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Abstract

Computer vision systems attempt to understand a scene and its com-
ponents from mostly visual information. The geometry exhibited by
the real world, the influence of material properties on scattering of
incident light, and the process of imaging introduce constraints and
properties that are key to interpreting scenes and recognizing objects,
their structure and kinematics. In the presence of noisy observations
and other uncertainties, computer vision algorithms make use of sta-
tistical methods for robust inference. In this monograph, we highlight



the role of geometric constraints in statistical estimation methods, and
how the interplay between geometry and statistics leads to the choice
and design of algorithms for video-based tracking, modeling and recog-
nition of objects. In particular, we illustrate the role of imaging, illu-
mination, and motion constraints in classical vision problems such as
tracking, structure from motion, metrology, activity analysis and recog-
nition, and present appropriate statistical methods used in each of these
problems.



1
Introduction

The goal of computer vision is to enable machines to see and interpret
the world. Computer vision algorithms use input from one or more still
images or video sequences that are related in a specific manner. The
distribution of intensities and their spatial and temporal arrangements
in an image or a video sequence contain information about the identity
of objects, their reflectance properties, scene structure, and objects in
the scene. However, this information is buried in images and video and
that makes it a challenging task. One of the fundamental reasons for
this difficulty occurs because mapping from the 3D scene to 2D images
is generally non-invertible. Most traditional computer vision algorithms
make appropriate assumptions about the nature of the 3D world and
acquisition of images and videos, so that the problem of inferring scene
properties of interest from sensed data becomes recoverable and ana-
lytically tractable.

Within this context, reasonably accurate, yet simple geometric
models of scene structure (planar scene, etc.), scene illumination
(point source), surface properties (Lambertian, Phong, etc.), imag-
ing structure (camera models) serve critical roles in the design of
inference algorithms. Moreover, images and video sequences obtained
using imaging devices are invariably corrupted by noise. Common noise
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sources in the imaging system are due to shot noise, thermal noise, etc.
Inference in this noisy environment is further complicated by the inher-
ent errors in physical modeling. Real surfaces are never truly Lamber-
tian, real cameras are never truly perspective, illumination in a scene
is never a point light source, nevertheless inference algorithms make
these assumptions in order to make the problem tractable. In addition,
motion of objects in a scene could complicate the recovery of scene
and object properties due to blur, occlusion, etc. Therefore, it becomes
important that the developed inference algorithms can cope with vary-
ing sources of error.

To illustrate these sources of error, let us consider the following
simple illustration. Suppose we are interested in designing a robot that
can localize and identify the entrances to buildings (see Figure 1.1(a)).
To begin, we first define a ‘model’ of an entrance. For computational
tractability, we assume the edges of the entrance form a rectangle. Now,
given an image containing the entrance, we might choose to use an edge
detector or a corner detector to extract features. Due to image-noise,
occlusions, and shadows, the features may not exactly correspond to
edge locations. With these noisy feature locations, we proceed to fit two
sets of parallel lines, where the lines from different sets are perpendic-
ular to each other. Consider the edge figure in Figure 1.1(b). Finding
the set of points corresponding to the entrance and grouping them into
a rectangle comprises a combinatorial optimization problem. Suppose

(a) (b)

Fig. 1.1 Fitting a rectangle to an entrance. Various sources of error arise here – feature
points are noisy, grouping of the points into a rectangle is a challenge, and a rectangle is
not an accurate model for the entrance.
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we obtain a solution to this optimization problem, perhaps by using
the Hough transform. The final error in fit would have occurred due to
noisy measurements, the difficulty in solving the constrained optimiza-
tion problem, and the error in modeling itself, since the entrance does
not appear as a rectangle due to perspective effects. The error would
become even worse when the viewing angle moves further from frontal,
or if shadows are present or the entrance is partially occluded, etc.

As this example illustrates, computer vision algorithms involve the
interplay between geometric constraints that arise from models of the
scene. Inference makes assumptions about the imaging devices and
about appropriate statistical estimation techniques that can contend
with varying sources of error. This tutorial attempts to re-examine
and present several computer vision techniques accordingly.

The acceptance of statistical methods in computer vision has been
slow and steady. In the early days of the field, the understanding of the
geometrical aspects of the problem was given much attention. When
uncertainties due to noise and other errors had to be taken into account,
and when prior information and massive sensor data became available,
the infusion of statistical methods was inevitable. Statistical models
and methods entered into computer vision through image models. Non-
causal models were first introduced in the analysis of spatial data by
Whittle [222]. Subsequently, in the 1960s and 1970s, Markov random
fields (MRFs) were discussed in statistical [16, 169] and signal process-
ing literature [223]. In the 1980s, statistical methods were introduced
primarily for image representation; thus MRFs [36, 47, 110] and other
non-causal representations [37, 110, 111] were suggested for images.
This enabled the formulation of problems such as image estimation
and restoration [75], and texture analysis (synthesis, classification, and
recognition) [43, 50] as maximum a posteriori estimation problems.
Appropriate likelihood expressions and prior probability density func-
tions were used to derive the required posterior probability density.
Nevertheless, the maximum of the posterior probability density func-
tions did not always yield a closed form expression, requiring techniques
such as simulated annealing [75, 118].

The introduction of simulated annealing techniques could be con-
sidered a seminal moment as it opened a whole new class of sampling



6 Introduction

approaches for synthesis and segmentation of textured images [137]
and other early vision problems. Simulated annealing techniques were
followed by techniques such as mean field annealing [19], iterated condi-
tional mode [18], and maximum posterior marginal [138]. These tech-
niques are now part and parcel of computer vision algorithms. It is
worth noting that MRFs and conditional random fields are making a
strong resurgence in graphics and machine learning literature.

Applications of Monte Carlo Markov chain techniques for non-linear
tracking problems have also been studied [79]. Since the introduction
of the CONDENSATION algorithm in 1996 [95], numerous papers
have discussed appearance, shape, and behavior-encoded particle filter
trackers. Robust estimation methods offer another statistical area that
has received attention in the computer vision literature. Many problems
such as fitting lines, curves, and motion models relied on least square
fitting techniques which are quite sensitive to the presence of outliers.
Since the early 1980s, the use of RANSAC [67, 139], M-estimators [93],
and least median square estimators [170] has become valuable in all
model fitting problems, including fitting moving surfaces and objects
to the optical flow generated by them. Discussions of robust estimation
with applications in computer vision can be found in Meer et al. [139].

One of the recurring issues in the development of computer vision
algorithms is the need to quantify the quality of the estimates. Haralick
and his co-workers [108] pioneered this area. In the classical problem
of estimating the 3D structure of a scene from motion cues, which is
termed as the ‘structure from motion’ (SfM) problem, one would like to
compute the lower bounds on the variances of the motion and structure
estimates. Similar needs arise in camera calibration, pose estimation,
image alignment, tracking, and recognition problems. A time-tested
approach in statistics — the computation of Cramer–Rao bounds [166]
and their generalizations — has been adopted for some computer vision
problems.

The exploitation of statistical shape theory for object recognition
in still images and video sequences has also been studied intensively
since the 1980s. In particular, Cooper and collaborators [27, 26] have
developed several algorithms based on Bayesian inference techniques
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for the object recognition problem. Introduction of statistical infer-
ence techniques on manifolds which host various representations used
in shape, identity, and activity recognition problems is garnering a lot
of interest [195].

Kanatani pioneered statistical optimization under the constraints
unique to vision problems. His books explore the use of group theoret-
ical methods [106] and statistical optimization [107] in image under-
standing and computer vision. In particular, Kanatani [107] explores
parametric fitting under relationships such as coplanarity, collinearity,
and epipolar geometry, with focus on the bounds on the estimate’s
accuracy. Kanatani also explored the idea of geometric correction of
data to make them satisfy geometric constraints.

Finally, we will be grossly remiss, if we do not acknowledge Prof.
Ulf Grenander, who created the area of probabilistic and statistical
approaches to pattern analysis and computer vision problems. His series
of books [81, 82, 84], and the recent book with Prof. Mike Miller [83],
have laid the foundations for much of what has been accomplished in
statistical inference approaches to computer vision. Prof. Julian Besag’s
contributions to the development of spatial interaction models [16, 18]
and Monte Carlo Markov chain techniques [17] are seminal. Many
researchers have developed statistical approaches to object detection
and recognition in still images. In particular, Professors David Mum-
ford, Don Geman, Stu Geman, Yali Amit, Alan Yuille, Mike Miller,
Anuj Srivastava, Song-Chun Zhu and many others have made signifi-
cant contributions to statistical approaches to still image-based vision
problems. As we are focusing on video-based methods and have page
constraints, we are unable to provide detailed summaries of outstanding
efforts by the distinguished researchers mentioned above.

1.1 Goals

In this monograph, we will examine several interesting video-based
detection, modeling, and recognition problems such as object detection
and tracking, structure from motion, shape recovery, face recognition,
gait-based person identification, and video-based activity recognition.
We will explore the fundamental connections between these different
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problems in terms of the necessary geometric modeling assumptions
used to solve them, and we will study statistical techniques that will
enable robust solutions to these problems. Of course, a host of other
image processing applications exist where statistical estimation tech-
niques have found great use. The goal of some of these applications,
such as image denoising, image deblurring, and super-resolution, is to
recover an image, not ‘understand’ the scene captured in the image.
We therefore will not delve in detail about these applications in this
tutorial. An in-depth discussion of some statistical techniques applied
to image processing may be found in [77, 97].

Writing this tutorial presented a great challenge. Due to page limi-
tations, we could not include all that we wished. We simply must beg
the forgiveness of many of our fellow researchers who have made sig-
nificant contributions to the problems covered here and whose works
could not be discussed.

1.2 Outline

We begin the monograph with an in-depth coverage of the various geo-
metric models that are used in imaging in Section 2. Light from illumi-
nation sources interacts with materials, reflects off them, and reaches
the imaging system. Therefore, it is important to study the reflectance
properties of materials. We describe popular models of reflectance, such
as the Lambertian and Phong models, and indicate vision applica-
tions where such reflectance models find use. Next, we describe popular
models for the imaging sensor — the camera. In particular, we provide
a brief description of the perspective projection model and some of
its variants. Image sequences obtained from video cameras are related
through scene structure, camera motion, and object motion. We also
present models for both image motion (optical flow) and object/camera
motion and describe how scene structure, motion, and illumination are
coupled in a video.

In Section 3, we describe commonly used statistical estimation tech-
niques such as maximum likelihood and maximum a posteriori, estima-
tors. We also describe robust estimators such as M-estimators. We state
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the problem of Bayesian inference in dynamical systems and describe
two algorithms — the Kalman filter and particle filters — that can
perform Bayesian inference with applications to object tracking and
recognition in video sequences.

In Section 4, we develop models for detection, tracking, and recogni-
tion in surveillance applications, highlighting the use of appearance and
behavioral models for tracking. Section 5 describes an important fun-
damental problem in computer vision — structure from motion (SfM).
SfM techniques study the relationship between the structure of a scene
and its observability given motion. In the section, we highlight various
approaches to explore this relationship, then use them to estimate both
the structure of the scene and the motion. We also discuss Cramer–Rao
bounds for SfM methods based on discrete features and optical flow
fields.

Section 6 discusses some applications in vision where the parameters
of interest lie on a manifold. In particular, we study three manifolds,
the Grassmann manifold, Stiefel manifold, and the shape manifold, and
show how several vision applications involve estimating parameters that
live on these manifolds. We also describe algorithms to perform statis-
tical inference on these manifolds with applications in shape, identity,
and activity recognition. Finally, in Section 7, we conclude the mono-
graph with a discussion on future trends.



