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Abstract

We present a practical approach for surface reconstruc-

tion of smooth mirror-like objects using sparse reflection

correspondences (RCs). Assuming finite object motion with

a fixed camera and un-calibrated environment, we derive

the relationship between RC and the surface shape. We

show that by locally modeling the surface as a quadric, the

relationship between the RCs and unknown surface param-

eters becomes linear. We develop a simple surface recon-

struction algorithm that amounts to solving either an eigen-

value problem or a second order cone program (SOCP).

Ours is the first method that allows for reconstruction of

mirror surfaces from sparse RCs, obtained from standard

algorithms such as SIFT. Our approach overcomes the

practical issues in shape from specular flow (SFSF) such as

the requirement of dense optical flow and undefined/infinite

flow at parabolic points. We also show how to incorporate

auxiliary information such as sparse surface normals into

our framework. Experiments, both real and synthetic are

shown that validate the theory presented.

1. Introduction

Objects that exhibit mirror reflectance have no appear-

ance of their own, but rather distort the surrounding envi-

ronment. Traditional shape recovery methods designed for

Lambertian surfaces such as structure from motion (SfM),

stereo or multi-view stereo can not be directly used for such

objects. Shape recovery of highly specular and mirror-like

objects was first studied as an extension of the photometric

stereo by Ikeuchi [10]. Since then methods have been de-

veloped for a wide range of imaging conditions, including

known motion or scene patterns and active illumination.

Recently, there [1, 13] has been significant progress in

shape from specular flow (SFSF). SFSF explores surface

estimation by measuring dense optical flow of environment

features as observed on the mirror under a known motion

of environment/mirror/camera. Much of the prior work in

SFSF assumes infinitesimal rotation of the environment,

where in the forward flow equations linking the motion

field, surface parameters and specular flow (SF) can be ex-

pressed as a partial differential equation. The elegance of
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Figure 1. Effect of finite motion: For infinitesimal environmental

motion, points P1 and P2 having the same normal and curvature

would exhibit identical specular flow. But, for finite motion, the

observed flow is different since it also depends on the normal and

curvature of the neighborhood.

Figure 2. Two images of the same mirror rotated with a few reflec-

tion correspondences highlighted.

existing approaches do not extend to finite or large mo-

tion since large displacements can not be incorporated into

the pde framework. Further, SFSF requires dense optical

flow which is difficult to obtain for specular objects since

SF exhibits certain undesirable properties such as unde-

fined/infinite flow and one-to-many mappings.

Specular Flow vs Reflection Correspondences: Fig-

ure 1 shows points (P1 and P2) on two different surfaces,

where the local normal and curvature are identical. Since

the specular flow forward equations depend only on local

normal and curvature, for the same infinitesimal environ-

ment motion, the flow will be identical for these two points.

However, in case of a finite/large environment motion as

shown, the observed flow depends not only on the local

normal and curvature, but also on properties of the neigh-

borhood. Notice that the actual flow observed at these two

surface points is radically different because of the differ-

ence in their neighborhood. This dependence is not easily

incorporated into the specular flow framework.
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In this paper, we develop a theory of specular surface re-

construction under finite motion using reflection correspon-

dences (RCs). Any two points in one or more images of

a specular surface which observe the same environmental

feature are denoted as RCs (refer Figure 2). We derive the

relationship between RCs and the shape of the mirror for the

case of finite motion and use a locally quadric surface pa-

rameterization to develop an efficient algorithm for surface

reconstruction. By using correspondences, we avoid the un-

desirable properties of specular flow and design a practical

solution. To our knowledge, this is the first method that al-

lows for reconstruction of mirror surfaces from sparse RCs

as would be obtained when using a feature matching algo-

rithm such as SIFT.

1.1. Contributions

The specific technical contributions of this paper are

• We formulate the problem of recovering surface shape

from RCs for the case of finite motion under un-

calibrated environment.

• We model the surface as a locally quadric leading to a

linear formulation solvable using efficient algorithms.

• We avoid practical issues in SFSF requiring only

sparse RCs, leading to a practical workable solution.

• We show how to incorporate auxiliary information

such as sparse surface normals to improve the recon-

struction.

