average orientation of the thorax during a single waggle run.

Table 4.3 shows the frames that were detected as waggle frames automatically. We

also hand-labeled the same video sequence by an expert. The Table also shows

the frames that were labeled as ’waggle’ by the expert. There were a total of 138

frames that were labeled as ’waggle’ by the expert. Of these 138 frames, 133 frames

were correctly labeled automatically using the procedure described above.
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4.6 Conclusions and Future Work

We proposed a method using behavioral models to reliably track the position/orientation

and the behavior of an insect and applied it to the problem of tracking bees in a

hive. We also discussed issues in learning models, discriminating between behav-

iors and detecting and modeling abnormal behaviors. Specifically, for the waggle

dance, we also proposed and used some simple statistical measures to estimate

the parameters of interest in a waggle dance. The modeling methodology is quite

generic and can be used to model activities of humans by using appropriate fea-

tures. We are working to extend the behavior model by modeling interactions

among insects. We are also looking to extend the method to problems like analyz-

ing human activities.
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Chapter 5

Coded Aperture Photography for

Light-Field Capture

In this chapter, we describe a theoretical framework for reversibly modulating 4D

light fields using an attenuating mask in the optical path of a lens based camera.

Based on this framework, we present a novel design to reconstruct the 4D light field

from a 2D camera image without any additional refractive elements as required

by previous light field cameras. The patterned mask attenuates light rays inside

the camera instead of bending them, and the attenuation recoverably encodes the

rays on the 2D sensor. Our mask-equipped camera focuses just as a traditional

camera to capture conventional 2D photos at full sensor resolution, but the raw

pixel values also hold a modulated 4D light field. The light field can be recovered

by rearranging the tiles of the 2D Fourier transform of sensor values into 4D planes,

and computing the inverse Fourier transform. In addition, one can also recover

the full resolution image information for the in-focus parts of the scene.
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5.1 Introduction

The trend in computational photography is to capture more optical information

at the time of capture to allow greater post-capture image processing abilities.

The pioneering work of Ng et al. [112] has shown a hand-held plenoptic camera

where the user can adjust focus and aperture settings after the picture has been

taken. The key idea is to capture the entire 4D light field entering via the lens

and incident on the camera sensor. In a conventional camera, the sensed 2D image

is a 2D projection of the 4D light field [113] and it is not possible to recover the

entire 4D light field. Using a clever arrangement of optical elements, it is possible

to re-bin the 4D rays and capture them using a 2D sensor [57, 112]. These lens

arrays perform the optical implementation of the two plane parameterization of

the light field [61,95].

Eventually, advances in computational photography may free us from nearly all

of the adjustments, settings, and hard choices a photographer must make before

”taking the picture”. Recent publications explain ways to change long-standing

photographic procedures so that we can re-light, re-color [5,45,127], re-expose, re-

position, re-arrange [3], re-time [133], and gently re-animate our captured visual

experiences long after the time of capture itself. We are particularly interested in

how conventional single-lens film-like cameras might better capture what we want

to see when we press the camera’s shutter release.

For example, inspired by Adelson’s early plenoptic camera [2], Ng et al. [112]

and Georgiev et al. [57] both developed a hand-held SLR camera that gathers a

fully 4D light field in a single shutter-click. ’Re-binning’ sensor data from these

cameras can approximate the output of a conventional 2D camera, but it also allows

users to modify their focussing distances, change the depth of focus (aperture), and
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make mild viewpoint changes. This adjustability comes at a high cost in image

resolution, however. Each camera uses clever sets of lens elements to arrange the

4D set of rays that enter the camera into an interleaved set of ’sub-images’ on the

sensor, and both apply the 2-plane parameterization introduced with lightfields

and lumigraphs [61, 95]. The number of interleaved images divides the resolution

of each; Ng’s 16Mpixel camera achieves fine angular resolution (14x14) but modest

spatial resolution (320x240), while Georgiev et al. chose lower angular resolution

and higher spatial resolution. This tradeoff is difficult to modify for either camera

design, because it would require precise replacements for lens arrays.

However, optical re-binning of rays forces a fixed and permanent tradeoff be-

tween spatial and angular resolution via the array of lenses. In this chapter, we

describe novel hybrid imaging/light field camera designs that are much more easily

adjustable; users change a single attenuating mask rather than arrays of lenses.

We call this Dappled Photography, as the mask shadows the incoming light and

dapples the sensor. We exploit the fact that light rays can be linearly combined:

rather than sense each 4D ray on its own pixel sensor, our design allows sensing

linearly independent weighted sums of rays, rays combined in a coded fashion that

can be separated by later decoding. Our mapping from 4D ray space to a 2D sensor

array exploits heterodyning methods [49] that are best described in the frequency

domain. By exploiting the modulation and convolution theorems [119] in the fre-

quency domain, we derive simple attenuating mask elements that can be placed

in the camera’s optical path to achieve Fourier domain re-mapping. No additional

lenses are necessary, and we can compute decoded rays as needed in software.

The mask-encoded 2D/4D hybrid camera provide: (a) 4D light field at low

spatial resolution, in addition to a full resolution 2D image of the parts of the
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scene that were in focus at capture time; and (b) full resolution digital refocusing

for layered Lambertian scenes.

5.1.1 Contributions

We present a set of techniques to encode and manipulate useful portions of a 4D

light field.

• We derive a 4D Fourier domain description of the effect of placing an atten-

uating mask at any position within a conventional 2D camera.

• We identify a new class of 4D cameras that re-map the Fourier transform of

4D ray space onto 2D sensors. Previous 4D cameras used 2D lens arrays to

project 4D ray-space itself rather than it’s Fourier transform.

• We achieve this frequency domain re-mapping using a single transmissive

mask, and our method does not require additional optical elements such as

lens arrays.

Heterodyne Light Field Camera: This design is based on the modulation

theorem in the 4D frequency domain. We capture the light field using a 4D version

of the method known as ’heterodyning’ in radio. We create spectral tiles of the

light field in the 4D frequency domain by placing high-frequency sinusoidal pattern

between the sensor and the lens of the camera. To recover the 4D light field, we

take the Fourier transform of the 2D sensed signal, re-assemble the 2D tiles into

a 4D stack of planes, and take the inverse Fourier transform. Unlike previous 4D

cameras that rely on lens arrays, this hybrid imaging/light field design does not

force resolution tradeoffs for in-focus parts of the scene. The mask does not bend
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rays as they travel from scene to sensor, but only attenuates them in a fine, shadow-

like pattern. If we compensate for this shadowing, we retain a full-resolution 2D

image of the parts of the scene that were in focus, as well as the lower-resolution

4D light field we recover by Fourier-domain decoding. A prototype for this design

is shown in Figure 5.1.

5.1.2 Benefits and Limitations

Mask-based hybrid imaging/light field cameras offer several advantages over pre-

vious methods. An attenuating mask is far simpler and less costly than lenses or

lens arrays, and avoid errors such as spherical, chromatic aberration, coma, and

mis-alignment. Simpler mounts and flexible masks may allow camera designs that

offer user-selectable masks; photographers could then select any desired tradeoff

in angle vs. spatial resolution. The design of Ng et al. [112] matches main-lens

aperture (f-stop) to the micro-lens array near the detector to avoid gaps or overlaps

in their coverage of the image sensor; mask-only designs avoid these concerns. Our

mask based designs also impose limitations. Masks absorb roughly 50% of usable

light that enters the lens.