2
Geometric Models for Imaging

Computer vision, at its core, relies on the interplay of light with envi-
ronment surfaces that then enters the camera aperture. This is shown
graphically in Figure 2.1. Further, dynamics in the scene may be intro-
duced either through rigid or non-rigid motion of scene structures,
sensor motion, or changes in illumination. To study and understand
the structure of the environment from the captured images, we need
to maintain accurate and realistic models of lighting, surface proper-
ties, camera geometry, and camera and object motion. In this section,
we discuss appropriate models for each of these and show when each
of these models is appropriate. We will review the basics of imaging,
starting from models of surfaces, models for cameras, and models for
motion. These models form the basis of much of computer vision, and
will appear in the various applications to be considered in the rest of
the monograph.

2.1 Models of Surface Reflectance

The interaction of light with materials is fundamental to imaging, and
therefore is important to develop and study models for surfaces. In gen-
eral, light incident on a surface is absorbed, reflected, scattered, and/or

10
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Fig. 2.1 Incident light interacts with surface. The light reflected by the surface enters the
camera and is sensed by the image sensor. The sensed intensity depends on several material
properties such as (a) surface normal, (b) reflectance characteristics of the surface, and (c)
properties of incoming light.

refracted. The amount and direction in which this light is dispersed in
each of these modes is dependent on the surface properties. Further,
the amount of light reflected along various outgoing directions can vary
with the wavelength and direction of incoming light.

For an opaque surface, with no subsurface scattering, the bidirec-
tional reflectance distribution function (BRDF) is a 4D function over
the space of all incoming and outgoing directions (2D each) character-
izing the ratio of light which is reflected along the outgoing direction
to that irradiated on the object along a particular incoming direc-
tion. The BRDF is a rich characterization of surface property, which
is especially useful in relighting of virtual scenes and is important in
many graphics applications. In computer vision applications, where
the goal is to estimate and infer properties of the surface (such as
surface normals or depth values), simpler models that enable analyt-
ical tractability are often used. In particular, the Lambertian model
for surface reflectance has found tremendous applications in several
vision applications because of its simplicity, analytical tractability, and
the range of real-world surfaces that are almost Lambertian in their
reflectance. As an example, consider Figure 2.2. The teddy bear doll
shown on the left has Lambertian reflectance. This means that the irra-
diance of outgoing light appears the same in all directions (shown using
orange outgoing rays). Many real-world materials have non-Lambertian
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Fig. 2.2 Figure illustrating the reflectance properties of (left) Lambertian, (middle) mirror,
and (right) glossy surfaces.

reflectance. The most common example is mirror-like surfaces as shown
in Figure 2.2 (middle). Such surfaces reflect incoming light in a specific
direction about the local surface normal at the point of incidence. Most
real-world surfaces can be adequately characterized using a model that
combines the specular and Lambertian components as shown in Fig-
ure 2.2 (right). Below, we describe two analytical models for surface
reflectance — the Lambertian model and the Phong model.

2.1.1 Lambertian Model

The Lambertian model [122] describes surfaces whose reflectance is
independent of the observer’s viewing direction. Materials such as
matte paint, unpolished wood, and wool exhibit the Lambertian model
to a reasonable accuracy. Given a point source of wavelength λ and
intensity I(λ) illuminating a surface with normal n at an incident
angle i, the reflected light has intensity Io(λ) given as:

Io(λ) = ρ(λ)I(λ)iTn, (2.1)

where ρ is the albedo, the fraction of energy that is reflected by the sur-
face. In the Lambertian model, the reflectance depends mainly on the
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angle between the surface normal and the incident light, encoded in the
term iTn. The reflected light, or outgoing radiance, is uniform in all out-
going directions, and hence is independent of the observer’s viewpoint.
For many vision applications, this forms a reasonable approximation of
the overall reflectance of the surface. This reflection model is isotropic
over the observer’s angle of view and does not capture specularities,
which are inherently anisotropic. This is illustrated in Figure 2.2 (left).

2.1.2 Phong Model

The Phong model [155] extends the simpler Lambertian model to
include specular highlights. As before, given the point light source with
intensity I, with incident direction i, the reflected component of this
source is given as,

Io(λ) = ρd(λ)I(λ)iTn + ρs(λ)I(λ)
(
rTv

)α
, (2.2)

where ρd and ρs are coefficients describing the ratio of energy in the dif-
fuse and specular components, respectively. v is the observer’s direction
(or the outgoing direction of light) and r ∝ 2(iTn)n − i is the reflection
direction. α is a constant that controls the nature of the specularity.
A high value of α produces a highly localized specularity (like a mirror),
while lower values of α produce specularity that is more even (such
as greasy surfaces). Shown in Figure 2.3 is the rendering of a glossy
surface using the Phong illumination model. Note that the ambient
contribution is completely flat, while the diffuse contribution accounts
for Lambertian shading due to illuminant direction, and the specular

Fig. 2.3 Realistic modeling of surface reflectance can be obtained with the Phong Model.
The Phong model encompasses the diffused component (of the Lambertian model) along
with specularity (figure courtesy: Wikipedia.)
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highlights are accounted using the specular term of the Phong model.
The resulting rendering is realistic, showing that the Phong reflectance
model is an adequate model for several real surfaces.

2.2 Camera Models

Light, after interacting with surfaces, enters the camera and is imaged
on the sensor. Lens-based cameras can at most times be reasonably
approximated by pinhole cameras (especially when all objects are
within its depth of field). The effect of a pinhole camera on light ema-
nating from scene points can be studied through projective geometry.
An in-depth discussion of projective geometry can be found in [87, 136].
The projective nature of imaging introduces unique challenges in com-
puter vision, some of which we shall review here.

In the rest of this section, we use bold-font to denote vectors and
CAPS to denote matrices. Further, we use x,y,z alphabets to denote
quantities in world coordinates, and u,v alphabets for image plane
coordinates. In addition to this, the concept of homogeneous coordi-
nates is important. We use the tilde notation to represent entities in
homogeneous coordinates. Given a d-dimensional vector u ∈ R

d, its
homogeneous representation is given as a (d + 1)-dimensional vector
ũ � [u,1]T , where the operator � denotes equality up to scale. In other
words, ũ � x̃ ↔ ũ = λx̃,λ �= 0. In simpler terms, when we deal with
homogeneous quantities, the scale ambiguity allows for elegant repre-
sentations of the basic imaging equations, which we discuss next. In
particular, the homogeneous representation allows us to write perspec-
tive projection as a linear operation.

2.2.1 Central Projection

Central projection is the fundamental principle behind imaging with a
pinhole camera, and it serves as a good approximation for lens-based
imaging for the applications considered here. In the pinhole camera
model, rays (or photons) from the scene are projected onto a planar
screen after passing through a pinhole, as illustrated in Figure 2.4. The
screen is typically called the image plane of the camera. Consider a
camera with its pinhole at the origin and the image plane aligned with
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Fig. 2.4 Illustration of the pinhole camera model and central projection. Light from the
scene enters the camera through a pinhole and is then sensed on a planar image sensor
which is at a distance focal length f away from the pinhole. The image sensed on the sensor
is inverted as shown. Further, the focal length f or the distance between the pinhole and
the sensor plane determines the optical magnification.

the plane z = f . Under this setup, a 3D point x = (x,y,z)T projects
onto the image plane point u = (u,v)T , such that:

u = f
x

z
, v = f

y

z
. (2.3)

This can be elegantly written in homogeneous terms as,

ũ �


uv

1


 =


fx/zfy/z

1


 �


fxfy
z


 =


f 0 0

0 f 0
0 0 1


x. (2.4)

A more general model of the pinhole camera allows for the pinhole
to be at an arbitrary position and the image plane oriented arbitrarily.
However, we can use a simple Euclidean coordinate transformation to
map this as an instance of the previous one. Finally, the camera might
have non-square pixels with image plane skew. This leads us to a general
camera model whose basic imaging equation is given as:

ũ � K[R t]x̃ = P x̃, (2.5)

where P is the 3 × 4 matrix encoding both the internal parameters of
the camera K (its focal length, principal point, etc.) and the exter-
nal parameters (its orientation R and position t in a world coordinate
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system). ũ and x̃ are the homogeneous coordinate representations of the
pixel in the image plane and the point being imaged in the real world,
respectively. Although central projection is inherently non-linear, it
can be written as a linear transformation of the homogeneous coor-
dinates. Finally, Equation (2.4) can be obtained from Equation (2.5)
with R = I3 (the identity matrix), t = 0 and K = diag(f,f,1).

It is noteworthy that the projection equation of Equation (2.5) is not
invertible in general. Intuitively, the pinhole camera maps the 3D world
onto a 2D plane, so, the mapping is many-to-one and non-invertible.
All points that lie on a line passing through the pinhole map onto the
same image plane point. This can also be independently verified by the
scale ambiguity in Equation (2.5). Given a point on the image plane
u, its pre-image is defined as the set of all scene points that map onto
u under central projection. It is easily seen that the pre-image of a
point is a line in the real world. Without additional knowledge of the
scene and/or additional constraints, it is not possible to identify the
scene point which projects onto u. The non-invertibility of the scene
point (or associated metrics) leads to the identifiability problem in
estimation, mapping more than one (sometimes, infinitely many) point
in the solution space. This lack of invertibility also leads to some of the
classical problems in computer vision, the most fundamental being the
establishment of correspondence across views.

2.2.2 Epipolar Geometry

Consider two images (or central projections) of a 3D scene. Given a
point uA on the first image of a world point x, we know that its pre-
image is a line passing through the point uA and CA, the pinhole of
the camera (see Figure 2.5). Given information about uA on the first
image, we can only establish that the corresponding projection of the
point x on the second image plane uB lies on the projection of the pre-
image of uA onto the second image plane. Since the pre-image of uA is
a line, the projection of this line onto view B gives the line L(uA), the
epipolar line associated with uA. Thus, epipolar geometry constrains
corresponding points to lie on conjugate pairs of epipolar lines.
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Ground Plane

View View

Epipole

Pre-image of

Epipole

Line

Fig. 2.5 Consider views A and B (camera centers CA and CB) of a scene with a point x
imaged as uA and uB on the two views. Without any additional assumptions, given uA,
we can only constrain uB to lie along the image of the pre-image of uA (a line). However,
if the world were planar (and we knew the relevant calibration information) then we could
uniquely invert uA to obtain x, and re-project x to obtain uB .

Algebraically, the epipolar constraint can be written as a bilinear
constraint on the corresponding points uA and uB. A given 3D point
(written as XA and XB in camera-centric coordinate systems) satisfies
the Euclidean transformation constraint:

XB = RXA + t. (2.6)

Under projective imaging, the relations ũA � KAXA and ũB � KBXB

can be used to rewrite Equation (2.6) as:

K−1
B ũB � RK−1

A ũA + t,

t×K−1
B ũB � t×RK−1

A ũA + t×t,
(2.7)

where t× is the vector cross product with the vector t. Finally, taking
inner products with K−1

B ũB, and noting that t×t = 0, we obtain:

ũTBK
−T
B t×K−1

B ũB � ũTBK
−T
B t×RK−1

A ũA,

0 � ũTBEũA, with E = K−T
B t×RK−1

A ,
(2.8)

where K−T
B = (K−1

B )T . The matrix E is called the fundamental matrix
from view A onto view B, and it encodes the epipolar constraint com-
pactly. Given a point uA, its corresponding epipolar line in view B is
LB(uA) = EũA. Equivalently, the epipolar line in view A corresponding
to a point uB in view B is given as LA(uB) = ET ũB.
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(a) (b)

Fig. 2.6 Figure showing two views of a hotel. Feature points are shown in small circles.
For each feature point and its corresponding point on the other image, we show epipolar
lines. The point where the epipolar lines converge is the epipole. In this case, the epipole is
located far from the image center.