1.2. Prior Work

Qualitative Properties: Zisserman et al. [19] show that

local surface properties such as concave/convexity can be

determined under motion of the observer without knowl-

edge of the lighting. Blake [3] analyzes stereoscopic im-

ages of specular highlights and shows that the disparity of

highlights is related to its convexity/concavity. Fleming et

al. [8] discuss human perception of shape from images of

specular objects even when the environment is unknown.

Active Illumination: Ikeuchi [10] present the idea of

estimating the structure of specular objects via photometric

stereo. Oren and Nayar [12] use the notion of caustics to

determine if an image feature is real or a reflection. Surface

recovery is done by tracking an unknown scene point. Chen

et al. [7] use this property to estimate surface mesostruc-

tures at high resolution. Hertzmann and Seitz [9] suggest

using probes of known surface and reflectance in order to

determine the properties of an unknown surface.

Calibrated Environment: Surface reconstruction un-

der known environment has been studied in great detail.

Savarse et al. [15] show that local properties of a smooth

surface can be determined upto third order by the observed

projection of two calibrated lines. Bonford and Sturm [4]

use multiple images of a calibrated pattern to reconstruct

the shape of a mirror. Nayar et al. [11] use structured high-

lighting to obtain shape of specular objects. An extension

for a stereo based imaging system is proposed in [14].

Uncalibrated Environments: Walden and Dyer [18]

show that specular flow can be significantly different from

motion field especially near points of parabolic curvature.

Chen and Arvo [6] developed specular path perturbation

theory for fast rendering of multiple inter-reflections.This

theory is applied to shape from specular flow by Roth and

Black [13]. A variational approach for interpolating sparse

set of normals is proposed in Solen et al. [16].

Recently, significant headway into the SFSF problem has

been made in a series of papers [1, 17, 5]. Adato et al. [1]

solve for the structure of the object from an infinitesimal ro-

tation of the environment around the camera’s optical axis.

Vailyev et al. [17] show that the specular flow for rotation

about the optical axis can be computed for two known or

three unknown rotations about arbitrary axes. Both of these

approaches require a significant number of initial conditions

(in terms of normals) to solve for the shape of the mirror.

Canas et al. [5] show that under a different parametriza-

tion of the surface, the estimation problem becomes linear.

This is used to estimate the shape of the mirror from multi-

ple specular flows without any additional information. But,

the SFSF formulation is inherently differential and does not

extend to large motion. Here, we develop the problem of

surface reconstruction from RCs that are obtained from im-

ages in which the environment/object motion is large.

2. Reflection Correspondences

Consider a camera looking at an object with mirror re-

flectance. For the sake of simplicity, we first describe the

method as applicable to an orthographic camera. We as-

sume that the environment is at infinity, which ensures that

the environment feature imaged at a pixel is dependent only

on the normal of the surface element observed at the pixel

and not on its location. Finally, we use the terms object and

mirror inter-changeably in rest of the paper to denote the

object/mirror whose surface we seek to estimate.

Let I(x) be the intensity observed at pixel x, and E(Θ)
be the environment intensity map parameterized by spheri-

cal coordinates Θ = (θ, φ). We model the mirror surface

in its Monge form z = f(x) = f(x, y). Under the imaging

setup assumed, the forward imaging equation can be written

as,

I(x) = E(Θ(x)) = E (θ(x), φ(x))

tan θ(x) = 2‖∇f‖
1−‖∇f‖2 , tanφ(x) =

fy(x)
fx(x)

(1)

and ∇f(x) = (fx(x), fy(x))
T are the surface gradients at

x. For rest of the paper, we model the surface in terms of its

gradient field ∇f(x). Our goal is to estimate the shape f(x)
from multiple images of the object under known motion of

the camera/object/environment.

2.1. Influence of Motion on Observed Features

For an orthographic camera, translation of the mirror

does not change the surface normals in a camera coordinate

system, and produces just a translation of the image. Thus,
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it does not provide any new information. Similarly, trans-

lation of the object gives no additional information since

the environment is assumed to be at infinity. Rotation of

the camera about the optical axis (in-plane rotation) is a re-

mapping of pixels and produces no new information. For

the same reason, rotation of the camera about its optical axis

is just a remapping of the pixels and produces no new infor-

mation. A rotation of environment is equivalent to plac-

ing the object on the camera’s optical axis and rotating the

camera-object pair in tandem. Thus, ignoring pixel remap-

ping, environment rotation is equivalent to object rotation

about the optical axis of the camera. For the rest of the

paper, we only consider object rotation since this changes

the normal field observed by the camera, thereby producing

images not seen earlier.