5.2 Basics

The Plenoptic function [1] is a 5D function (ignoring wavelength, polarization, and

time) that represents the radiance in every direction (θ, φ ), at every point (x, y,

z ) in free space. This function is redundant in a space free of occluders, and

reduces to a 4D function called the light field [95] [61]. This light-field is a 4D

quantity that completely characterizes light transport in a space free of occluding
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Figure 5.1: Prototype camera designs. (Top Left) Heterodyne light field camera

holds a narrowband 2D cosine mask (shown in bottom left) near the view camera’s

line-scan sensor. (Top Right) Encoded blur camera holds a coarse broadband mask

(shown in bottom right) in the lens aperture.

objects. A popular light field parameterization is the two-plane parameterization.

Two parallel planes separated by a finite distance describe all the rays between

them. This 4D parameterization, L(u; v; s; t), is frequently used to describe and

understand image formation in cameras and image based rendering techniques.

For visualization purposes, we consider a 2D light field space (LS), with one

spatial dimension x and one angular dimension θ and a 1D detector as shown

in Figure 5.2. We denote variables by lower case letters and their corresponding

Fourier domain representations by upper case letters. Let l(x, θ) denote the 2D

light field parameterized by the twin plane parameterization as shown in Figure 5.2.

The θ-plane is chosen to be the plane of the main lens (or the aperture stop

for cameras composed of multiple lens) of the camera. For the case of planar

Lambertian object, we assume that the x-plane coincides with the object plane.
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Figure 5.2: (Top) In ray-space, focused scene rays from a scene point converge

through lens and mask to a point on sensor. Out of focus rays imprint mask

pattern on the sensor image. (Bottom) In Fourier domain. Lambertian scenes lack

θ variation & form a horizontal spectrum. Mask placed at the aperture lacks x

variation & forms a vertical spectrum. The spectrum of the modulated light field

is a convolution of two spectrums. A focused sensor measures a horizontal spectral

slice that tilts when out-of-focus.

5.2.1 Effects of Optical Elements on the Light Field

We now discuss the effect of various optical elements such as lens, aperture and

sensor to the 2D light field in frequency domain, which we refer as Fourier domain

light field space (FLS). The (x, θ) space is referred to as the primal domain.

Sensor: The image formed on a 1D sensor is a 1D projection of the 2D light

field entering the camera, which also corresponds to a slice of the light field in

Fourier domain. For different focus settings, the obtained images correspond to

slices at different angles/trajectories [113].

Lens: A thin lens shifts the x-plane of the light field to the conjugate plane

according to the thin-lens equation. The lens also inverts the x-plane of the light

field.

Aperture: The aperture of a camera acts as a limiter, allowing only the light

rays that pass through the aperture to enter the camera. The light field l after
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passing through the aperture is given by

la(x, θ) = l(x, θ)a(x, θ), (5.1)

where a(x, θ) is the aperture modulation function given by a(x, θ) = rect( θ
2θ0

),

and 2θ0 is the size of the aperture. From (5.1), the Fourier transform of the light

field after the aperture is given by

LA(fx, fθ) = L(fx, fθ) ⊗ A(fx, fθ), (5.2)

where ⊗ denotes convolution. L and A are the Fourier transforms of the light field

(before the aperture) and the aperture modulation function respectively. Since

a(x, θ) is a rect function,

A(fx, fθ) = 2a0sinc(2a0fθ). (5.3)

5.2.2 FLS and Information Content in the Light Field

A light field is a 4D representation of the light rays in the free-space. A 2D

sensor can only sample a 2D slice of this light field. Depending on the scene, the

information content in the light field is concentrated in different parts of the light

field.

Planar Lambertian Object

Let us assume that the scene being imaged consists of a planar Lambertian object

at the focus plane. Since there are no angular variations in the irradiance of rays

from a Lambertian object, the information content of its light field is restricted to

be along the fx axis (Figure 5.2). Thus, L(fx, fθ) = 0,∀fθ 6= 0. Since L(fx, fθ)

is independent of fθ and A(fx, fθ) is independent of fx, from (5.2) and (5.3) we
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obtain,

LA(fx, fθ) = L(fx, fθ) ⊗ A(fx, fθ), (5.4)

= L(fx, 0)A(0, fθ), (5.5)

= 2a0L(fx, 0)sinc(2a0fθ). (5.6)

The sensed image is a slice of this modulated light field. When the sensor is in

focus, all rays from a scene point converge to a sensor pixel. Thus, the in-focus

image corresponds to a slice of LA(fx, fθ) along fx (fθ = 0). Let y(s) and Y (fs)

denotes the sensor observation and its Fourier transform respectively. For an in-

focus sensor

Y (fs) = LA(fs, 0) = 2a0L(fs, 0). (5.7)

Thus, no information is lost when the Lambertian plane is in focus.

When the sensor is out of focus, the sensor image is a slanted slice of the

modulated light field as shown in Figure 5.2, where the slant angle λ depends on

the degree of mis-focus. Thus,

Y (fs) = LA(fs cosλ, fs sinλ),

= 2a0L(fs cosλ, 0)sinc(2a0fs sinλ)

(5.8)

Thus, for out of focus setting, the light field gets attenuated by the frequency

transform of the aperture modulation function, which is a sinc function for an

open aperture. This explains the attenuation of the high spatial frequencies in

the captured signal when the scene is out of focus. Thus, we need to modify

the aperture so that the resulting aperture modulation function has a broadband

frequency response, ensuring that high spatial frequencies are preserved in out of

focus images.
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Incidentally, for a pinhole camera, the aperture function is a Dirac delta func-

tion and the aperture modulation function is broadband in fθ. This explains why

the images captured via a pinhole camera are always in-focus. However, a pinhole

camera suffers from severe loss of light, reducing the signal to noise ratio (SNR) of

the image.

Bandlimited Light Fields

For general scenes, we assume that the light field is bandlimited to fx0 and fθ0 as

shown in Figure 5.4: L(fx, fθ) = 0 ∀|fx| ≥ fx0, |fθ| ≥ fθ0. A traditional camera

can only take a 2D slice of the 4D light field. To recover the entire information

content of the light field, we need to modulate the incoming light field so as to

redistribute the energy from the 4D FLS to the 2D sensor.

5.3 Heterodyne Light Field Camera

In this section, we show that the required modulation can be achieved in frequency

domain by the use of an appropriately chosen 2D mask placed at an appropriate

position between the lens and the sensor. Although a mask is only a 2D modulator,

in tandem with the lens, it can achieve the desired 4D modulation. We believe

that this is the first design of a single-snapshot light field camera that does not

use any additional lenses or other refractive elements.
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Figure 5.3: Heterodyne light field camera. (Top) In ray-space, the cosine mask at

d casts soft shadows on the sensor. (Bottom) In Fourier domain, scene spectrum

(green on left), convolved with mask spectrum (center) made of impulses creates

offset spectral tiles (right). Mask spectral impulses are horizontal at d = 0, vertical

at d = v, or tilted.