We show a few real examples that demonstrate the concepts of
epipolar geometry. In Figure 2.6, we show two images from different
views of the hotel sequence. Feature points in the images are shown in
small circles. Epipolar lines through the corresponding feature points
are shown on the second image, and vice versa. We see that the epipolar
lines converge outside the image. As another example, consider the
Medusa sequence in Figure 2.7, where the epipolar lines converge on
the image plane.

In the context of multi-view localization problems, the epipolar con-
straint can be used to associate objects across multiple views [161].
Once we obtain reliable correspondences across multiple views, we can
triangulate to localize objects in the real world. However, correspon-
dences based on the epipolar constraint alone tend to be insufficient,
as the epipolar constraint does not map points uniquely across views.

2.2.3 Triangulation

In many applications, once we establish correspondences between
object locations across views, we are interested in the localization of
these objects in world coordinates. Let us assume that an object has
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(a) (b)

Fig. 2.7 Figure showing two views of a Medusa head. Feature points are shown in small
circles. For each feature point and its corresponding point on the other image, we show
epipolar lines. The point where the epipolar lines converge is the epipole.

View

View
View

Pre-image of

Pre-image of

Fig. 2.8 Consider views A, B, and D of a scene with a point x imaged as uA, uB , and uD

on the views. We can estimate the location of x by triangulating the image plane points as
shown in the figure. At each view, we draw the pre-image of the point, which is the line
joining the image plane point and the associated camera center. The properties of projective
imaging ensure that the world point x lies on this pre-image. Hence, when we have multiple
pre-images (one from each view), the intersection of these lines gives the point x.

been detected in two views (A and B) with camera center CA and CB
at image plane locations uA and uB as shown in Figure 2.8. In this case,
projective imaging constrains the object to lie on the pre-image of the
point uA (the line connecting CA and uA). Similarly the object must
also lie on the pre-image of uB in view B. Therefore, by estimating
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the point of intersection of these two lines, we can estimate the true
location of the object. In a general scenario with several cameras, each
camera generates a line in 3D. By computing the intersection of these
lines, the object’s location can be estimated. In the presence of noisy
measurements, these lines do not intersect at a single point, and error
measures such as sum-of-squares are used to obtain a robust estimate
of the location of the object. This process is called triangulation [88].
The drawback of triangulation is that it requires correspondence infor-
mation across cameras (i.e., which object in camera A corresponds to
which object in camera B), which is difficult to obtain.

2.2.4 Planar Scenes and Homography

In certain special scenarios, the imaging equation becomes invertible.
An example of such a scenario is when the scene being observed is
planar. Most urban scenarios form a good fit as majority of the actions
in the world occur in the ground plane. This makes it a reasonable
assumption for a host of visual sensing applications. The invertibility
can also be efficiently exploited by algorithms for various purposes. As
an example, consider the correspondence problem we mentioned earlier.
Under a planar world assumption, the pre-image of a point becomes
a point (in most cases), being the intersection of the world plane and
the pre-image line. This implies that by projecting this world point
back onto the second image plane, we can easily find correspondence
between points on the two image planes. This property induced by the
world plane allows for finding correspondences across image planes, and
is referred to as the homography induced by the plane.

Consider two views of a planar scene labeled view A and view B.
We can define a local coordinate system at each view. The same scene
point is represented as xA and xB on the two coordinate systems, and
they are related by the Euclidean transformation,

xB = RxA + t. (2.9)

Here, R (a rotation matrix) and t (a 3D translation vector) define the
coordinate transformation from A to B. Let us assume that the world
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plane has an equation nTxA = d with d �= 0.1 For points that lie on the
plane, we can rewrite Equation (2.9) as,

xB = RxA + tnT xA
d

=
(
R + 1

dtn
T
)
xA.

(2.10)

In each local camera coordinate system, we know that ũ � K[R t]x̃
(see Equation (2.5)) with R = I3 and t = 0. Therefore, ũB � KBxB
and ũA � KAxA, which gives us,

K−1
B ũB �

(
R + 1

dtn
T
)
K−1
A ũA,

ũB � HũA, where H = KB

(
R + 1

dtn
T
)
K−1
A .

(2.11)

This implies that a point in view A, uA maps to the point uB in view
B as defined by the relationship in Equation (2.11). The 3 × 3 matrix
H (in Equation (2.11)) is called the homography matrix, or simply, the
homography. Also, note that H (like P ) is a homogeneous matrix, and
the transformation it defines is unchanged when H is scaled. Further,
H is invertible when the world plane does not pass through pinholes
at either of the two views. This is easily verified as our derivation is
symmetric in its assumptions regarding the two views.

Finally, the premise of the induced homography critically depends
on the fact that the pre-image of a point on the image plane is a unique
point on the world plane. Suppose we use a local 2D coordinate system
over the world plane, the image plane to world plane transformation
(from their respectively 2D coordinate systems) can be shown to be a
projective transformation, which can be encoded as a 3 × 3 homoge-
neous matrix, say Hπ. This transformation is useful when we want to
estimate metric quantities, or quantities in an Euclidean setting. The
most common example of this happens when we need to localize the
target in the scene coordinates.

Computing the image plane to world plane transformation Hπ

presents a challenging problem, which is typically accomplished by
exploiting properties of parallel and perpendicular lines on the planes.
Typically, this requires manual inputs such as identifying straight line

1 When d = 0, the plane passes through the pinhole at A, thereby making the imaging
non-invertible
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segments that are parallel. While not always possible, many urban
scenes (such as parking lots, roads, buildings) contain such lines that
make it easier to estimate the transformation Hπ, at least in a semi-
supervised manner. Computing Hπ, as it happens, is identical to a
metric rectification of the image plane. Many such techniques are illus-
trated in [87].

2.2.5 A Note on Calibration

In order to use the epipolar constraint or the homography constraint
on images obtained from arbitrary camera views, it is essential to first
calibrate the cameras. Calibration of a camera refers to the estimation
of camera parameters, such as its internal parameters K or its exter-
nal parameters in terms of rotation R and translation t with respect to
world coordinates. However, in some cases, it might suffice to estimate a
subset or a minimal encoding of these parameters. The two-view prob-
lem exemplifies this, where the fundamental (or essential) matrix com-
pletely encodes the pertinent geometric information. Under the plane-
based homography constraint, calibration could involve estimating the
3 × 3 homography matrix, H, which encodes the relation between the
image location and the corresponding location on the scene plane. In
either case, calibration is an extremely well-studied problem, and we
refer the readers to [87, 136] for an in-depth analysis of the methods
and issues involved in calibration. In particular, we highlight that geo-
metric constructs, such as rotation matrices, fundamental matrices, and
camera internal parameters lie on special matrix manifolds. Exploiting
their special structure leads to efficient and robust solutions.

2.2.6 Simplifications to the Perspective Imaging Model

All the properties discussed so far, including epipolar geometry and
homography, are introduced due to central projection (the model of
imaging with an ideal pinhole), which serves as a good approximation to
lens-based imaging. Note that the mapping of 3D points onto the image
plane is non-linear under this imaging model. This is also accompanied
by some loss of information (a 3D to 2D mapping).
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However, for many scenarios, alternate models can serve as approxi-
mations to the central projection model providing analytic tractability
[64]. We discuss two such models here: the weak perspective and the
para-perspective models.

The weak perspective (or scaled orthography) model assumes that
the object’s depth variations are negligible, so, the imaging equation
can be approximated by using a reference depth z0. With this, the depth
of a scene point z be approximated as z = z0(1 + ε) where ε = 1 − z/z0
is minute or minimal under the assumptions. With this, the imaging
equations can be written as,

u = f
x

z
= f

x

z0(1 + ε)
≈ f

x

z0
, (2.12)

v = f
y

z
= f

y

z0(1 + ε)
≈ f

y

z0
. (2.13)

However, the error in the approximation in the weak perspective model
becomes large, especially for large fields of view. In the para-perspective
model [89], a first-order approximation of the perspective imaging
model is used to obtain a better approximation as follows:

u = f
x

z
= f

x

z0(1 + ε)
≈ f

x

z0
(1 − ε), (2.14)

v = f
y

z
= f

y

z0(1 + ε)
≈ f

y

z0
(1 − ε). (2.15)

The relation in Equation (2.15) is the para-perspective imaging model.
It is bilinear in the world coordinates (x,y,z), which are often easier to
handle than the non-linearity of the central projection.

2.3 Motion

Camera motion and object motion lead to several interesting vision
applications. Camera motion leads to observability of certain quanti-
ties (such as an object’s structure) that are typically unobservable in
the static single camera scenario. Further, in many applications such as
surveillance, moving objects are of primary interests to us. It is impor-
tant to study motion of objects both at a macroscopic level (the level
of the object and its parts) and a microscopic level (the level of point
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features on the object). This results in a range of models for motion
that arise in various contexts. We discuss a few of these motion models
here.

2.3.1 Microscopic Model: Brightness Constancy
and Optical Flow

Estimating motion for point features is referred to as the problem of
estimating the optical flow. Optical flow is defined as the apparent flow
induced on the image plane due to the real motion of the object [90].
Typically, we need to make additional assumptions to solve this prob-
lem. We discuss the brightness constancy assumption. This assumes
that the brightness of a point feature on the object remains the same
even when the object is moving, or the camera is moving.

Let I(x,y, t) be the intensity observed at pixel (x,y) at time t. The
principle of brightness constancy suggests that for a point object that
undergoes translation from a point (x,y) at time t to (x + ∆x,y + ∆y)
at time t + ∆t, the observed intensity remains the same, i.e.,

I(x,y, t) = I(x + ∆x,y + ∆y,t + ∆t). (2.16)

Using the Taylor series expansion we obtain,

I(x + ∆x,y + ∆y,t + ∆t) ≈ I(x,y, t) +
∂I

∂x
∆x +

∂I

∂y
∆y +

∂I

∂t
∆t.

(2.17)
Substituting this expression in Equation (2.16),

∂I
∂x∆x + ∂I

∂y∆y + ∂I
∂t∆t = 0,

∂I
∂x

∆x
∆t + ∂I

∂y
∆y
∆t = −∂I

∂t ,

∇I · v = −It,

(2.18)

where v is the apparent velocity of the point on the image plane, in
other words, the flow vector, ∇I = (∂I/∂x,∂I/∂y), denotes the spatial
gradients of the image in x and y directions, and It denotes the temporal
gradient of the image sequence. The expression ∇I · v = −It expresses
a fundamental relationship relating the spatial and temporal gradients
to the flow vector. Note that, the flow vector v has two components
and the optical flow equation (2.18) provides only one equation.
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The Lucas–Kanade algorithm [202] solves for the flow by assuming a
constant flow for all points in a small neighborhood of the feature point.
Each point now provides a constraint in v, and by grouping all such
constraints, and solving for a minimum mean-square error (MMSE)
solution, an estimate for the flow can be obtained.

v̂ =
[ ∑

I2
x

∑
IxIy∑

IxIy
∑
I2
y

]−1[−∑
IxIt

−
∑
IyIt

]
= A−1b, (2.19)

where the summation is for all pixels in a neighborhood, and Ix and Iy
denote ∂I/∂x and ∂I/∂y, respectively.

A robust solution for the flow vector using Equation (2.19) is possi-
ble only when the matrix A is well-conditioned. Typically, for smooth
regions in the image the matrix has a rank 0, and for points along single
edges, it has rank 1. This is referred to as the aperture problem, and
it is a fundamental limitation of flow estimation using local informa-
tion. It is only for neighborhoods that have strong gradients in multiple
directions (such as corners and intersections), that the matrix is well
conditioned and invertible. In Figure 2.9, two images of the same scene
captured from a moving camera are shown. On the right, the computed
dense optical flow field is shown with red arrows indicating direction
and magnitude of apparent motion.

Alternate formulations exist for modeling the optical flow field,
along with a variety of estimation algorithms to solve for the flow.
While optical flow is a description of the flow field for a point and

Fig. 2.9 (left) Two images from the Middlebury data set [8], (right) and the optical flow
capturing dense motion between the two images.
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its neighborhood, more sophisticated models are used to describe the
macroscopic motion of objects.