Due to assumption of environment at infinity, observed

environment features depend only on the surface normal of

the object. Under object rotation, its image changes in a

structured way. The environment feature observed at a pixel

could reappear at locations where the surface normal reap-

pears. It is also possible that the environment feature does

not reappear after object rotation, or reappear at multiple

locations.

In this paper, we focus only on rotation of the object

around the camera’s optical axis. This particular choice

leads to a linear formulation in the surface gradients given

the RCs, and as a consequence, enables the use of well-

known optimization tools. Extensions to more general mo-

tion form the focus of future research.

2.2. Infinitesimal Rotation

For completeness, we first show that RCs are equivalent

to specular flow under infinitesimal object rotation (c.f. [1]).

Let the mirror surface be z = f(x) in the camera coordinate

system at t = 0. After rotation about the optical axis of the

camera, the mirror surface at time t is given by given as

z(t,x) = f(t,x) = f(R(t)Tx), where R(t) = exp(tω)
is the 2 × 2 rotation matrix defined by the skew-symmetric

matrix ω. The surface gradients are given as,

∇f(t,x) = R(t)∇f(R(t)Tx). (2)

Consider a environment feature that moves along x(t) =
x0+ν(t) as the object rotates. Under the modeling assump-

tions, ∇f(t,x0 + ν(t)) = ∇f(0,x0) = ∇f(x0). This

implies that,
d∇f(t,x(t))

dt
= 0 (3)

Evaluating this expression at t = 0, with R(0) = I, we get

ω∇f(x0)−

[

∂2f

∂x2

]

(ωx0 − ν̇(x0)) = 0 (4)

This gives the forward flow equations relating the infinites-

imal specular flow ν̇ to the local surface parameters and the

known rotation encoded in ω. Given specular flow, the sur-

face gradient field can be recovered by solving the partial

differential equation defined in (4)[1]. The second order

properties of the surface are encoded in the Hessian matrix
[

∂2f/∂x2
]

play an important role in determining the spec-

ular flow. When this matrix is singular specular flow goes

to infinity. Parabolic curvature points have singular Hessian

matrix and exhibit infinite flow.

Infinitesimal to Finite Rotation: While infinitesimal

motion leads to an elegant theoretical formulation, in prac-

tice it is approximated by a small motion. For Lamber-

tian objects, small motion is often a good approximation

to infinitesimal motion as the flow values are well-defined.

However, the presence of infinite flow at parabolic curva-

ture points indicates that no matter how small the motion

is, the specular correspondences will be undefined in the

neighborhood of parabolic curvature points. The size of

this neighborhood depends on the magnitude of the rota-

tion. Hence, it becomes hard to estimate specular flow field.

This observation motivates modeling matches between im-

ages in terms of sparse RCs as opposed to a dense flow

field. Sparse correspondence allows us to incorporate re-

gions/pixels that have no flow associated with them as well

as those that exhibit one-to-many mappings across images.

More importantly, one to many mappings, or disappearance

of correspondences (similar to occlusion/disocclusion for

stereo) can be handled as well.

2.3. Finite Motion

Now we consider finite rotation R of the object about the

camera’s optical axis. Let {xA
i ↔ x

B
i ; i = 1, . . . , N} be a

set of correspondences on a image pair such that environ-

ment feature observed at xA
i on image A matches with that

in x
B
i on image B. This induces the following relationships

on the surface gradients of the object,

∇fA(x
A
i ) = ∇fB(x

B
i ), i = 1, . . . , N (5)

Further, fB(x) = fA(R
T
x), giving us a constraint purely

in terms of the object at location A.

∇fA(x
A
i ) = R∇fA(R

T
x
B
i ) (6)

Given multiple images under varying (known) rotation, we

can use correspondences obtained between any image pair

by suitably rewriting the relationships in terms of ∇fA.

Thus, the key idea is that, given object rotation, RCs pro-

vide constraints on the surface gradients. To recover a dense

surface, we need additional assumptions on the surface. To-

wards this end, we propose the use of locally quadric model

for the surface.