5.3.1 Modulation Theorem and its Implications

According to the modulation theorem [119], when a baseband signal s(x) is multi-

plied by a cosine of frequency f0, it results in copies of the signal at that frequency.

F[cos(2πf0x)s(x)](fx) =
1

2
(F (fx − f0) + F (fx + f0)), (5.9)

where F[s(x)](fx) = F (fx) denotes the Fourier transform of s(x). This principle

has been widely used in telecommunications and radio systems. The baseband

signal is modulated using a carrier signal of much higher frequency so that it can

be transmitted over long distances without significant loss of energy. The receiver

demodulate the received signal to recover the baseband signal. In essence, what
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Figure 5.4: Spectral slicing in heterodyne light field camera. (Left) In Fourier

domain, the sensor measures the spectrum only along the horizontal axis (fθ = 0).

Without a mask, sensor can’t capture the entire 2D light field spectrum (in blue).

Mask spectrum (gray) forms an impulse train tilted by the angle α. (Middle)

By the modulation theorem, the sensor light field and mask spectra convolve to

form spectral replicas, placing light field spectral slices along sensor’s broad fθ = 0

plane. (Right) To re-assemble the light field spectrum, translate segments of sensor

spectra back to their original fx, fθ locations.

we wish to achieve is very similar. We would like to modulate the information in

the angular variations of the light field (fθ frequencies) to higher frequencies in fx

so that the high resolution 1D sensor may be able to sense this information.

Figure 5.4 shows a bandlimited light field in frequency domain. For simplicity,

let us assume the x plane to be the conjugate plane, so that the sensor image

corresponds to a slice along fx (horizontal slice). Now consider a modulator whose

frequency response is composed of impulses arranged on a slanted line as shown

in Figure 5.4. If the light field is modulated by such a modulator, each of these

impulses will create a spectral replica of the light field at its center frequency.

Therefore, the result of this convolution will be several spectral replicas of the light

field along the slanted line. The elegance of this specific modulation is that the

horizontal slice (dashed box) of the modulated light field spectrum now captures

all the information in the original light field. Note that the angle α is designed
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Figure 5.5: Ray space and Fourier domain illustration of light field capture. The

flatland scene consists of a dark background planar object occluded by a light

foreground planar object. In absence of a mask, the sensor only captures a slice

of the Fourier transform of the light field. In presence of the mask, the light field

gets modulated. This enables the sensor to capture information in the angular

dimensions of the light field. The light field can be obtained by rearranging the

1D sensor Fourier transform into 2D and computing the inverse Fourier transform.

based upon the required frequency resolution in θ and x, and the bandwidth of

the incoming light field.
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Heterodyne receivers in telecommunications demodulate the incoming signal to

recover the baseband signal. In our case, demodulation must also redistribute the

energy in the sensed 1D signal to the 2D light field space. The process of demod-

ulation consists of rearranging the frequency response of the sensor to recover the

bandlimited light field as shown in Figure 5.4.

5.3.2 Mask based Heterodyning

Now we show that the required modulation can be achieved by placing a suitably

chosen attenuating mask in the optical path of a conventional camera.

Masks as Light Field Modulators: A mask is essentially a special 1D code

c(y) (2D for 4D light field) placed in the optical path. In flatland, although the

mask is 1D, its modulation function is 2D (Figure 5.3). The mask affects the

light field differently depending on where it is placed. If the mask is placed at

the aperture stop (θ plane), then the effect of mask is to multiply the aperture

modulation function by the mask modulation function. The mask modulation

function m(x, θ) is then given by m(x, θ) = c(y = θ), i.e., the modulation function

is independent of x. Intuitively, when placed at the θ-plane, the mask affects all

rays at an angle θ in similar way, independent of the scene point from which they

are originating.

If the mask is placed at the conjugate plane, it attenuates all rays (independent

of θ) for same x equally. This is because at the conjugate plane, all rays originating

from a point on the plane of focus converge to a single point. Thus, the mask

modulation function changes to m(x, θ) = c(y = x).

Thus, we see that the modulation function corresponding to placing the same

code at the aperture and the conjugate plane are related by a rotation of 90◦ in the
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2D light field space. Moreover, as the 1D code is moved from the aperture plane

to the plane of the sensor, the resulting mask modulation function gets rotated in

2D as shown in Figure 5.3.

Let v be the distance between the aperture and the conjugate plane. If the

mask c(y) is placed at a distance d from the conjugate plane, the mask modulation

function is given by

M(fx, fθ) = µ2C(µ
√

f 2
x + f 2

θ )δ(fθ cosα− fx sinα), (5.10)

where C denotes the Fourier transform of the 1D mask and µ = 1/
√

(d/v)2 + (1 − (d/v))2.

The angle α is given by

α = arctan(d/(v − d)) (5.11)

In other words, the mask modulation function has all its energy concentrated

on a line in the 2D FLS space. The angle α of this line with respect to the fx axis

depends upon the position of the mask. When the mask is placed at the conjugate

plane (d = 0), the angle α is equal to 0. As the mask moves away from the

conjugate plane towards the aperture, this angle increases to 90◦ at the aperture

plane as shown in Figure 5.3,

Optimal Mask Position: In order to capture the 2D light field, we need the

modulation function M(fx, fθ) to be a series of impulses at an angle α given by

α = arctan
fθR
2fx0

, (5.12)

where fx0 is the bandwidth of the light field along the fx axis and fθR represents

the desired frequency resolution along the fθ axis. For example, in Figure 5.4, the

frequency resolution has been depicted as being equal to fθR = (2/5)fθ0, where fθ0

is the bandwidth of the light field along the fθ axis. Thus, for capturing a light

field of a given bandwidth, the physical position of the mask can be calculated
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from (5.12) and (5.11). In practice, since the spatial resolution is much larger than

the angular resolution, α is very small, and therefore the mask needs to be placed

close to the sensor.

Optimal Mask Pattern: To achieve M(fx, fθ) as a set of 1D impulses on

a slanted 2D line, the Fourier transform C(f) of the 1D mask should be a set

of impulses. Let 2p + 1 be the number of impulses in M(fx, fθ). The Fourier

transform of the 1D mask is then given by

C(f) =

k=p
∑

k=−p

δ(f − kf0), (5.13)

where f0 denotes the fundamental frequency and is given by f0 = µ
√

4fx0
2 + fθR

2.

From Figure 5.4, (2p + 1)fθR = 2fθ0. The bandwidth in fθ is discretized by fθR.

Hence, the number of angular samples obtained in the light field will be equal to

2fθ

fθR
= 2p+1. Since the Fourier transform of the optimal mask is a set of symmetric

Dirac delta functions (along with DC), this implies that the physical mask is a

sum of set of cosines of a given fundamental frequency f0 and its harmonics. The

number of required harmonics is in fact p, which depends upon the band-width of

the light field in the fθ axis and the desired frequency resolution fθR.

Solving for 2D Light Field: To recover the 2D light field from the 1D

sensor image, we compute the Fourier transform of the sensor image, reshape the

1D Fourier transform into 2D as shown in Figure 5.4 and compute the inverse

Fourier transform. Thus,

l(x, θ) = IFT(reshape(FT(y(s)))), (5.14)

where FT and IFT represent the Fourier and inverse Fourier transforms respectively,

and y(s) is the observed sensor image. Figure 5.5 shows a simple example of light
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Figure 5.6: (Left) Zoom in of a part of the cosine mask with four harmonics.