2.3.2 Macroscopic Motion Models: Rigid, Brownian
and Constant Velocity Motion

Rigid body motion, or equivalently Euclidean motion, encompasses
rotation and translation of an object. A 3D point X on an object under
rigid motion obeys the following motion model,

X(t) = RtX(0) + Tt, (2.20)

where Rt ∈ SO(3) is the 3 × 3 matrix defining the rotation2 at time t,
and Tt is the 3D translation vector at time t. Rigid motion preserves
angles and distances on the 3D body as shown in Figure 2.10. However,
under the perspective imaging model, the apparent motion produced
by the object on the image plane is no longer Euclidean, and without
the knowledge of the 3D structure of the object, the motion has little
symmetry to it. To address this problem, a set of image plane motion

Fig. 2.10 Rigid body motion preserves angles and distances.

2 The properties of rotation matrices, along with their various parameterizations, are of
immense use in vision. The interested reader is directed to [197] for an in-depth discussion
of rotation matrices.
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models exist that approximate the entire motion of the object over
short time segments.

Brownian motion is the simplest of image plane motion models.
Let θt be a description of the object state (such as its location on the
image plane, its shape). The temporal evolution of this state given as,

θt = θt−1 + ωt, (2.21)

where ωt is a zero-mean noise process (typically Gaussian). The prop-
erty of such a motion model is that E(θt) = E(θt−1) and var(θt) ≥
var(θt−1). On an average, trajectories from this model tend to concen-
trate around its initial value, however, the variations about the mean
state increase with time. The Brownian motion model is generic, and
can accommodate a wide range of motion trajectories, making it a use-
ful model for situations where no apparent symmetry occurs in the
observed motion.

The constant velocity model assumes that the velocity of the
state vector remains constant over short durations of time, leading to
the following state transition model,

θt = θt−1 + θ̇t−1 + ωt,1, (2.22)

θ̇t = θ̇t−1 + ωt,2, (2.23)

where ωt,1,ωt,2 are noise processes, and θ̇t is the velocity of the state.
In many cases, the inertia associated with object movement makes
a constant velocity assumption a suitable model, especially when the
imaging can be approximated well with an orthographic model. This
model possesses additional smoothness in comparison to the Brownian
motion model, at the cost of estimation of additional parameters. Mod-
els such as these can be extended to model more complicated behaviors
including accelerations, and curved trajectories.



3
Statistical Estimation Techniques

In the previous section, we discussed the geometric constraints that
arise from various physical processes commonly observed in computer
vision. In this section, we review some basics of statistical estimation
and inference methods that form the basis of the remainder of the dis-
cussion. Statistical estimation can be broken down broadly into static
and dynamic estimation. Static estimation refers to parameters fixed
in time (or for problems with no concept of time). Dynamic estimation
refers to parameters that are time-varying. In particular, we concen-
trate on time-varying parameters whose characterizations are available
in terms of dynamical systems. Dynamical systems form powerful mod-
els for describing time-varying parameters and are used in a wide range
of problems. We will discuss the simple maximum likelihood estima-
tor, the exact MAP estimate, and approximations to the exact solu-
tion. Statistical estimation plays an important role in target tracking
applications to be discussed in Section 4. We will also discuss how
the goodness of estimators is quantified via Cramer–Rao lower bounds.
These bounds will play an important role in quantifying the quality of
structure from motion algorithms in Section 5.

28
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3.1 Static Estimation

3.1.1 Maximum Likelihood Estimation

Consider a vector of parameters of interest θ ∈ R
d, and observation y ∈

R
p that obey the model p(y|θ). Let us assume that multiple indepen-

dent observations y1:N = {y1, . . . ,yN} are drawn from the same model
p(·|θ). The maximum likelihood estimate (MLE) θMLE is obtained by
maximizing the observation likelihood given the model, i.e.,

θMLE = arg max
θ
p(y1, . . . ,yN |θ) = arg max

θ
ΠN
i=1p(yi|θ). (3.1)

The MLE is a useful estimation technique that is easy to obtain in many
cases, especially given a simple likelihood model. It also has favorable
asymptotic behavior as the number of the observations increases.

3.1.2 Bayesian Estimation

Additional information of θ available in the form of a priori density p(θ)
can also be incorporated into the parameter estimation. This leads to
the maximum a posteriori (MAP) estimator, θMAP, defined as

θMAP = arg max
θ
p(y|θ)p(θ). (3.2)

The MAP estimate differs from the MLE because it assumes that
the unknown parameter θ is a random variable with a priori density
function p(θ). In many cases, we are interested in a complete character-
ization of the uncertainty of the parameter θ over its state space. This
is done by estimating the probability density over the parameter space
conditioned on the observations. Formally, given a set of independent
and identically distributed (i.i.d.) observations y1:N , the goal is to com-
pute the posterior density function p(θ|y1:N ). To estimate this, we can
use Bayes’ theorem as,

p(θ|y1:N ) = p(y1:N |θ)p(θ)
p(y1:N ) ,

= p(θ)ΠN
i=1p(yi|θ)

p(y1:N ) .

(3.3)

Estimation of the posterior p(θ|y1:N ) is fundamental in Bayesian infer-
ence. Estimation of the posterior density is analytically possible only
for a limited class of problems.
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3.1.3 Approximate Methods

As discussed above, estimation of the posterior is in general analyti-
cally intractable. There exist many approximate inference methods for
estimating the posterior, as discussed below.

Laplace’s method [63] approximates the posterior as a Gaussian
distribution, whose parameters are obtained by a local linear approxi-
mation of the posterior about a pivot point. The pivot point is typically
a local mode of the likelihood function. Laplace’s method provides a
good approximation when the posterior is unimodal.

Graphical models [120, 123] represent the variables (both state
and observations) as nodes of a graph, and the edges map the depen-
dencies between the variables. They effectively model complex rela-
tionships between variables. The sum–product algorithm solves the
inference problem for graphical models when the representation of the
graph is in the form of a factor graph. The sum–product algorithm is
exact when the factor graph is a tree, and in practice has been observed
to provide accurate solutions for a wide range of graphs.

Variational inference approximates the true posterior with
another from a family of distributions that are analytically simpler
[101]. Given the observations, the parameters of the approximate
density are chosen by minimizing the Kullback–Leibler (KL) diver-
gence to the true posterior. A qualitative understanding of the form
of the posterior, and the selection of a family of distributions that
approximate the posterior accurately, is crucial to variational Bayesian
inference.

Conjugate priors assume importance when the likelihood density
belongs to a parametric family [48]. When the prior p(θ) and the like-
lihood p(y|θ) form a conjugate pair, the posterior density p(θ|y1:N )
as defined in Equation (3.3) has the same distribution as the prior,
albeit with different parameters. Many conjugate pairs [48] exist that
are useful in a wide range of estimation problems. Conjugate priors
provide analytical solutions, as well as efficient numerical estimates.
Conjugate priors are known for a limited class of distributions such as
the members of the exponential family, and in general are not available
for complicated density models.
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Monte Carlo methods address the estimation of the posterior
density by generating samples from the posterior itself. These samples
are then used to estimate quantities of interest, such as the mean and
the variance of the posterior density function. Sampling from an arbi-
trary density is, in general, a difficult problem. However, there exist
general purpose sampling schemes that generate samples from a pro-
posal or a sampling density (also called an importance function) and
modify the sample set so it is statistically equivalent to samples from
the posterior density. Examples of such methods include accept–reject
sampling, importance sampling and the Metropolis–Hastings sampling
algorithm. For an in-depth discussion of this topic we refer the reader
to existing literature on sampling [140, 168].

Monte Carlo techniques have found use in many computer vision
problems. One early example was the computation of MAP estimates
in Markov random fields. Geman and Geman [75] used the Gibbs sam-
pler (a special case of the Metropolis–Hastings algorithm) to sample
from the posterior of the random field, which is used for image restora-
tion and segmentation. Monte Carlo techniques find extensive use in
the Bayesian inference of non-linear non-Gaussian dynamical systems.
The use of particle filters is now ubiquitous in a wide range of vision
applications, including visual tracking [95] and structure from motion
[159]. We discuss these in greater detail in Section 3.4.

3.2 Robust M-Estimators

In statistical estimation, estimators need to be robust to the presence of
outliers. As a simple example, let the modeling assumption be that the
observed data arises from a scalar normal distribution with an unknown
mean µ and known variance σ2. Given data {xi, i = 1, . . . ,N} such that
xi � N(µ,σ2), the sample mean is defined as:

µ̂ =
1
N

N∑
i=1

xi. (3.4)

It can be shown that µ̂ is an unbiased estimate of µ (E(µ̂) = µ, and
var(µ̂) = σ2/N), and it achieves the Cramer–Rao lower bound (CRLB)
on the variance, making it an optimal estimator. However, consider the
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case when the data are corrupted with outlier noise. Let the true data
be from a mixture of a normal distribution N(µ,σ2) and a corrupting
distribution fc, then,

xi � (1 − ε)N(µ,σ2) + εfc, 0 < ε < 1. (3.5)

If the mean of the corrupting distribution µc �= µ, we can imme-
diately see that the sample mean would be biased E(µ̂) = (1 − ε)µ +
εµc = µ + ε(µc − µ) �= µ. The amount of bias would be proportional to
the value of ε and the mismatch between the means (µ − µc). In the
worst case, such a bias could be catastrophic if the corrupting distribu-
tion was Cauchy, since the mean of a Cauchy distribution is undefined.
In such a setting, µc is undefined, and the variance of the corrupting
distribution is infinite. Thus, the expected value of the sample mean µ̂
is undefined, and its variance is infinite. A more general discussion can
be found in [173]. So, it is important to design estimators that are
robust to outliers, especially when the outlier model is unknown. Con-
sider the simple instructive example of estimating the parameters of a
line from data with additive Gaussian noise. Further, assume that (as
shown in Figure 3.1) there are some outliers (three outliers in the shown
example). Notice that the three outliers cause a significant bias in the
MMSE estimation of the line. To account for the effect of these outliers,
one must construct an estimator that is robust to outliers. M-estimators
are a class of such estimators which (as shown in Figure 3.1) are robust
to outliers.

Let us now discuss how M-estimators provide robust methods for
parameter estimation. We will discuss the problem of mean estimation
from sample points to illustrate these ideas. The sample mean is the
estimate that minimizes the mean square error of representing a sample
set with a single point,

µ̂ = arg min
x

(1/N)
N∑
i=1

‖x − xi‖2
2. (3.6)

Each sample xi contributes ‖xi − µ̂‖2
2 or a quadratic error term to this

cost. Due to this, samples that are far away from the solution point µ̂
contribute much more to the resultant error than samples that are
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Fig. 3.1 An example illustrating line-fitting in the presence of noisy data and outliers. Least
squares fitting causes a large error in the estimated line, whereas robust fitting comes closer
to the true line.

close to the solution. This makes the sample mean extremely sensitive
to outlier points. Thus, we need to use cost functions that are inherently
robust to outliers. An example of such a robust statistic is the median.
The estimator

µ̂med = argmin
x

median{‖x − xi‖2
2, i = 1, . . . ,N} (3.7)

minimizes the median of the individual error terms (as opposed to
their mean), and is called the least median square error (or LMedSE)
estimator [170, 139]. The LMedSE is also an unbiased estimator of µ,
but does not achieve the CRLB for finite sample sets. As the sample
size grows, it asymptotically achieves the lower bound. However, it is
far more robust to outlier points.