3. Shape from Sparse Correspondences

In this section we describe modeling the surface as a lo-

cally quadric and algorithms for surface reconstruction.
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Figure 3. Rotation of a mirror causes its appearance to change. Un-

der rotation of the mirror, it corresponding normal field changes.

Environment features reappear wherever its corresponding surface

normal reappears. Hence, a RC implies that the normal at the cor-

responding locations are the same.

3.1. Surface Approximation using Quadrics

We approximate a general smooth surface using local

quadric models over non-overlapping neighborhoods. A

surface z = f(x) = f(x, y) is approximated as,

z = f(x, y) ≈
1

2
x
THix+ Jix+ αi,x ∈ Ni (7)

Hi, Ji and αi are the quadric parameters defining the neigh-

borhood Ni. The surface gradients are defined as,

∇f(x) = Ji +Hix,x ∈ Ni (8)

Note that Hi is a symmetric matrix and αi is unobservable

in an orthographic camera setup.

The choice of quadric model for local surface

parametrization is motivated primarily from the fact the as-

sociated surface gradient field is affine in x. This, as we

show later, leads to linear relationships in the unknown sur-

face parameters (Ji and Hi) given RCs. It is entirely possi-

ble to use alternate surface parameterizations at the cost of

solving a harder inference problem.

Note that in our imaging setup ( environment at infinity

with an orthographic camera), lower order models such as

piecewise planar produce far inferior approximations as the

entire neighborhood images the same environment feature

leading to highly coarse imagery (equivalently, implying

that the assumptions are valid for extremely small neighbor-

hoods). The quadric model serves as a good approximation

for a wide range of smooth surfaces.

3.2. Quadric Reflectance Correspondences

We can now re-interpret the surface gradient relation-

ship of (6) under the local quadric surface model. Note that

(6) relates the surface gradients at points xA and RT (xB).
Equation (6) can be rewritten in terms of the surface param-

eters of the neighborhoods to which the two point belong.

Let x ∈ Nk and RT (xB) ∈ Nm. Then, substituting the

expressions for the surface gradients (8) in (6), we get:

R
(

Jm +HmRT (xB)
)

= Jk +Hkx
A (9)

When the rotation R is known, (9) is linear in the unknown

surface parameters. Equation (9) also hints at a scale am-

biguity in the solution space. A solution for the quadric

parameters can be scaled to obtain another solution which

satisfies the equations as well. This implies that any solu-

tion to the quadric parameters at best suffers from a global

scale ambiguity. However, the problem can be more severe

when cliques of neighborhood are formed, with correspon-

dences only between points in the same clique. This could

potentially lead to each clique having its own scale ambi-

guity thereby leading to a far more severe problem globally.

To resolve this, we enforce smoothness of the surface gradi-

ents at the boundary between two adjacent neighborhoods.

3.3. Smoothness Constraints

As mentioned earlier, enforcing the RCs in (9) alone can

potentially lead to multiple scale ambiguities that can be

very difficult to resolve. Further, the local quadric model

does not necessarily lead to smooth surfaces, in that, there

could be discontinuities at the boundary of the neighbor-

hoods. Both of these problems can be resolved if we further

enforce the gradients at the boundary of two patches to be

the same on either side of the patch. Let x be a pixel at the

boundary of two neighborhoods Nm and Nn. We can en-

sure that the surface gradient at x as obtained by the quadric

model of Nm and Nn are the same.

Jm +Hmx = Jn +Hnx,x ∈ B(Nn) ∩ B(Nm) (10)

As with the relationships in (9), the boundary smoothness

constraint is linear in the surface parameters and exhibits a

scale ambiguity. This further reinforces the point that the

global scale ambiguity cannot be resolved without an ab-

solute information of a few surface normals or gradients.

Such information can potentially be obtained from occlud-

ing contours or knowledge of normals at few distinct points.

We later show how such constraints can be incorporated into

our framework.

3.4. Solving for the Surface

In order to solve for the surface, the neighborhood size

of the local quadric must be defined. A smaller neighbor-

hood allows for a better approximation of the surface, but

leads to more unknowns in the surface estimation problem.