(Right) Plot of 1D scan line of mask (black), as sum of four harmonics and a

constant term.

field capture where the scene consists of a dark background plane occluded by a

light foreground plane.

5.3.3 Note on 4D Light Field Capture

Even though the analysis and the construction of mask-based heterodyning for light

field capture was elucidated for 2D light fields, the procedure remains identical

for capturing 4D light fields with 2D sensors. The extension to the 4D case is

straightforward. In case of a 4D light field, the information content in the 4D light

field is heterodyned to the 2D sensor space by the use of a 2D mask placed between

the aperture and the sensor. The Fourier transform of the 2D mask would contain

a set of impulses on a 2D plane.

C(f1, f2) =

k1=p1
∑

k1=−p1

k2=p2
∑

k2=−p2

δ(f1 − k1f
x
0 , f2 − k2f

y
0 ). (5.15)
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Figure 5.7: (Top Left) Magnitude of the 2D Fourier transform of the captured

photo shown in Figure 5.8. θ1, θ2 denote angular dimensions and x1, x2 denote

spatial dimensions of the 4D light field. The Fourier transform has 81 spectral

tiles corresponding to 9×9 angular resolution. (Bottom Left) A tile of the Fourier

transform of the 4D light field corresponding to fθ1 = 1, fθ2 = 1. (Top Right)

Refocused images. (Bottom Right) Two out of 81 views. Note that for each view,

the entire scene is in focus. The horizontal line depicts the small parallax between

the views, being tangent to the white circle on the purple cone in the right image

but not in the left image.

Since negative values in the mask cannot be realized as required, we need to boost

the DC component of C(f1, f2) so as to make the mask positive throughout. Fig-

ure 5.6 shows a part of the 2D cosine mask we used for experiments, along with

the plot of one of its scanline. This 2D mask consists of four harmonics in both

dimensions (p1 = 4, p2 = 4) with fundamental frequencies fx0 and f y0 being equal

to 1 cycle/mm. This allows an angular resolution of 9 × 9 in the 4D light field.

Figure 5.7 shows the magnitude of the Fourier transform of the captured photo

of the cones (as shown in Figure 5.8). The Fourier transform clearly shows 9 × 9

spectral tiles created due to the modulation by the mask. These spectral tiles
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Figure 5.8: Our heterodyne light field camera provides 4D light field and full-

resolution focused image simultaneously. (First Column) Raw sensor image. (Sec-

ond Column) Scene parts which are in-focus can be recovered at full resolution.

(Third Column) Inset shows fine-scale light field encoding (top) and the corre-

sponding part of the recovered full resolution image (bottom). (Last Column) Far

focused and near focused images obtained from the light field.

encode the information about the angular variation in the incident light field. To

recover the 4D light field, demodulation involves reshaping of the sensor Fourier

transform in 4D. Let t1 = 2p1 + 1 and t2 = 2p2 + 1 be the number of angular

samples in the light field and let the captured 2D sensor image be N ×N pixels.

We first compute the 2D FFT of the sensor image. Then we rearrange t1 × t2 tiles

of the 2D Fourier transform into 4D planes to obtain a (N/t1) × (N/t2) × t1 × t2

4D Fourier transform. Inverse FFT of this 4D Fourier transform gives the 4D light

field. In Figure 5.8, using a 1629 ∗ 2052 pixel image captured with a cosine mask

having four harmonics, we obtain a light field with 9 × 9 angular resolution and

181 × 228 spatial resolution.

5.3.4 Formal Derivation for Mask based Heterodyning

This analysis is done for a 1D mask placed in front of a 1D sensor to capture a

2D light field. Let v be the total distance between the aperture and the sensor
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aligned with the sensor and the θ plane aligned with the aperture.
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and d be the distance between the mask and the sensor. Define β = d
v
. From

Figure 5.3.4, if we place the 1D code c(y) at a distance d from the sensor, the

resulting 2D light field gets attenuated by the 2D mask m(x, θ) given by

m(x, θ) = c(βθ + (1 − β)x). (5.16)

As we will derive below, the Fourier transform of the mask lies on a line in the 2D

Fourier light field space.

Let C(fy) be the 1D Fourier transform of c(y)

C(fy) =

∫ inf

− inf

c(y) exp(−j2πfyy)dy (5.17)

and let M(fx, fθ) be the 2D Fourier transform of m(x, θ):

M(fx, fθ) =

∫ inf

− inf

∫ inf

− inf

m(x, θ) exp(−j2πfxx) exp(−j2πfθθ)dxdθ. (5.18)

We wish to find the expression of M(fx, fθ) in terms of C(y). Let

y = βθ + (1 − β)x (5.19)

Use auxiliary variable

z = (1 − β)θ − βx (5.20)

Define

µ =
1

√

β2 + (1 − β)2
(5.21)

Then

θ = µ2(βy + (1 − β)z) (5.22)

x = µ2((1 − β)y − βz) (5.23)

Jacobian
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J = det







∂θ
∂y

∂θ
∂z

∂x
∂y

∂x
∂z






(5.24)

J = µ2 (5.25)

By change of variables, we have

M(fx, fθ) = J

∫ inf

− inf

∫ inf

− inf

c(y) exp(−j2πfyy) exp(−j2πfzz)dydz (5.26)

Substituting x and θ from (5.22) and (5.23) in (5.18), and comparing common

terms, we get

fy = µ2(fx(1 − β) + fθβ) (5.27)

fz = µ2(−fxβ + fθ(1 − β)) (5.28)

Integrating out z term will give a δ term. Thus

M(fx, fθ) = JC(fy)δ(fz) (5.29)

Now substitute tanα = β

1−β
Then sinα = µβ and cosα = µ(1 − β)

Substituting in equation for fy, we get

fy = µ(fx cosα+ fθ sinα) (5.30)

Simplifying δ(fz), we get

δ(fz) = δ(fθ cosα− fx sinα) (5.31)

Finally

M(fx, fθ) = µ2C(µ(fx cosα+ fθ sinα))δ(fθ cosα− fx sinα) (5.32)
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The δ function constraints the 2D Fourier transform of mask to lie along a line

given by fθ cosα − fx sinα = 0 Using this constraint the above equation can be

simplified to

M(fx, fθ) = µ2C(µ
√

f 2
x + f 2

θ )δ(fθ cosα− fx sinα). (5.33)

Thus,

tanα =
β

1 − β
=

d

v − d
. (5.34)

and

µ =
1

√

β2 + (1 − β)2
=

1
√

(d/v)2 + (1 − (d/v))2
(5.35)

Practical Design

In a practical design, first α is calculated using the frequency resolution in θ, fθR

and the bandlimit fx0 of the light field in the spatial dimension. fθR is relate to

the size of the aperture A. fθR = 1/A.

tanα =
fθR
2fx0

(5.36)

Once we know α and the total distance between the sensor and the aperture

v, we can find d using (5.34). The fundamental frequency can be obtained using

(5.33) by substituting fx = 2fx0 and fθ = fθR

f0 = µ
√

4f 2
x0 + f 2

θR (5.37)

In practice, µ is close to 1 and α is ≈ 4 − 5 degrees.
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5.3.5 Aliasing

Traditionally, undersampling results in masquerading of higher frequencies as lower

frequencies in the same channel and leads to visually obtrusive artifacts like ghost-

ing. In heterodyne light field camera, when the band-limit assumption is not valid

in the spatial dimension, the energy in the higher spatial frequencies of the light

field masquerade as energy in the lower angular dimensions. No purely spatial

frequency leaks to other purely spatial frequency. Thus, we do not see familiar

jaggies, moire-like low-frequency additions and/or blocky-ness in our results. The

effect of aliasing is discussed in detail in [162], where using the statistics of nat-

ural images, it is shown that the energy in the aliasing components is small. To

further combat the effects of aliasing, we post-filter the recovered light field using

a Kaiser-Bessel filter with a filter width of 1.5 [113].