We have so far seen two estimation criteria: the mean square error
and the median square error. M-estimators [93, 229] are a generalization
of this basic concept to a class of estimators. Let ψ : R

d → R be a
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function (called a cost function). Define an estimator µ̂ψ as:

µ̂ψ = argmin
x

N∑
i=1

ψ(x − xi). (3.8)

The choice of ψ allows us to control the nature of the estimator: its
convergence properties, and how well it handles inliers and outliers.
If ψ(x) = ‖x‖2

2, then the resulting estimator is the MMSE. ψ(x) = ‖x‖1

produces an estimator that mirrors the median. Many popular choices
exist for the function ψ, including the Huber and Tukey functions. Some
typical robust cost functions that are used to fit regression models to
observed data are shown in Figure 3.2.

We also direct the interested reader to the random sample consensus
(RANSAC) algorithm [67, 139]. RANSAC handles outliers by choosing
a subset of the sample points, estimating the parameter of interest
based on this subset, then classifying the whole sample set in terms

Fig. 3.2 Typical cost functions that are used in order to fit regression models to observed
data. The squared error cost function is most sensitive to outliers while the biweight error
is most robust to outliers. Huber cost function and the absolute error cost function are less
sensitive to outliers than the squared error cost function.
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of inliers and outliers. Several repetitions of this process lead to the
selection of the subset with maximal number of inliers. The RANSAC
algorithm works extremely well even with a high percentage of outliers
in data.

3.3 Performance Evaluation of Statistical Methods

The random nature of the measurements implies that any estimator
based on them will have an associated uncertainty. One way to quantify
the goodness of an unbiased estimator θ̂ is to compute the covariance
matrix of the estimation error conditioned on the true parameters θ,

E{(θ̂ − θ)(θ̂ − θ)T|θ}, (3.9)

where E is the expectation operator. Estimators θ̂ with smaller error
covariance are preferred. Assume that the conditional probability den-
sity function of observations y given by f(y|θ) is known. Then, the
uncertainty of an unbiased estimator θ̂ is bounded below by the
Cramer–Rao inequality [166, 189]:

E{(θ̂ − θ)(θ̂ − θ)T|θ} ≥ J−1, (3.10)

where J−1 is the inverse (assuming it exists) of the Fisher information
matrix, given by,

J = E

{
[
∂

∂θ
lnf(y|θ)]T[

∂

∂θ
ln f(y|θ)]|θ

}
, (3.11)

and the inequality sign ‘≥’ in Equation (3.10) is defined for symmet-
ric matrices A and B, where A ≥ B implies that (A − B) is positive
semidefinite. Hence, Equation (3.10) implies that the matrix

E{(θ̂ − θ)(θ̂ − θ)T|θ} − J−1

is positive semi-definite. Since all positive semi-definite matrices have
non-negative diagonal terms,

E{(θ̂ − θ)(θ̂ − θ)T|θ}ii ≥ J−1
ii . (3.12)

Let us denote the i-th component of θ̂ by θ̂i. Since the i-th diagonal
term of E{(θ̂ − θ)(θ̂ − θ)T|θ} is the error variance of of θ̂i, we have:

error variance of θ̂i ≥ the i-th diagonal term of J−1(≡ CRLB of θi).
(3.13)
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The i-th diagonal term of J−1 is called the Cramer–Rao lower bound
(CRLB) of θi because it lower bounds the error variance of any esti-
mator of θi. Since the Fisher information matrix J is independent of
θ̂ by Equation (3.11), the CRLBs are independent of the estimate θ̂
by Equation (3.13). No matter which unbiased estimator is applied,
the error variances of the estimated parameters can never be reduced
below the CRLB. On the other hand, CRLBs depend on the actual
parameter θ (J is a function of θ). The dependence of the CRLB on
the underlying parameters, and other problem variables, is useful in
the study of inherent ambiguities in estimation.

3.4 Dynamical Systems for Estimation

Dynamical systems provide a structured representation for both the
nature of the temporal variations, and the relationship between obser-
vations and the time-varying parameter. Here, we formulate the prob-
lem of Bayesian inference for dynamical systems. Let X and Y denote
the state space and the observation space of the system, respectively.
Let xt ∈ X denote the state at time t, and yt ∈ Y the noisy observation
at time t. We model the state sequence {xt} as a Markovian random
process. Further we assume that the observations {yt} to be condition-
ally independent given the state sequence. Under these assumptions,
the system is completely characterized by the following:

• p(xt|xt−1): The state transition density, describing the evo-
lution of the system from time t − 1 to t. Alternatively, the
same could be described with a state transition model of the
form xt = h(xt−1,nt), where nt is a noise process. Figure 3.3
gives an example of a state transition matrix for a discrete
state space.

• p(yt|xt): The observation likelihood density, describing the
conditional likelihood of observations given the state. As
before, this relationship could take the form of an observation
model yt = f(xt,ωt) where ωt is a noise process independent
of nt. Notice that the temperature, pressure, and rainfall



3.4 Dynamical Systems for Estimation 37

observations obtained in Figure 3.3 are conditionally depen-
dent on the state (weather).

• p(x0): The prior state probability at t = 0.

Given statistical descriptions of the models and noisy observations,
we are interested in inferencing the state of the system at the current
time. Specifically, given the observations till time t,y1:t = {y1, . . . ,yt},
we would like to estimate the posterior density function πt = p(xt|y1:t).
With the posterior, we aim to make inferences I(ft) of the form,

I(ft) = Eπt [ft(xt)] =
∫
ft(xt)p(xt|y1:t)dxt, (3.14)

where ft is some function of interest. An example of such an infer-
ence is the conditional mean, where ft(xt) = xt. Under the Markovian
assumption on the state space dynamics and the conditional indepen-
dence assumption on the observation model, the posterior probability
πt is recursively estimated using the Bayes Theorem as:

πt = p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt−1

.

(3.15)
The computation of p(xt|y1:t−1) sets up the premise for recursion and
is called the prediction step,

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (3.16)

Note that

p(xt|y1:t) =
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(yt|y1:t−1)
(3.17)

has no unknowns because all terms are either specified or computable
from the posterior at the previous time step. The problem is that this
computation (including the integrations) need not have an analyti-
cal representation. Analytical solutions exist when the state transition
model and the observation model are both linear, and we are interested
in tracking only the first two moments (the mean and the covariance
matrix) of the posterior density function. In this setting, the optimal
estimator is the Kalman filter [105]. For non-Gaussian noise models,
the Kalman filter is optimal only among the class of linear filters.
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In the more general case when we are interested in higher order
statistics, the inference problem becomes harder. The general inference
problem can be efficiently solved for two cases. The first is, when the
state space X is a finite discrete set, the dynamical system can be
compactly modeled as a finite state machine, and the inference problem
can be solved efficiently as well. The second case is when we allow for
approximate inference, leading to a class of sequential Monte Carlo
techniques also known as particle filters [55, 79, 129].

3.4.1 Finite State Machines: Hidden Markov Models

When the state space X is a finite set {1, . . . ,M}, we can compactly
represent the state transition model in terms of an M × M matrix.
Suppose we define Pr(xt = j|xt−1 = i) = ptij , such that 0 < ptij < 1.
The matrix P (t) = [ptij ] is the M × M state transition matrix, and
must satisfy ∑

j

ptij = 1 ⇐⇒ P (t)1 = 1, (3.18)

implying that the all-one vector is one of its eigenvectors with unit
eigenvalue. An example of a state-transition matrix for weather
prediction is shown in Figure 3.3.

The posterior probability mass function1 πt such that πTt 1 = 1 and
each element of πt is a number between 0 and 1 can be recursively
estimated. The vector denoting the probability mass of Pr(xt|y1:t−1)
is given as P (t)Tπt−1. Let Ly ∈ R

M be the vector characterizing the
likelihoods, such that its i-th component is Pr(yt|xt = i). Using simple
algebra and Bayes’ theorem, it is possible to show that the posterior πt
is given as,

πt = τdiag(Ly)P (t)Tπt−1, (3.19)

where τ is a normalizing constant that ensures that πt is a valid mass
function, its components summing to unity.

While estimating the posterior mass function is straightforward in
the case of a finite state space, in many cases, it is time consuming to

1 The posterior probability density in this setting becomes a probability mass function (pmf)
as the state space is discrete.
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Fig. 3.3 Example of a hidden Markov model (HMM) for ‘weather’. The state transition
diagram is a finite state machine, while the temperature, pressure, and rainfall observations
are recorded. The state transition table and the conditional observation model can be used
to determine the most likely state sequence using Viterbi decoding.

evaluate the posterior mass completely. In such cases, we are interested
in inferring only the state sequence with the highest likelihood or the
maximum a posteriori state sequence. The Viterbi algorithm [70, 163]
allows the efficient computation of the MAP state sequence. However,
in this monograph, we restrict ourself to Bayesian inference of the entire
posterior density. We direct the interested reader to an excellent review
of hidden Markov models by Rabiner and Juang [162]. We show a simple
illustration of an HMM in Figure 3.3.

3.4.2 Particle Filters: Monte Carlo Methods

Particle filters [55, 79, 129] approach the Bayesian inference prob-
lem by foregoing the requirement for an analytic solution, instead
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approximating the posterior πt with a discrete set of particles or sam-
ples {x(i)

t }Ni=1 with associated weights {w(i)
t }Ni=1 suitably normalized so

that
∑N

i=1w
(i)
t = 1. The approximation for the posterior density is given

by:

π̂t(xt) =
N∑
i=1

w
(i)
t δxt

(
x

(i)
t

)
, (3.20)

where δxt(·) is the Dirac delta function centered at xt. The set St =
{x(i)

t ,w
(i)
t }Ni=1 is the weighted particle set that represents the posterior

density at time t, and is estimated recursively from St−1. The initial
particle set S0 is obtained from sampling the prior density π0 = p(x0).

We first discuss the importance function g(xt|xt−1,yt), an easy to
sample function whose support encompasses that of πt. The estimation
of I(ft), as defined in Equation (3.14) can be recast as follows,

I(ft) =
∫
ft(xt)

p(xt|y1:t)
g(xt|xt−1,yt)

g(xt|xt−1,yt)dxt,

=
∫
ft(xt)w(xt)g(xt|xt−1,yt)dxt,

(3.21)

where w(xt) is called the importance weight,

wt =
p(xt|y1:t)

g(xt|xt−1,yt)
. (3.22)

Particle filters sequentially generate St from St−1 using the following
steps,

1. Importance sampling: Sample x
(i)
t ∼ g(xt|x(i)

t−1,yt), i =
1, . . . ,N . This step is also termed the proposal step and g(·)
is sometimes called the proposal density.

2. Computing importance weights: Compute the unnor-
malized importance weights w̃(i)

t ,

w̃
(i)
t = w

(i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

g(x(i)
t |x(i)

t−1yt)
, i = 1, . . . ,N. (3.23)

3. Normalize weights: Obtain the normalized weights w(i)
t ,

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

, i = 1, . . . ,N. (3.24)
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4. Inference estimation: An estimate of the inference I(ft)
is given by:

ÎN (ft) =
N∑
i=1

ft(x
(i)
t )w(i)

t . (3.25)

This is performed sequentially to obtain the posterior at each time step.
This algorithm suffers from the problem that, after a few time steps,
all importance weights, except a few, reduce to zero. These weights will
be zero for all future time instants (as a result of Equation (3.23)), and
do not contribute to the estimation of ÎN (ft). Practically, this degen-
eracy is undesirable and wastes computational resources, but can be
avoided with the introduction of a resampling step. Resampling essen-
tially replicates particles with higher weights and eliminates those with
lower weights. This can be accomplished in many ways, as discussed
in [55, 79, 130]. The most popular solution, originally proposed in [79],
samples N particles from the set {x(i)

t } (samples generated after pro-
posal) according to the multinomial distribution with parameters w(i)

t

to produce a new set of N particles S̃t. The next iteration uses this
new set S̃t for sequential estimation.