Without a priori knowledge of the surface, it is impossible

to choose neighborhoods that well approximates the surface

and also reduces the number of parameters. We chose non-

overlapping square neighborhoods over the image plane,

whose size depends on the size of the problem we can solve

efficiently.
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Given a set of RCs {xA
i ↔ x

B
i } and the rotation under-

gone by the surface R, we can now solve for the quadric

surface parameters. For each available correspondence,

we formulate the relationships as given in (9). Next, be-

tween boundary of two patches, we enforce the boundary

smoothness constraints of (10). Stacking these together,

we get a system of linear system of equations AΘ = 0,

where Θ is a vector consisting of all the surface parameters

{Ji, Hi, i = 1, . . . , N}.

Solution can be obtained by formulating the solution as

the smallest eigenvalue of the matrix ATA.

Θ̂ = arg min
‖θ‖=1

θTATAθ (11)

Alternatively, we can formulate it as a second order cone

program (SOCP):

Θ̂ = argmin
Θ

‖AΘ‖2 s.t 1TΘ ≥ 1 (12)

Solving as an eigenvalue problem is often more accurate

in terms of numerical precision. However, for very large

systems it is not possible to solve the eigenvalue problem

due to resource constraints. In such cases, it might still be

possible to solve it as a convex program. The convex formu-

lation also allows to incorporate additional constraints that

might be available. Using the surface parameters, the gradi-

ent field is recovered. The surface is then estimated by inte-

grating the gradient field by solving a Poisson equation [2].

The various steps involved in our surface reconstruction al-

gorithm are shown graphically in Figure 4.

I

SIFT

Reflection

Linear System

A = 0
Quadric

Surface 

Gradients

Poisson
Surface 

I1

In

Images captured under object 

or environment rotation

Reflection 

Correspondences

Quadric 

parameters  

I1

Figure 4. Block Diagram of the various steps involved in surface

reconstruction from sparse RCs.

3.5. Additional Normal Constraints

In addition to RCs, surface normal information might be

available at a sparse set of points on the surface. This infor-

mation might come either from observing a known scene

point, or from observing the reflection of the camera, or

from the occluding contour. In any of these cases, we can

reformulate the problem such that this additional informa-

tion is seamlessly integrated into the reconstruction algo-

rithm. The convex optimization framework for estimating

the shape of the mirror is more flexible in its ability to in-

corporate additional constraints. One such constraint is that

of the knowledge of surface normals or gradients at a few

locations on the mirror. Given a set of such surface gradi-

ents, {xn
l ,∇fn(xl), l = 1, . . . , Qn}, we can enforce these

by adding additional constraints to the optimization prob-

lem. Each of the known gradients induce a linear constraint

on the quadric parameters.

Jnl
+Hnl

x
n
l = ∇fn(xl),x

n
l ∈ Nnl

, l = 1, . . . , Qn. (13)

We can now solve an optimization problem defined as

follows,

minJk,Hk
‖AΘ‖2

subject to 1TΘ ≥ 1
Jnl

+Hnl
x
n
l = ∇fn(xl),x

n
l ∈ Nnl

, l = 1, . . . , Qn.
(14)

The basic nature of the optimization problem does not

change, in that, it remains a SOCP.

In practice, the ability to incorporate such additional in-

formation to estimate the surface of the mirror is extremely

useful especially when there are not sufficient RCs to re-

construct the surface reliably. Having a few known surface

gradients/normals goes a long way in regularizing the sur-

face estimate.

4. Experiments

We perform a thorough evaluation of our algorithm

on several challenging surfaces: a) Quadric b) Gaussian

c) Mixture of Gaussians d) Test Surface 1 e) Test Sur-

face 2 f) Gravy Ladle and g) Ice cream scoop. The

analytical equations for Test surface 1 and 2 are z =
f(x, y) =

√

4− x2 − y2 − cos(2x− 2)− sin(2y) and

z = f(x, y) =
√

4− x2 − y2 − cos(3x− 6)− 2 sin(2y)
respectively. Some of the surfaces on which we have tested

the surface reconstruction algorithm are shown in Figure 5.

Figure 5. Our approach can handle mirror surfaces with different

shapes and sizes as shown. The leftmost object was machined

using a CNC milling machine. All other objects were bought from

local departmental store.

4.1. Simulations:

Known RCs: In order to test the reconstruction algo-

rithm, we first computed true RCs by matching normals be-

fore and after rotation. Using these ground truth RCs, we

can reconstruct the surfaces. Figure 6 shows reconstruc-

tions for surfaces of varying complexity. This highlights

the connection between the complexity of the surface and

the number of correspondences required to reconstruct it re-

liably.