5.3.6 Light Field based Digital Refocusing

Refocused images can be obtained from the recovered Fourier transform of the light

field by taking appropriate slices [113]. Figure 5.8 and Figure 5.7 shows refocused

cone images. The depth variation for this experiment is quite large. Notice that

the orange cone in the far right was in focus at the time of capture and we are

able to refocus on all other cones within the field of view. Figure 5.11 shows the

performance of digital refocusing with varying amounts of blur on the standard

ISO-12233 resolution chart. Using the light field, we were able to significantly

enhance the DOF. It is also straightforward to synthesize novel views from the

recovered light field. Two such views generated from the recovered light field are

also shown in the bottom right part of Figure 5.7. The horizontal line on the

images depicts small vertical parallax between the two views. Digital refocusing
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Figure 5.10: Our heterodyne light field camera can be used to refocus on complex

scene elements such as the semi-transparent glass sheet in front of the picture of

the girl. (Left) Raw sensor image. (Middle) Full resolution image of the focused

parts of the scene can be obtained as described in Section 5.3.7. (Right) Low

resolution refocused image obtained from the light field. Note that the text on the

glass sheet is clear and sharp in the refocused image.

based on recovered light fields allow us to refocus even in the case of complicated

scenes such as the one shown in Figure 5.10. In this example, a poster of the girl

in the back is occluded by a glass sheet in front. Notice that the text ’Mask based

Light Field’ written on the glass sheet is completely blurred in the captured photo.

By computing the light field, we can digitally refocus on the glass sheet bringing

the text in focus.

5.3.7 Recovering High Resolution Image for Scene Parts

in Focus

Our heterodyne light field camera has an added advantage that we can recover high

resolution information for the in-focus Lambertian parts of the scene. Consider a

scene point that is in sharp focus. All rays from this scene point reach the same

sensor pixel but are attenuated differently due to the mask. Therefore, the sensor

pixel value is the product of the scene irradiance and the average value of the mask

within the cone of rays reaching that pixel. This attenuation γ(x, y) varies from
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pixel to pixel and can either be computed analytically or recovered by capturing a

single calibration image of a uniform intensity Lambertian scene. We can recover

the high resolution image I(x, y) of the scene points in focus as

I(x, y) = s(x, y)/γ(x, y), (5.38)

where s(x, y) is the captured sensor image. Parts of the scene that were not in

focus at the capture time will have a spatially varying blur in I(x, y). We use the

image of a uniform intensity Lambertian light box as γ.

In Figure 5.8, zoomed in image region shows the attenuation of the sensor

image due to the cosine mask. The recovered high resolution picture is also shown

in Figure 5.8 and the inset shows the fine details recovered in the parts of the

image that were in focus. Figure 5.11 shows the recovered high resolution picture

of a resolution chart that was in focus during capture. This ability to obtain high

resolution images of parts of the scene along with the 4D light field makes our

approach different from previous light field cameras.

5.4 Non Rectangular Band-Limits for Light-Field

The design in [159] was optimized assuming that the shape of the band-limit was

rectangular as shown in Figure 5.4. But in real-world scenarios, the incident light

field spectrum has specific shape characteristics that are heavily dependent upon

the depth of objects in the scene [26, 44]. We show how to optimize the mask

so as to match the shape of the band-limit in the frequency domain. Usually, the

spatial resolution of light field is reduced by a factor equal to the number of angular

samples in captured light field. However, by optimizing the mask, better spatial

resolution can be achieved as shown below. For illustration, we assume 2D light
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Figure 5.11: Analysis of the refocusing ability of the heterodyne light field camera.

(Left) If the resolution chart is in focus, one can obtain a full resolution 2D image

as described in Section 5.3.7, along with the 4D light field. (Middle) We capture

out of focus chart images for three different focus settings. (Right) For each setting,

we compute the 4D light field and obtain the low resolution refocused image. Note

that large amount of defocus blur can be handled.

fields captured by 1D sensor, but it easily extends to 4D light fields captured by

2D sensor.

Let us assume that the band-limit light field is shaped as shown in Figure 5.12(a),

with reducing spatial bandwidth as the angular frequency increases. Let the

band-limits be given by (fx0, fx1, fx2) corresponding to the angular frequencies

(fθ = 0, fθ = fθR, fθ = 2fθR) as shown in Figure 5.12. Now consider a ray modu-

lation function given by

R(fx, fθ, :) =

i=p
∑

i=−p

δ(fx − fi, fθ − fi tan(α), :), (5.39)

where fi = 0, i = 0 and fi = fx0 + 2
∑j=i−1

j=1 fxj + fxi
,∀i > 0. This ray modula-

tion function will lead to a series of unequally placed impulses and corresponding

spectral copies of the light field as shown in Figure 5.12. The sensor image (red

box) is a slice of the modulated light field (from Fourier Slice Theorem [113]).

Note that the modulation function is now optimized so that the spectral copies are
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Figure 5.12: Optimal sampling of light fields. (Left) The bandlimit of the light field

is not rectangular as in [159]. (Middle) The light field is modulated with cosines of

appropriate frequencies (non-harmonics) so that the spectral replicas abut tightly

on the sensor slice and there is no wastage of sensor pixels. Note that the spectral

replicas could overlap in other parts of the spectrum which are not captured by

the sensor. (Right) Demodulation involves reshaping the sensor Fourier transform

as before accounting for unequal spectrum width in different angular samples.

tightly abut on the sensor without any gaps. If we have used a mask with impulses

equally placed, it would have resulted in gaps on sensor slice corresponding to no

information in the light field. Moreover, if the depth range of the scene is known

apriori, this leads to a specific shape of the light field band-limit [26, 44] and one

can potentially use this information to optimally sample the light field.

5.5 Implementation and Analysis

Heterodyne Light Field Camera: We build a large format camera using a

flatbed scanner (Canon CanoScan LiDE 70) similar to [168,174] and place a 8×10

inch2 mask behind the scanner glass surface. The mask was printed at a resolution

of 80 dots/mm using Kodak LVT continuous tone film recorder (BowHaus Inc.).

The scanner itself was then placed on the back of a large format view camera fitted

with a 210 mm f/5.6 Nikkor-W lens as shown in Figure 5.1. In practice, the motion
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of the scanner sensor is not smooth leading to pattern noise (horizontal/vertical

lines) in the captured photo. This may lead to some artifacts in the recovered

light fields. However, many of these issues will disappear with a finer mask placed

inside a conventional digital camera. Calibration involves accounting for the in-

plane rotation and shift of the mask with respect to the sensor which manifest as

search for the rotation angle of the captured 2D image and the phase shift of the

Fourier transform. Since the computation of the light field and refocusing is done

in Fourier domain, computational burden is low.