3.4.2.1 Choice of Importance Function

Crucial to the performance of the filter is the choice of the importance
function g(xt|xt−1yt). Ideally, the importance function should be close
to the posterior. If we choose g(xt|xt−1yt) ∝ p(yt|xt)p(xt|xt−1), then the
importance weights wt are identically equal to 1, and the variance of the
weights would be zero. For most applications, this density function is
not easy to sample from. This is largely due to the non-linearities in the
state transition and observation models. One popular choice uses the
state transition density p(xt|xt−1) as the importance function, where
the importance weights are given by:

wt ∝ wt−1p(yt|xt). (3.26)

Other choices include using cleverly constructed approximations to the
posterior density [53].
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Fig. 3.4 An example illustrating how particle filtering may be used to track moving objects
in a video sequence. In this example, the location of the object is the ‘state’ while the
observed video sequence acts as ‘observations’. A set of weighted particles are used to
maintain the distribution of object location in each frame.
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3.4.2.2 Resampling Algorithms

In the particle filtering algorithm, the resampling step was introduced
to address degeneracies due to the skewing of the importance weights.
Ideally, the variance of the weights should be as low as possible, so that
the proposal density closely approximates the posterior density. How-
ever, the unconditional variance of the importance weights can increase
with time [53]. This means that after a few time steps, all but a few of
the normalized weights are close to zero, and only a fractional part of
the sample set St contributes to the inference. Among resampling algo-
rithms, the systematic resampling (SR) technique is often used. The
basic steps of SR [130] are recounted below.

• For j = 1, . . . ,N

1. Sample J ∼ {1, . . . ,N}, such that Pr[J = i] = a(i), for
some choice of {a(i)}.

2. The new particle x̃
(j)
t = x

(J)
t and the associated

weight is w̃(j)
t = w

(J)
t /a

(J)
t .

• The resampled particle set is S̃t = {x̃(i)
t , w̃

(i)
t }Ni=1.

If a(i) = w
(i)
t the resampling scheme is the one used in [79]. Other

choices are discussed in [130]. Particle filtering algorithms that use
sequential importance sampling (SIS) and SR are collectively called
sequential importance sampling with resampling (SISR) algorithms.
Figure 3.4 shows the use of particle filtering to track the location of
an athlete in a video. The athlete’s location is the ‘state’ while the
observed video sequence acts as the ‘observation’. A set of weighted
particles maintain the distribution of object location in each frame.
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Detection, Tracking, and Recognition in Video

In this section, we discuss the main statistical models and algorithms
used in key surveillance tasks of detection, tracking, and recognition.
A detailed survey of such algorithms for distributed camera networks
can be found in [179]. Specifically, we shall examine how the statistical
models and inference methods described in the previous section play
an important role in these applications. We discuss how the problem of
tracking can be posed as a problem of dynamic state inference, where
the state can correspond either to location, identity, behavior, or some
combination of these. We discuss how the tools for dynamical inference
such as HMMs and particle filters studied in Section 3 come into play
in these varied applications. We also discuss how the knowledge of
camera imaging presented in Section 2 leads to principled methods for
multi-view fusion of target locations.

4.1 Detection

The foremost task in distributed visual sensing is to detect objects of
interest as they appear in the individual camera views [60, 100, 135]. In
general, this presents a challenging task because objects belonging to
the same class (e.g., humans) can differ significantly in appearance due

44
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to factors such as clothing, illumination, pose, and camera parameters.
Object detection in images and video may be achieved using one of
two major approaches — a static feature-based characterization of the
objects of interest or object motion as a cue to detect objects. The
first approach typically involves maintaining a model for the objects
of interest, in the form of a set of static features and possibly a model
for the spatial relationship between them. Given a test image, object
detection proceeds in two steps — finding features in the test image
and then whether the set of visible features in the test image indicate
the presence of the object in the image. One issue with this approach
for video arises from the computational expense where it would be
inefficient to perform object detection on each frame of the video given
a large number of objects. On the other hand, motion as a cue to locate
objects of interest significantly reduces the computational load involved
in searching for objects in the scene.

In typical visual sensing scenarios, the objects of interest are those
that move. Detection of moving objects is a much easier task, because
object motion leads to changes in the observed intensity at the cor-
responding pixel locations. The challenge in a single camera setup
is to associate groups of coherently moving nearby pixels to a single
object. In multi-camera networks, it also becomes necessary to asso-
ciate detected objects across camera views.

4.1.1 Background Subtraction

Detection of moving objects is typically performed by modeling the
static background and looking for regions in the image that violate this
model. The simplest model is that of a single template image represent-
ing the static background. A test image can then be subtracted from
the template, and pixels with large absolute differences can be marked
as moving. This simple model introduces the idea of background sub-
traction — the process of removing static background pixels from an
image — so that the pixels associated with moving objects may be
highlighted.

Traditionally, background subtraction is posed as a hypothesis
test [34] at each pixel, where the null hypothesis H0 is that the pixel
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belongs to the background model Bt, while the alternate hypothesis H1

is that the pixel does not belong to Bt. Here, the subscript t is used to
denote time, Bt represents the background model at time t, and It the
image at time t. Note that the background Bt may be time-varying,
either due to slowly varying environmental factors such as illumina-
tion, time of day, shadows etc., or due to rigid camera motion. The
hypothesis test

H0 : Iit ∈ Bi
t (pixel i is background)

H1 : Iit /∈ Bi
t (pixel i is NOT background)

(4.1)

has likelihood ratio

Pr(Iit |Bi
t)

1 − Pr(Iit |Bi
t)

≷H0
H1

τ. (4.2)

Here, Iit and Bi
t correspond to the i-th pixel of the image and back-

ground model, respectively, and τ defines the threshold whose value
is chosen according to a desired false-alarm or mis-detection rate. The
likelihood ratio test of Equation (4.2) is equivalent to:

Pr(Iit |Bi
t) ≷H0

H1
η =

τ

1 + τ
. (4.3)

As an example, consider a simple static background, where Bt = B0

is an object-free static background image. For common statistical mod-
els, the likelihood ratio test takes the form:

|Iit − Bi
0| ≶H0

H1
η′. (4.4)

The intuition behind this test is that the error term |Iit − Bi
0| is small

at pixels that correspond to static objects, while it is large for pixels
corresponding to moving objects. Figure 4.1 shows an observed image,
the corresponding background model, and the result of background
subtraction. As seen, this difference is minimal except in locations cor-
responding to the moving person and the moving car.

4.1.1.1 Common Background Models

A simple background model such as a fixed template (Bt = B0) would
be susceptible to global changes in the environment due to lighting,
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(a) Video frames captured from four different views

(b) Background images corresponding to each view

(c) Background subtraction results at each view

(d) Projection of detected points onto synthetic top view of ground-plane.

Fig. 4.1 Use of geometry in multi-view detection. (a) Snapshot from each view, (b) object-
free background image, (c) background subtraction results, and (d) synthetically generated
top view of the ground plane. The bottom point (feet) of each blob is mapped to the
ground plane using the image plane to ground plane homography. Each color represents a
blob detected in a different camera view. Points of different colors close together on the
ground plane probably correspond to the same subject seen via different camera views.
These results were first reported in [179].

time of the day, weather effects, etc. Ideally, we would like the detection
algorithm to be:

• Adaptive to global changes in the scene, such as illumination
or camera jitter.
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• Resilient to periodic disturbances (such as tree movement
due to wind or rain).

A host of algorithms is available that work well in many scenarios
[60, 100, 135, 196, 224]. One simple extension of the fixed template
model is to model each pixel as Gaussian distributed. Given a set of
training intensity values for a pixel, x1,x2, · · · ,xN , we can use the sam-
ple statistics to estimate both the mean and variance at the pixel as
(see Section 3),

b =
1
N

N∑
j=1

xj , σ2 =
1

N − 1

N∑
j=1

(xj − b)2. (4.5)

The background model is now defined as:

Pr(Iit |bi,σ2
i ) ∝ exp

(
−(Iit − bi)2

2σ2
i

)
. (4.6)

The model defined in Equation (4.6) extends the simple static back-
ground model by allowing for a variance term σ2

i at each pixel. Effec-
tively, this corresponds to using a different threshold at each pixel, one
that depends on the variance σ2

i . Such models are useful in handling
dynamic scenes with clutter.

In addition to parametric models, one can employ non-parametric
models for learning background models as described in [60]. Given a
set of frames x1,x2, . . . ,xN , the background model is defined as:

p(x) =
1
N

N∑
j=1

Kσ(x − xj), (4.7)

where Kσ(·) is a kernel function (typically, Gaussian with variance
parameter σ). Such non-parametric models are extremely useful to cap-
ture complex patterns at each pixel, such as movement of trees or water
ripples. As before, background subtraction is performed at each pixel
by thresholding the likelihood of the observed intensity.

4.1.1.2 Adaptative Background Model

There are many cases in practice when it becomes necessary to keep the
background model tuned to changes in background. Examples include
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a global illumination change, and when a previously moving object
becomes stationary for a long period of time. An adaptive model for
the background is required in these cases, for which various strate-
gies have been proposed. The main focus of these strategies is to
update the model in response to changes in background while keep-
ing the background model target-free. This is usually possible because,
while changes in background have low temporal and spatial frequencies,
the variations induced by foreground targets have higher spatial and
temporal frequency. A two-step strategy for adapting the background
model is proposed in [100]. A moving average mi,t of the observed
intensities is computed at each pixel as:

mi,t = αmi,t−1 + (1 − α)Iit ,0 < α < 1. (4.8)

The moving average mi,t keeps tracks of the truly static components
of the scene, as well as slowly changing scene parts (for example, a
vehicle that is stationary for a long time or a slow illumination change).
This can be used as a template to identify pixels which are possible
foreground regions using a simple thresholding of |Iit − mi,t|. If a pixel is
declared non-foreground, then we can update its mean and variance as:

bi,t = βbi,t−1 + (1 − β)Iit ,σ
2
i,t = β(σ2

i,t + b2i,t−1) + (1 − β)(Iit)
2 − b2i,t.

(4.9)
The mean bi,t and variance σ2

i,t are now used as the background model
for the next frame Iit+1.

4.2 Tracking

After detecting the objects of interest, the next task is to track each
detected object. Most algorithms maintain an appearance model for
the detected objects, and use it in conjunction with a motion model
for the object, to estimate the object position in each individual cam-
era. Such tracking can be achieved using deterministic approaches that
pose tracking as an optimization problem [44, 85] or using stochastic
approaches that estimate the posterior distribution of the object loca-
tion using Kalman filters [30] or particle filters [54, 96, 115, 129, 235].
For surveys on visual tracking of objects, we refer the interested reader
to [92, 226].
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In many applications, presence of multi-camera inputs allows for the
robust estimation of human body pose and limb geometry (markerless
motion capture) [73, 49, 199]. When targets have a lower resolution,
position tracking in scene coordinates provides useful information for
higher level reasoning of the scene. As an example, Xu et al. [225] use
multiple cameras to track football players on a ground plane. Similarly,
[23, 114, 117, 142, 177] consider the problem of multi-view tracking in
the context of a ground plane, with the intent of localization of target
position on the plane.

We next discuss an appearance-based tracking algorithm [235], in
terms of the statistical models used to describe the underlying dynami-
cal system. Recall that a dynamical system is characterized in terms of
three main components: (a) the prior density used to initialize the sys-
tem, (b) the state transition model, and (c) the observation model. For
tracking algorithms, the prior density is an embedding of the detection
results onto the state space of the model. The state transition model
describes the state evolution, and the observation model is typically an
appearance model (in feature space) of the target.

4.2.1 Motion Modeling

To start with, the state space is modeled as the space of affine defor-
mations of a basic shape (in this case, a rectangle). The space of affine
deformations forms a 6D Euclidean space. Let Xt ∈ R

6 be the 6D affine
deformation parameters at time t. They use an adaptive motion model
for the state transition,

Xt = Xt−1 + vt + nt, (4.10)

where nt is a zero-mean Gaussian noise and vt is a velocity component
computed using first-order frame differencing [235].