Reflection Correspondences from Images: Figure

7 shows reconstructions from rendered images. We used

POV-Ray to render mirrors of various shapes, obtaining
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Figure 7. Reconstruction of various surfaces from SIFT matches obtained from rendered images. The reconstructions were obtained

from images directly without any additional information. For each surface, multiple images of the mirror were obtained by rotating

the environment in PovRay. Reflection correspondences were obtained using SIFT, and subsequently processed by the proposed surface

reconstruction algorithm. Shown are reconstructed normal fields and normal mismatch error in degrees.
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Figure 6. Three surfaces and the minimum number of RCs re-

quired to reliably reconstruct them. Reflection correspondences

are assumed to have an uniform spatial spread. The more complex

the surface, the more the number of RCs required to reconstruct it.

multiple images by rotating the mirror, and imaging us-

ing an ideal orthographic camera. Figure 7 shows recon-

struction results obtained from 5 images of each mirror.

RCs were obtained using SIFT. All surfaces were recon-

structed by partitioning the region of interest into 10 × 10
non-overlapping neighborhoods and modeling the surface

locally as a quadric in each. Finally, outliers in the SIFT

matches were manually removed before running the surface

reconstruction algorithm. As expected the quality of recon-

struction depends on the inherent complexity of the surface.

When very few images of a mirror are available, invari-

ably SIFT matches do not produce a dense sampling on cor-

respondences on the image plane. This results in features in

the mirror being missed out. In such cases, having addi-

tional information in terms of actual normal values on the

surface of the mirror helps in regularizing the solution. Fig-

ure 8 shows reconstruction results when surface normals at

16 locations were provided to the algorithm.

4.2. Experiments on Real Data

To test the algorithm with real data, we built an ex-

perimental rig as shown in Figure 9. We used a Point

Gray Dragonfly camera with a 35mm lens. The mirror

was mounted on a turn-table/screw about 85 cm from the

camera. Motion of the mirror was estimated using markers

stuck on the mirror and on the turn-table. It is noteworthy

that modeling assumptions such as orthographic camera and
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Figure 8. Additional information on the surface in terms of nor-

mals known at few location can be easily incorporated in the es-

timation process. This is especially useful when SIFT matching

does not give a spatially dense covering. In this case, having just

two images of the mirror do not produce enough SIFT matches to

reconstruct the mirror faithfully. Additional knowledge of 16 nor-

mals at marked location improves the fidelity of the reconstruction.

scene at infinity are violated in this imaging setup.

Optical axisOptical axis

perpendicular

to axis of 

rotation

Camera

Diffuse Polka 

dots to estimate 

angle of rotation.

Mirror surface

Axis of 

rotationrotation

Figure 9. Our experimental setup consists of mirror object on a

turn table with the camera looking down on the mirror. The camera

is calibrated and positioned such that its optical axis is parallel to

the rotation axis of the turn-table/mirror. Markers on the mirror

and turn-table allow for the recovery of object motion.

To analyze the accuracy of our approach, we used a

quadric surface machined using a CNC milling machine,

giving us precise ground truth information. Our dataset for

this surface comprised of 38 images obtained by rotating

the object. Markers placed on the mirror were used to es-

timate the object motion. Figure 10 shows a surface re-

construction result on this surface. Outliers were removed

using RANSAC to enforce local affinity in the RCs. Here,

a local affine model on the RCs was used motivated by the

affine relationship between the correspondence pair xA and

x
B in (9). To test the robustness of our estimation, we re-

constructed the mirror surface by choosing random pairs of

images in which the mirror was less than 30 degrees apart.

In all, our average reconstruction error for the depth map

was 1.2 mm while the depth variation in the mirror was 27
mm.

Comparison with 3D scanner: We also show recon-

struction results on a gravy-ladle in Figure 11. The gravy-

ladle object was painted with a diffuse white paint and

scanned using a commerical $3000 NextEngine desktop 3D

scanner. Figure 11 compares the scanned point cloud with

our reconstruction. We use the standard ICP algorithm to

register the two surfaces. The difference between our re-

construction and scanned point cloud is less than 0.5 mm

for 70% point matches. Real dimensions of the object was

67mm x 44mm x 25mm.