Failure Cases: The heterodyne light field camera assumes a bandlimited light

field. When this assumption is not true, it leads to aliasing artifacts in the recovered

light field. To recover larger angular resolution in the light field, the 2D cosine mask

needs to be moved away from the sensor, which might result in diffraction.

5.6 Applications of captured Light-Fields

In this section, we show two examples of captured light-field using the implemen-

tation described. Firstly, we printed a 2D sum of cosines mask with frequencies

of 5, 10, 15, 20 cycles/mm allowing us to obtain 2 × 4 + 1 = 9 angular samples in

the light field with spatial resolution of 240 × 180 (Results shown in Figure 5.13).

We also printed another 2D sum of cosines mask with frequencies of 8, 16, 24 cy-

cles/mm allowing us to obtain 2× 3+1 = 7 angular samples in the light field with

spatial resolution of 340 × 250 (Results shown in Figure 5.14).

152



(a) Captured Modulated Image

(b) Focus on Doll

(c) Focus on face

(d) Depth map

(e) All in Focus

Figure 5.13: (a) Captured Modulated Image (b) Low Resolution Refocussed Image

- Focus on Doll (c) Low Resolution Refocussed Image - Focus on face (d) Raw

Depth labels quantized to 10 depth levels. (e) All in focus image.

5.6.1 Depth from Focus

Once we have captured the light field, images focused at any depth can be obtained

by taking appropriate slices from the Fourier transform of the captured light field

[113]. Figure 5.13(a) and 5.14(a) show the captured images of two scenes with

significant texture and depth variations. Figures 5.13(b,c) and 5.14(b,c,d) show

different refocused images for each dataset. We can extract depth from refocussed

images since scene points that are not in focus are blurred while scene points in

focus are sharp in the refocused images. So for a given pixel ’p’, if we study a small

region around the pixel, then, this region will be sharp in the refocused image at

the correct depth while it will be blurred at all other depths. We use the variance

of the neighborhood around each pixel as a measure of sharpness. Each pixel is

assigned the depth corresponding to the refocused image in which the variance of

its neighborhood is maximum. Such an assignment (10 depth levels) is shown in
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(b) Focus Back (c) Focus Center (d) Focus Front

(e) Estimated Depth Map

(f) All in Focus Image

(a) Captured Modulated Image

Figure 5.14: (a) Captured Modulated Image (b) Refocussed Image - Focus on back

poster (c) Refocussed Image - Focus on doll (d) Refocussed Image - Focus on front

Scotch box (e) Raw Depth labels quantized to 10 depth levels. (e) All in focus

image.
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5.13(d) and 5.14(e).

5.6.2 All Focus Image

We can also obtain the all-in-focus image just as is obtained in [113] from the

estimated depth map and the corresponding refocussed images. For each pixel we

choose the intensity from the refocused image corresponding to its estimated depth

resulting in an all-in-focus images as shown in Figure 5.13(e) and Figure 5.14(f).

Supplementary materials include Matlab code and input images as well as videos

showing digital refocusing.

5.6.3 3D Texture mapped model

We can also obtain a 3D texture mapped estimate of the scene, since we have

the depth estimates and the corresponding irradiance(intensity) estimates. This

allows us to recover a 3D texture mapped surface corresponding to the scene by

appropriately combining the depth and irradiance estimates to create a 3D texture

mapped surface. We can also synthesize novel views from the estimated 3D texture

mapped model.

5.7 Discussion

Future Directions: To capture the light field, we need to use masks that match

the resolution of the sensor. It is already possible to print RGB Bayer mosaics at

pixel resolution. This is ideal for the future trend of digital cameras where pixels

are becoming smaller to achieve higher resolution. Such high resolution masks will

support heterodyning as well as Bayer mosaic operations in a single mask. Our
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current masks are effectively 2D in a 4D space, but in the future one may use masks

that are angle and location dependent like a hologram to achieve a complete 4D

effect. We hope our work in broadband and cosine masks will also stimulate more

ideas in mask functions including colored and polarized masks to estimate scene

properties.

Our broadband coding can be pushed in higher dimension, for example, by

coding both in time [133] and space. The benefit of masks compared to lenses is

the lack of wavelength dependent focusing and chromatic aberrations. This fact is

commonly used in astronomy. Hence, masks can be ideal for hyper-spectral imag-

ing. Shallow depth of field is a serious barrier in medical and scientific microscopy.

The facility to refocus while maintaining full resolution will be a great benefit. In

combination with confocal coded aperture illumination one maybe able to capture

digitally refocused images in a fewer incremental steps of the focal planes.

Conclusions: We showed that two different kinds of coded masks placed inside

a conventional camera will each allow us to make a different kind of computational

improvement to the camera’s pictures. First, if we place a fine, narrowband mask

slightly above the sensor plane, then we can computationally recover the 4D light

field that enters the main camera lens. The mask preserves our camera’s ability

to capture the focused part of the image at the full resolution of the sensor, in the

same exposure used to capture the 4D light field. Second, if we place a coarse,

broadband mask at the lens aperture, we can computationally refocus an out of

focus image at full resolution. As this refocusing relies on deconvolution, we can

correct the focusing for images that require constant or piecewise-planar focusing.

These and other masks are not magical: mask reduces sensor illumination by ≈ 1

f-stop and refocusing exacerbates noise. However, high-quality masks may be less
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demanding than lens arrays to mount, align, or arrange in interchangeable sets and

they avoid optical errors such as radial error, spherical and chromatic aberration,

and coma. We believe that masks offer a promising new avenue for computational

methods to substantially improve digital photography.

Appendix: Source Code

% Source Code for Computing 4D Light-Field from Captured 2D Photo
% Mask contains Cosines with 4 Harmonics leading to 9X9 Angular Samples

m = 2133; n=1719 % Size of Captured Image
nAngles = 9; cAngles = (nAngles+1)/2;  % Number of Angular Samples

F1Y = 237;  F1X = 191;  %Cosine Frequency in Pixels from Calibration Image

phi1 = 300;  phi2 = 150; % PhaseShift due to Mask In-Plane Transltn wrt Sensor
F12X = floor(F1X/2); F12Y = floor(F1Y/2);  

%Compute Spectral Tile Centers, Peak Strengths and Phase
for i=1:nAngles ;  for j=1:nAngles

CentY(i,j) = (m+1)/2 + (i-cAngles)*F1Y;CentX(i,j)  = (n+1)/2  + (j-cAngles)*F1X;

Mat(i,j) = exp(sqrt(-1)*((phi1*pi/180)*(i-cAngles) + (phi2*pi/180)*(j-cAngles))); 
end;  end

Mat(cAngles,cAngles) = Mat(cAngles,cAngles) * 20; 

f = fftshift(fft2(imread(‘InputCones.png’))); %Read Photo and Perform 2D FFT

%Rearrange Tiles of 2D FFT into 4D Planes to obtain FFT of 4D Light-Field
for i = 1: nAngles; for j = 1: nAngles

FFT_LF(:,:,i,j) =  f(CentY(i,j)-F12Y:CentY(i,j)+F12Y,…

CentX(i,j)-F12X:CentX(i,j)+F12X)/Mat(i,j);
end; end

LF     =    ifftn(ifftnshift(FFT_LF)); %Compute Light-Field by 4D Inverse FFT
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Chapter 6

Discussions and Future Directions

The first part of this dissertation studied the problem of characterizing, learning

and classifying dynamic patterns that appear in video. Specific attention was

paid to apllications such as gait based person identification, activity recognition,

comparing shape sequences, simultaneous tracking and behavior analysis. It was

shown that solutions to these issues may be posed as a problem in inferring and

mathematically characterizing the nature of the dynamics of the relevant patterns

in video. Some of the areas for future work are listed below.