4.2.2 Appearance Models

The observation model is a multiple template model consisting of
three adaptive templates termed Stable (S), wandering (W), and
fixed (F). Each template consists of a mean and variance information
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modeled independently for each pixel of the template. In com-
bination, the appearance model at time t is the collection At =
{mT (t),µT (t),σ2

T (t)},T = (S,W and F), where m(t) is the mixture
strength at time t. The overall appearance model has a mixture of
Gaussian distribution, parametrized by the mixture means µ(t) and
variances σ2(t), and mixing weights of the three templates. Hence, the
observation model is given as,

p(yt|Xt) = p(yt|Xt,At) = p(zt = T (yt,Xt)|At), (4.11)

where zt = T (yt,Xt) is the region on the image yt corresponding to
the state Xt. The density p(zt|At) is the pixel-wise mixture of Gaus-
sian distribution, with the means, variances, and mixture strengths as
defined in the appearance model At.

The three mixture components — stable, wander, and fixed —
are adaptively updated using different strategies. The stable model is
updated using a moving average of the tracked region. This allows it to
be to robust to static features of the template. The wander component
corresponds to the MAP estimate of the tracking appearance at the
previous time instant. This component tracks transient changes in the
appearance, such as a quick pose change of the head or a quick illu-
mination change. The fixed component is static and not updated, and
typically corresponds to a nominal appearance such as the frontal face.
Details of this update strategy can be found in [99, 235]. In Figure 4.2,
we show some results of tracking of an individual using the algorithm
described above.

4.3 Multi-View Metric Estimation

In Section 2, we described geometric constraints that arise in multi-
view problems. In particular, we are interested in the homography
transformation that is induced in the presence of a plane. The homog-
raphy transformation provides an example of an invertible projective
transformation. Geometric properties such as invariants have been
well studied [87, 136]. However, the geometric theory analyzing the
properties of the projective transformation usually operates under
the assumption of noise-free measurements, or employs heuristics to
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Fig. 4.2 Simultaneous tracking and recognition of faces from a video sequence. (top) Face
templates of the 13 persons making the gallery set, (left) snapshot of tracking results, and
(right) probability scores for recognition, p(θt|y1:t). Here the index for identity corresponds
to the same as the ordering of faces in the gallery. These results were first reported in [234].

account for noise. A rigorous and formal characterization of statisti-
cal estimation and projective transformations has not been adequately
developed.

Kanatani [107] pioneered the research of statistical estimation using
the structure induced by geometry for various estimation problems
in 2D and 3D. Kanatani [107] discusses the role of geometric con-
straints in solving line, plane, and conic fitting problems using covari-
ance matrices for error characterization. In [45], Criminisi uses similar
error characterization (in terms of covariance matrices) for metrology
in multi-view settings. In [71], the choice of representation for projec-
tive entities is considered in the light of earlier work by Kanatani and
others. Linearization approaches for propagating covariance matrices
through projective transforms are used in [147] for localization and
mosaicking.

Hartley and Sturm [88] addressed the problem of two-view tri-
angulation for the case of image-plane measurements corrupted with
Gaussian noise. Traditionally, the 3D location of a point is obtained by
minimizing a cost function over the world coordinates. It is argued
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that such a cost function might not be appropriate if the scene
reconstruction deviates from Euclidean by a projective transforma-
tion and suggests minimization over image plane coordinates where the
probability distributions are more meaningful. In the next section, we
discuss the effect of camera projection on random variables in the real
world. Then, we discuss how this is useful for two applications — multi-
view tracking and estimating heights of objects from multiple views.

4.3.1 Random Variables under Projective Transformations

Applications dealing with the estimation of real-world metrics like
lengths and location from multi-view inputs (see Figure 4.3) involve a
projective transformation of noisy image plane measurements. Before
we devise a strategy for fusion, we need to study the properties of the
estimates produced by each camera. Clearly, the error in tracking of
the object on its image plane influences the statistical properties of
the estimate from a given camera. However, the homography transfor-
mation between the image plane of the camera and the ground plane
plays a larger role (see Section 2.2 for details on projective imaging).

View View

View View

Line at Infinity

to Vertical Vanishing Point

Reference Object

Object for Mensuration

[P2] Height metrology

Fig. 4.3 Depiction of problems that critically involve projective transformations. (left) [P1]
Multi-view fusion of object locations on a plane can possibly involve image plane loca-
tion estimates projected through different transformations. Fusion of these ground plane
estimates requires knowledge of the statistics of the transformed estimates. (right) [P2]
Metrology of object heights using cross-ratios involves a 1D projective transformation.
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The homography transformations are bound to differ given changing
views, given that each camera is guaranteed to have its own external
parameters with respect to the world coordinate system. Hence, a differ-
ent homography generates each image plane estimate. Therefore, even
if the properties of the noise on the image plane are identical across
camera views, the statistical properties of the transformed estimate are
in general different. A robust fusion scheme must necessarily account
for the different statistical properties of the individual estimates.

In [177], it is shown that the distribution of a projectively trans-
formed random variable does not have well-defined moments. However,
when the imaged region of interest is distant from the line at infinity
(of the transformation), we can assume the transformed random vari-
able to have well-defined moments. This provides a theoretical basis
for understanding the poor performance of ground plane tracking algo-
rithms near the horizon line. The theory finds application in metric
estimation from multi-view observations. In particular, we highlight its
use in two applications: multi-view tracking and multi-view metrology
for height estimation.

4.3.2 Multi-view Tracking

The application of multi-view tracking benefits immensely from a sta-
tistical characterization of projectively transformed random variables.
Many proposed tracking algorithms use a planar scene assumption
to track objects in the real world. The single-camera multiple-human
tracking algorithm in [232] uses the ground plane motion constraint to
estimate foot location on the ground plane to decide depth ordering.
The algorithm in [231] uses a Kalman filter to track the location and
velocity on the plane with the observation noise model obtained by
linearization of the homography between the image and the ground
plane. An alternate single camera tracker using the homography to
project head and feet positions to the ground plane is described in [66].
Multi-camera tracking algorithms [68, 114, 117] also use homographies
to project inputs from background subtraction onto the ground plane.

Typically, data association and target localization are achieved
through consensus among projections from the cameras. As an example,
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Fig. 4.4 A schematic showing densities on the image planes of cameras and their transfor-
mations to the ground plane. The variance in position estimate at each of the individual
cameras (A, B, and C) is represented using colored circles. These variances when projected
onto the ground plane lead to highly anisotropic distributions, thereby requiring an esti-
mator that takes account of this transformation. If this transformation is ignored, then the
fused estimator will be biased. See Figure 4.6 for an example of this bias leading to track
association errors. Image courtesy [177].

consider a point object being imaged onto multiple views. Due to imag-
ing and modeling/estimation inaccuracies, the locations of points on
the individual image planes are not accurately known. Even assuming
identical individual image plane error variances, the variance on the
ground plane from the individual views can differ greatly. Finally, such
variations depend on the actual location of the imaged point. Figure 4.4
explains this concept graphically. Suppose, we are interested in an algo-
rithm to fuse the individual estimates. It is immediately clear that esti-
mates such as the sample mean will not be efficient, as the individual
estimates are not identically distributed. In [177], the accuracy of the
transformed estimate is shown to be significantly dependent on the line
at infinity of the projective transformation between a camera view and
the ground plane. Image plane estimates that lie near the line at infin-
ity might have ill-defined moments (either in terms of high variance
or in the existence of the moments itself) for the transformed ground
plane estimates.

4.3.2.1 Static Localization

Given M cameras, and the homography matrices Hi, i = 1, . . . ,M
between the camera views and the ground plane, we describe an algo-
rithm for fusing location estimates. Let ZiU be the random variable
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modeling the target location on the image plane of the i-th camera.
We first assume that the random variables {ZiU}Mi=1 are statistically
independent. This assumption is justified for imaging (sensor) noise.
However, for cases such as occlusion and parallax, the ‘noise’ is due to
error in modeling. In such cases, the noises/errors are correlated across
cameras, and estimation of this correlation is complicated.

The distribution of ZiU is generated by a tracking algorithm or a
detection algorithm. However, we are only interested in the mean mi

u

and the covariances Siu of the distribution. If the underlying tracker
is indeed a Kalman or a particle filter, then we can readily obtain
estimates of mean and the covariances as output. In cases where this
is not possible, such as the Kanade–Lucas–Tomasi (KLT) tracker, we
assume the mean to be the tracker output itself and suitable values for
the covariance matrices.

One can project the random variables from the image plane to the
ground plane to obtain the transformed variables {ZiX} such that ZiX =
Hi(ZiU ). The unscented transformation [102, 103] is used to estimate
the mean µ̂ix and covariance matrix Σ̂i

x of ZiX . We can now formulate
a minimum variance estimator for the location on the ground plane.
Further, it is a simple exercise [177] to show that the estimates µ̂ix are
unbiased (E(µ̂ix) = µx the true target location). The minimum variance
estimate µ̂x = (µ̂x, µ̂y)T is computed as [186, 187]:

µ̂x =
M∑
i=1

(Σ̂i
x)

−1Σmvµ̂
i
x,Σmv =


 M∑
j=1

(Σ̂j
x)

−1




−1

. (4.12)

Finally, the covariance matrix of the minimum variance estimate µ̂x

can be computed from Equation (4.12) as

covar(µ̂x) = Σmv =


 M∑
j=1

(
Σ̂j
x

)−1




−1

. (4.13)

Given the homography matrices for a set of cameras observing a plane,
we can compute and plot the variance of the minimum variance esti-
mator as a function of the true mean µ on the ground plane. Figure 4.5
shows one such plot.
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Fig. 4.5 Variance estimates of the camera setup shown in the top row. (top row) Camera
views, (second row) top view of the plane generated from the corresponding view from the
first row, and (third row) variance estimate of Zx and Zy for each camera in log scale
over the ground plane. (last row) Variance (in log scale) of the minimum variance location
estimator along the two axes. These results were first reported in [177].

4.3.2.2 Dynamical System for Tracking

In most cases, one is interested in tracking the location with time (and
not just a static estimation), such as in images captured by a video
camera recording a pedestrian. We formulate a discrete time dynamical
system for location tracking on the plane. The state space comprises
the location and velocity on the ground plane. Let xt be the state space
at time t, xt = [xt,yt, ẋt, ẏt]T ∈ R

4. The state evolution is defined using
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a constant velocity model,

xt =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


xt−1 + ωt, (4.14)

where ωt is a noise process. The observation vector yt ∈ R
2M is

the stack of location means estimated from each camera using the
unscented transformation. The observation model is given as,

yt =



µ̂1
...
µ̂M



t

=




1 0 0 0
0 1 0 0
...
1 0 0 0
0 1 0 0


xt + Λ(xt)Ωt, (4.15)

where Ωt is a zero-mean noise process with an identity covariance
matrix. Λ(xt) determines the covariance matrix of the overall noise as,

Λ(xt) =




Σ1
x(xt) · · · 02x2
...

. . .
...

02x2 · · · Σ̂M
x (xt)




1
2

, (4.16)

where 02×2 is a 2 × 2 matrix with zero entries, and Σi
x(xt) is the covari-

ance matrix of ZiX when the true location of the target on the ground
plane is xt. The model of Equation (4.15) has two important properties.

• The noise properties of the observations from various views
differ, and the covariances depend not only on the view, but
also on the true location of the target xt. This dependence
is encoded in Λ.

• The MLE of xt (i.e., the value of xt that maximizes the prob-
ability p(yt|xt)) is the minimum variance estimator described
in the previous sub-section.