Sample Image
SIFT Matches

Ground TruthGround Truth

Manual mask for mirror
Reconstructed

Mirror
Reconstructed Mirror 

(Quadric interpolation)

Figure 10. Surface estimation results from real data for the quadric

surface. Shown are reconstruction results form using 2 images

from the dataset. Average absolute error of the reconstruction is

1.2 mm over a depth variation of 27 mm.

Database: In the course of experiments, we collected a

database consisting of two parts. For a total of six synthetic

surfaces, we provide the depth map, several POV-Ray ren-

dered images of the surface with known motion between

the images. The database also consists of four real mirror

surfaces, for which we provide a depth map (using a com-

mercial laser based structured light 3D sensor), several real

images of the surface with known rotation between these

images. The dataset and our code for surface reconstruction

from RCs are available through the authors’ websites.

5. Discussions and Conclusions

It is worthwhile discussing the relative merits and de-

merits of our proposition. The theory described in [5] estab-

lish both uniqueness and existence of solution from multiple

dense specular flows. In contrast, we show that it is possi-

ble to reconstruct mirror surfaces from a sparse set of RCs

corresponding to a single rotation axis provided we enforce

additional constraints on the surface smoothness. However,

our method does rely on rotation about the optical axis of

the camera, and hence, fails for objects exhibit rotational

symmetry about this axis. Finally, Roth and Black [13] use

a global surface parametrization which is more restrictive

than the local patch-wise model assumed in this paper.

Reconstructed

Depth Map 10

Ground Truth
 (shifted for visualization)

0

5

Estimated Surface

-15

-10

-5

Input Images

-20020-20 -15 -10 -5 0 5 10 15 20

Registration with Laser 

scanned Ground Truth
Painted objectPainted object

Figure 11. Comparison of reconstructed surface with 3D laser scan

of object obtained by coating it with matte paint. Registration error

was around 0.5 mm with about 70% match.
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Sparsity of Correspondences: All of the information

of the surface shape in our estimation comes from RCs. It

is noteworthy that, in the absence of RCs, the matrix A in

(11) has a 5-dimensional null space that spans the space of

quadrics. The constraints generated by the RC shift the so-

lution from a global quadric to the surface we are interested

in. In this sense, the density of RCs determine the gran-

ularity with which features on the surface are resolved. In

particular, capturing fine nuances in the surface require RCs

that capture the subtle variations in the shape. In addition to

this, to capture these variations, it is also important to make

the neighborhoods of quadric approximation adaptive to the

local density of RCs.

Complexity of Mirror Surface: The complexity of

the mirror shape affects the reconstruction process in two

ways. As the surface complexity increases, the size of

the neighborhoods over which the quadric assumptions are

made needs to be decreased. Complex surfaces affect the al-

gorithm in an indirect way by introducing points/curves of

parabolic curvature. As mentioned earlier in the paper, un-

der finite motion, features appear/disappear in regions close

to parabolic curvature. As a consequence, there is a pos-

sibility of obtaining no SIFT features in these regions (see

Figure 7). However, parabolic curves do provide strong sur-

face priors: local cues such as points and curves of zero

Gaussian curvature, as well as global cues by diving the

surface of the mirror into regions of elliptic and hyperbolic

curvature. Detecting parabolic curves from one or more im-

ages of the mirror and using such information appropriately

will, potentially, enable reconstructions of arbitrarily com-

plex surfaces.

Outliers: Robustness to outliers remain one of the main

challenges to the surface estimation procedure presented in

this paper. For the experiments in this paper, the RCs were

pruned using RANSAC to enforce local affinity of features.

However, a rigorous outlier handling procedure remains an

important direction for future research.

Conclusions: In this paper, we proposed using sparse

RCs for specular surface reconstruction. We showed that

using RC avoids practical difficulties with previous SFSF

methods. We show that modeling the mirror surface as a

locally quadric makes the relationship between RC and sur-

face linear. This allows us to reconstruct the surface using

an efficient algorithm. We highlight the ability of the algo-

rithm by working with real images of mirror and use off-

the-shelf feature matching algorithms such as SIFT for es-

timating the shape of the mirror. In this regard, we believe

that this paper makes significant progress towards making

surface recovery of mirrors practical.
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