6.1 Comparing ShapeSequences

6.1.1 Shape descriptor for Comparing Shape Sequences

We used Kendall’s statistical shape as the shape feature for comparing shape se-

quences. Kendall’s statistical shape is a sparse descriptor of the shape. We could,

in theory choose a denser shape descriptor like the shape context [7] which has

been proven to be more resilient to noise. But, such a dense descriptor also intro-
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duces significant and non-trivial relationships between the individual components

of the descriptor. This usually makes learning the dynamics very difficult. Since

the emphasis of this proposal is on modeling the dynamics in shape sequences, we

restricted ourselves to the treatment of dynamics in Kendall’s statistical shape.

We could look at models for comparing shape sequences that are based on more

complex shape descriptors like the shape context. It is expected that using such

complex and robust shape descriptors will improve the performance of these algo-

rithms significantly while also making the learning and the inference tasks more

complex.

6.1.2 View-Invariance

The models developed for comparing shape sequences in this dissertation have

not incorporated the important property of view invariance that is usually highly

desirable in several computer vision applications. Incorporating view invariance

into these models is an important avenue for future research. One way to make

these models view-invariant is to use features that are themselves view invariant.

Once the feature chosen is view-invariant, then all the algorithms described in the

previous sections in turn become view invariant. Another way to incorporate view-

invariance is to build these models for a discrete set of views separately. Once we

have a model for each activity in every possible view, then the inference algorithms

could be suitably modified to incorporate view-invariance. But, this would require

a huge amount of data to learn the model for each activity, since the learning

algorithm must learn the activity from every possible viewpoint. Which of these

two approaches turn out to be more efficient would depend upon the application

being considered. For applications in far field surveillance and activity analysis,
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where the number of discrete views required is small, learning a model for each of

these discrete viewpoints might be a viable alternative. For applications in near

field activity analysis, where the number of discrete views one must account for is

large, the best alternative might be to choose appropriate view invariant features.

6.2 Action Analysis and Recognition

6.2.1 Noise Sensitivity of the Activity Model

The noise sensitivity of the learning algorithm for simultaneous inference of the

nominal activity trajectory and the activity specific time warping space has not

been studied in detail. It would be interesting to study and analyse the sensitivity

of the learning algorithm to noise in the data. Noise in the data could be of

two forms. There could be observation noise because of the characteristics of the

imaging sensors and the limited resolution offered by these sensors. There could

also be labelling noise because of incorrect labelling of activity sequences. Robust

techniques to detect incorrect labelling need to be developed so that the inference

process is robust to outliers. Moreover, studying the noise sensitivity of the learning

algorithm will also enable us to improve the learning algorithm. This issue is

related to modeling the distribution of time-warping transformations and we are

looking at algorithms that are able to tackle both these issues simultaneously.

6.2.2 Spatial Alignment of Activities

Another issue of concern is the spatial alignment of sequences. There is significant

variety in the spatial alignment within an activity. For example the action of sitting

might be accompanied by the two legs being very close to each other or further
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apart as is the preference of the individual. Since the activity model proposed

corrects only the temporal misalignments in the execution of an activity, in its

current form it is not adequate to reliably tackle spatial alignment preferences

of an individual. In the current model, small spatial misalignments are tackled

as temporal misalignments. We are addressing the larger spatial misalignments,

using a mixture of models, where each mixture represents one type of spatial

alignment preference. It might also be possible to simultaneously perform both

spatial and temporal alignments, though this would be at the cost of significant

computational expense. The method would, in principle, be very similar to the

clustering of activity sequences described earlier. The various sequences of an

activity would be clustered into several different clusters each cluster representing

one particular spatial alignment preference.

6.3 Clustering and Indexing of Action Videos

The focus of this dissertation has been on the problem of recognition or classifi-

cation with respect to activity analysis. Another allied problem is the problem

of automatic activity baased video clustering or indexing which has applications

in several domains such as surveillance, traffic monitoring and multimedia enter-

tainment. This problem is gaining in importance because of the ever increasing

role of videos in our everyday lives with applications ranging from broadcast news,

entertainment, scientific research, security and surveillance. There has been signif-

icant research into indexing of multimedia data such as news clips, sports videos

etc according to their content. Applications for automatic discovery of activity

patterns are numerous. For example, security and surveillance videos typically

have repetitive activities. If the typical activities can be clustered, then several
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problems such as unusual activity detection, efficient indexing and retrieval can be

addressed. In applications of video forensics, instead of expecting an analyst to

sift through the voluminous data, we ask - can ‘clusters’ of activities be presented

that embody the essential characteristics of the videos.

6.3.1 An Approach we are exploring

Given a continuous video stream, if we knew what activities occur in it, we can

discover the boundaries between them and if we were given the boundaries, the

individual activities could be learnt as well. For unsupervised video clustering, we

need to solve the segmentation and model estimation problems simultaneously. We

use coherent patterns of motion to discover individual segment boundaries and the

transitions between segments are used to learn activity models. Each individual

segment is modeled using a linear dynamical system. Each activity then consists

of a specific sequence of dynamical systems.

The entire video is first segmented in short coherent patterns. The entire set of

segments is assumed to be derived from an underlying vocabulary. This vocabulary

is learnt using unsupervised clustering of the segments. Once the vocabulary is

learnt, we then learn grammatical rules from the video to discover longer activities.

In our case, the grammatical rules are simple sequences of segment labels.

We augment the traditional dynamical systems model in important ways. We

derive methods to incorporate view and rate invariance into these models so that

similar actions are clustered together irrespective of the viewpoint or the rate of

execution of the activity. We also derive algorithms to learn the model parameters

from a video stream and demonstrate how a single video sequence may be clustered

into different clusters where each cluster represents an activity. We show here

162



some preliminary results using our approach on a dataset of skating videos. We

performed a clustering and retrieval experiment on the figure skating dataset. This

data is very challenging since it is unconstrained and involves rapid motion of both

the skater and real-world motion of the camera including pan, tilt and zoom.

We built color models of the foreground and background using normalized

color histograms. The color histograms are used to segment the background and

foreground pixels. Median filtering followed by connected component analysis is

performed to reject small isolated blobs. From the segmented results, we fit a

bounding box to the foreground pixels by estimating the 2D mean and second

order moments along x and y directions.We perform temporal smoothing of the

bounding box parameters to remove jitter effects. The final feature is a rescaled

binary image of the pixels inside the bounding box.

Clustering Experiment: Most figure skating videos consist of a few estab-

lished elements or moves such as jumps, spins, lifts and turns. A typical perfor-

mance by skater or pair of skaters includes several of these elements each performed

several times. Due to the complex body postures involved it is a challenge even

for humans to identify clear boundaries between atomic actions. It was difficult

even for us to semantically define temporal boundaries of an activity, let alone

define a metric for temporal segmentation. Thus, this makes it very difficult to

break the video into temporally consistent segments. Instead of performing ex-

plicit segmentation, we build models for fixed length subsequences using sliding

windows. The results of a temporal segmentation algorithm that can split such

a complex video into meaningful segments, can be easily plugged in. We use 20

frame long overlapping windows for building models of the video. Also, most of

the interesting activities such as sitting spins, standing spins, leaps etc are usually
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few and far between. Further, due to the subsequence approach, there will neces-

sarily be several segments that do not contain any meaningful action. As a simple

example, a subsequence that contains the transition from a spin to a jump will

not fit into either of these action-clusters. To discover the interesting activities,

we first need to remove these outlier segments. First, we cluster all the available

subsequences into a fixed number of clusters (say 10). Then, from each cluster

we remove the outliers using a simple criterion of average distance to the cluster.

Then, we recluster the remaining segments. We show some sample sequences in

the obtained clusters in figures 14 18. We observe that Clusters 1 - 4 correspond

dominantly to Sitting Spins, Standing Spins, Camel Spins and Spirals respectively

(in a spiral the skater glides on one foot while raising the free leg above hip level).

Cluster 5 on the other hand seems to capture the rest of the uninteresting actions.

6.4 Computaional Imaging

6.4.1 Coded Aperture Imaging for Glare Aware Photogra-

phy

Glare arises due to multiple scattering of light inside the cameras body and lens

optics and reduces image contrast. While previous approaches have analyzed glare

in 2D image space, we have begun analysing glare as a 4D ray-space phenomenon.

By statistically analyzing the ray-space inside a camera, we can classify and remove

glare artifacts. In ray-space, glare behaves as high frequency noise and can be

reduced by outlier rejection. While such analysis can be performed by capturing

the light field inside the camera, it results in the loss of spatial resolution. Unlike

light field cameras, we do not need to reversibly encode the spatial structure of
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Figure 6.1: Shown above are a few sequences from Cluster1. Each row

shows contiguous frames of a sequence. We see that this cluster dominantly

corresponds to ‘Sitting Spins’. Image best viewed in color. Please see

http://www.umiacs.umd.edu/∼pturaga/VideoClustering.html for video results.
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Figure 6.2: Shown above are a few sequences from Cluster2. Each row

shows contiguous frames of a sequence. Notice that this cluster dominantly

corresponds to ‘Standing Spins’. Image best viewed in color. Please see

http://www.umiacs.umd.edu/∼pturaga/VideoClustering.html for video results.
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Figure 6.3: Shown above are a few sequences from Cluster3. Each row

shows contiguous frames of a sequence. Notice that this cluster domi-

nantly corresponds to ‘Spirals’. Image best viewed in color. Please see

http://www.umiacs.umd.edu/∼pturaga/VideoClustering.html for video results.
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the rayspace, leading to simpler designs. We explore masks for uniform and non-

uniform ray sampling and show a practical solution to analyze the 4D statistics

without significantly compromising image resolution. Although diffuse scattering

of the lens introduces 4D low-frequency glare, we can produce useful solutions in

a variety of common scenarios. Such an approach handles photography looking

into the sun and photos taken without a hood, removes the effect of lens smudges

and reduces loss of contrast due to camera body reflections. Figure 6.4 shows a

comparison of glare formation in ray-space. It shows how inserting a high frequency

occluder in the optical path of the camera the low frequency glare components are

converted to high frequency 2D image information and can therefore be easily

removed by simple filtering. Figure 6.5 shows an example of an image captured

in the presence of a high frequency occluder. Using a 4D analysis of glare inside

the camera, we can emphasize or reduce glare. The photo in the middle shows

a person standing against a sunlit window. We extract reflection glare generated

inside lens and manipulate it to synthesize the result shown on the left. On the

right we show the glare-reduced component. Notice that the face is now visible

with improved contrast.

6.4.2 Coded Illumination

This dissertation was focussed on the effect of a non-refractive coded aperture and

how to enhance the flexibility available during photography using such coded aper-

tures. In some applications such as capturing Bidirection Reflectance Distribution

Functions (BRDF) it might be acceptable to use active illumination. Bidirection

Reflectance Distribution Function (BRDF) is a 4-dimensional function that de-

scribes how an opaque surface point reflects incoming light [135]. The incoming
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Figure 6.4: Comparison of glare formation in ray-space and sensor image for a

traditional camera and our mask based camera. A focused blue scene patch could

contribute to scattering (cyan), reflection (purple) and body glare (green). Since

the sensor image is a projection of the ray-space along angular dimensions, the

sum of these components creates a low frequency glare for a traditional camera.

However, by inserting a high frequency occluder (gray), in front of the sensor, these

components are converted into a high frequency 2D pattern and can be separated.

169



Figure 6.5: We extract glare components from a single-exposure photo in this

high dynamic range scene. Using a 4D analysis of glare inside the camera, we

can emphasize or reduce glare. The photo in the middle shows a person standing

against a sunlit window. We extract reflection glare generated inside lens and

manipulate it to synthesize the result shown on the left. On the right we show

the glare-reduced component. Notice that the face is now visible with improved

contrast.

lighting direction θ is a two-dimensional quantity (azimuth and elevation) while

the outgoing lighting direction φ is another two-dimensional quantity making the

BRDF 4-dimensional function B(θ, φ). The slice of the BRDF corresponding to

the viewing direction being fixed ( as would be the case when the scene is being

observed by a fixed camera ), while the incident illumination changes freely, is

called the reflectance field and is a two-dimensional function R(θ). Observing and

measuring the reflectance field of an object or a scene typically involves acquiring

images of the object/scene under varying illumination conditions. Typical meth-

ods for capturing such reflectance fields are based on acquiring images with a single

light source ’ON’ in each image. Recently, [137] have shown that using multiple

light sources per each acquired image and performing a linear inversion in order

to recover the reflectance field results in higher signal to noise ratios of the cap-

tured reflectance fields. Nevertheless, the number of images to be acquired to infer
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the reflectance field remains identical to the number of illumination sources. Re-

cently, we have been working on a method for acquiring accurate reflectance fields

of objects with significantly lower number of captured images than the number of

illumination sources. This reduction in the number of required images is achieved

by exploiting recent developments in compressive sensing, which essentially show

that if the signal to be acquired is sparse in some basis, then the signal can be

accurately reconstructed using sub-Nyquist linear samples of the signal. We have

emperically found that reflectance fields are sparse in the Haar wavelet basis. We

wish to motivate our analysis using the Phong illumination model and empirically

verify the degree of sparsity. We are currently developing a scheme for capturing

reflectance fields using multiplexed illumination, thereby achieving the signal-to-

noise ratio advantages of multiplexed illumination and use a compressive sensing

based recovery algorihm to infer reflectance fields. Such methods using active il-

lumination to capture visual properties of surfaces might be another avenue for

active future research.
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