Tracking of target(s) can now be performed using a Kalman or a parti-
cle filter. A multi-target tracking system was designed to test the effi-
cacy of the proposed models with the camera placement of Figure 4.5.
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The bottom-most point from each background subtracted blob at each
camera is extracted and projected onto the world plane. Association
of these data to trackers is performed using the classical joint proba-
bility data association filter (JPDAF) [9], with data from each cam-
era associated separately. Ground truth was obtained using markers.
As before, two observation models are compared: one employs the
proposed approach and the other assumes isotropic modeling across
views. Finally, a particle filter is used to track targets. Testing was
performed with a video of 8,000 frames that had three targets intro-
duced sequentially at frames 1,000, 4,300, and 7,200. Figure 4.6 shows
tracking results for this experiment. The proposed model consistently
results in lower KL divergence from the ground truth.

4.3.3 Metrology

The most common way to measure lengths from images of objects and
scenes involves the use of cross-ratios and the vanishing lines of a plane
along with the vertical vanishing point [46]. Figure 4.7 illustrates this.
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Fig. 4.6 Tracking results for three targets with the four camera data set. (best viewed
in color/at high zoom) (left) Snapshots of tracking output at various timestamps. (right)
Evaluation of tracking using symmetric KL divergence from ground truth. Two systems are
compared: one using the proposed observation model and the other using isotropic models
across cameras. Each plot corresponds to a different target. The trackers using isotropic
models swap identities around frames 6,000. The corresponding KL-divergence values go
off scale. These results were first reported in [177].
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Fig. 4.7 (Left) Metrology: Using a reference object RbRt with known length hr to measure
the length of ObOt. Both objects are assumed to be oriented vertical to the plane. Knowledge
of the vanishing line and the vertical vanishing point Vp is required. (right) Invariance
of the cross-ratio: The three lines Π, Π′, and Π′′ are under central projection, hence
related by a 1D homography. Given any three point correspondence, this homography can
be uniquely determined. The fourth point can no longer be independently chosen on the
lines.

Using the invariance of the cross-ratio between the points Vp, Ob, Ot
and R′

t, we obtain:

ho
hr

=
|OtOb|
|VpOt|

|VpR′
t|

|R′
tOb|

, (4.17)

where hr is the true height of the reference object.
Lv et al. [134] model the human as a stick of fixed height, per-

pendicular to the ground plane. The motion of such an object creates
virtual parallel lines along the plane normal (feet-to-head) and along
the plane (head-to-head and feet-to-feet). This can be used to recover
the vanishing line of the plane, as well as the vertical vanishing point.

Shao et al. [182] built an automatic metrology system that estimates
the vanishing line and vertical point (similar to [134]) by grouping tra-
jectories that have similar vanishing points. The calibration information
is then used to obtain a height estimate at each frame. The fusion of
this temporal data is done under the framework of stochastic approxi-
mation [167] with a least median square cost function to achieve robust-
ness towards outliers. The stochastic approximation method allows for
a principled fusion of the noisy time series data. Figure 4.8 showcases
metrology results obtained for the Honeywell data set. For each per-
son (and in each view), the single frame metrology estimates are used
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Fig. 4.8 Metrology results on the Honeywell data set. (top row) Example frames from two
different views, with the reference objects marked in red. (bottom row) metrology results of
30 pedestrians with each stem representing the final estimate over one set of data. The filled
blue and unfilled red circles represent height estimates from the two views. These results
were first reported in [182].

using the stochastic approximation methods. The figure shows final
height estimates from two different views.

4.4 Behavioral Motion Models for Tracking

Behavioral research in the study of the organizational structure and
communication forms in social insects, such as ants and bees, has
received much attention in recent years [191, 219]. Such study has
provided practical models for tasks such as work organization, reli-
able distributed communication, navigation, etc [144, 145]. Usually,
in experiments to study these insects, the insects in an observation
hive are videotaped. Then, hours of video data are manually studied
and hand-labeled. This task comprises the bulk of the time and effort
in such experiments. In [215], we presented a method to track and
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recognize the behavior exhibited by the bees simultaneously. In such
a joint approach, behavior models act as priors for motion tracking
and significantly enhance motion tracking, while accurate and reliable
motion tracking enables behavior analysis and recognition.

4.4.1 Anatomical Modeling and State Space for Tracking

Modeling the anatomy of insects is crucial for reliable tracking, because
the structure of their body parts and their relative positions present
physical limits on their possible relative orientations. In spite of their
great diversity, the anatomy of most insects is rather similar. The
body is divided into three main parts: the head, thorax, and abdomen.
Figure 4.9 shows images of a bee, an ant, and a beetle. Though individ-
ual differences occur in their body structure, the three main parts of
the body are evident. Each of these three parts can be regarded as rigid
body part for the purposes of video-based tracking. Most insects also
move in the same direction their head faces. Therefore, during specific
movements such as turning, the orientation of the abdomen usually
follows the orientation of the head and the thorax with some lag.

The bees are modeled as three connected ellipses, one for each
body part. The effect of the wings and legs on the bees is neglected.
Figure 4.9 shows the shape model of a bee. The location of the bee
and its parts in any frame can be given by five parameters: the loca-
tion of the center of the thorax (two parameters), the orientation of the

*

x3

(x
1,

x2
)

x4
x5

A
bd

om
en

T
ho

ra
x

H
ea

d

Shape ModelBeetleAntBee

Fig. 4.9 A bee, an ant, a beetle, and the insect shape model. Image courtesy [215].
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head, the orientation of the thorax, and the orientation of the abdomen
(refer Figure 4.9). Tracking the bee in a video amounts to estimating
these five model parameters, u = [x1 x2 x3 x4 x5] for each frame. This
5-parameter model has a direct physical significance in terms of defin-
ing the location and the orientation of the various body parts in each
frame.

4.4.2 Behavior Modeling

Insects, especially social insects like bees and ants, exhibit rich behav-
iors. Modeling such behaviors is helpful in accurate and robust tracking.
Moreover, explicitly modeling such behaviors leads to algorithms where
position tracking and behavior analysis are tackled in a unified frame-
work. Following the premise that the mixed state space model can be
used to generate complicated dynamics, we model the basic motions as
a vocabulary of local motions. These basic motions are then regarded as
states, and behaviors are modeled as being Markovian on this motion
state space. Once each behavior has been modeled as a Markov process,
then our tracking system can simultaneously track the position and the
behavior of insects in videos.

The probability distribution of location parameters u for certain
basic motions (m1–m4) — (1) moving straight ahead, (2) turning,
(3) waggle, and (4) motionless — are modeled explicitly. The basic
motions, straight, waggle, and motionless are modeled using Gaussian
pdfs (pm1,pm3,pm4). A mixture of two Gaussians (pm2) models the
turning motion (to accommodate the two possible turning directions).

pmi(ut|ut−1) = N(ut−1 + �µmi,Σmi), for i ∈ {1,3,4}, (4.18)

pm2(ut|ut−1) = 0.5N(ut−1 + �µm2,Σm2)

+0.5N(ut−1 − �µm2,Σm2). (4.19)

Each behavior θ ∈ {1, . . . ,C} is now modeled as a Markov process
of order Kθ on these motions, i.e.,

st =
Kθ∑
k=1

Akθst−k, (4.20)
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where st is a vector whose j-th element is the probability that the bee
is in the motion state mj , and Kθ is the model order for the behav-
ior indexed by θ. The parameters of each behavior model comprised
autoregressive parameters Akθ for k = 1, . . . ,Kθ.

Three different behaviors — the waggle dance, the round dance,
and a stationary bee — are modeled using a first-order Markov model.
For illustration, we discuss the manner in which the waggle dance is
modeled. Figure 4.10 shows the trajectory followed by a bee during a
single run of the waggle dance. It also shows some followers who follow
the dancer but do not waggle. A typical Markov model for the waggle
dance is also shown in Figure 4.10.

4.4.3 System Modeling

As before, the tracking problem is addressed by estimating the state
Xt = (xt,θt) given the image observations y1:t. The state xt = (ut,st)
encompasses the basic motion states (encoded in st) as well as the
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Fig. 4.10 A bee performing a waggle dance and the behavioral model for the waggle dance.
Image courtesy [215].
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location of the bee on the image plane encoded in ut = (x1, . . . ,x5)t.
The state transition model characterized by the density p(Xt|Xt−1) is
defined as,

p(Xt|Xt−1) = p(xt|xt−1θt)p(θt|xt−1θt−1). (4.21)

The term p(θt|xt−1θt−1) controls the switching of behavior and is
learned from training data. The dynamics of tracking encoded in
p(xt|xt−1θt) are defined by Equations (4.18)–(4.20). Given the loca-
tion of the bee in the current frame ut and the image observation given
by yt, we first compute the appearance zt = T (yt,ut) of the bee in
the current frame (i.e., the color image of the three ellipse anatomical
model of the bee ). The observation model is given as,

p(yt|xtθt) = p(yt|ut) = p(zt|A1, . . . ,A5), (4.22)

where the A1, . . . ,A5 are color-templates that form the exemplars for
the appearance of the bee. The red, green and blue (RGB) components
of color are treated independently and identically. The bee’s appearance
in any given frame is assumed to be Gaussian centered around one of
these five exemplars, i.e.,

p(zt|A1, . . . ,A5) =
1
5

i=5∑
i=1

N(zt;Ai,Σi), (4.23)

where N(z;Ai,Σi) stands for the normal distribution with mean Ai and
covariance Σi.

4.4.4 Experimental Results

Tracking experiments on video sequences of bees in a hive were con-
ducted by [215]. In the videos, the bees exhibited three behaviors: wag-
gle dancing, round dancing, and being stationary. The video sequences
ranged between 50 and 700 frames long. With this behavior-based
tracking algorithm, the bees were tracked during the entire length
of these videos. Parameters, such as orientations of the various body
parts, were also extracted during each frame of the video sequences.
These parameters were then used to identify the behaviors automati-
cally. The estimate was verified manually and was found to be robust
and accurate.
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Fig. 4.11 Sample frames from a tracked sequence of a bee in a beehive. Images show the top
five particles superimposed on each frame. Blue denotes the best particle and red denotes
the fifth best particle. Frame numbers row-wise from top left: 30, 31, 32, 33, 34, and 90.
Figure best viewed in color. These results were first reported in [215].

Figure 4.11 shows the structural model of the tracked bee super-
imposed on the original image frame. In this particular video, the bee
was exhibiting a waggle dance. As apparent in the sample frames, the
appearance of the dancer varies significantly within the video. These
images display the tracker’s ability to maintain track consistency even
under extreme clutter and in the presence of several similar looking
bees. Frames 30–34 show the bee executing a waggle dance. Notice
that the abdomen of the bee waggles from one side to another.

A portion of the tracking result was validated by comparing it with a
ground truth track obtained manually (“point and click”) by an experi-
enced human observer. The tracking result obtained using the proposed
method approaches close to manual tracking results. The mean differ-
ences between manual and automated tracking using our method are
given in Table 4.1. The positional differences are small compared to the
average length of the bee, which is about 80 pixels (from front of head
to tip of abdomen).

Figure 4.12 shows the estimated orientation of the abdomen and
the thorax in a video sequence of approximately 600 frames. The
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Table 4.1. Comparison of our tracking algorithm with ground
truth.

Average positional difference between
ground truth and our algorithm

Center of abdomen 4.5 pixels
Abdomen orientation 0.20 radians (11.5 deg)
Center of thorax 3.5 pixels
Thorax orientation 0.15 radians (8.6 deg)
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Fig. 4.12 The orientation of the abdomen and the thorax of a bee in a video sequence of
approximately 600 frames. These results were first reported in [215].

orientation is measured with respect to the vertically upward direc-
tion in each image frame — a clockwise rotation would increase the
angle of orientation, and an anticlockwise rotation would decrease the
angle of orientation. The waggle dance is characterized by the central
waggling portion, which is immediately followed by a turn, a straight
run, another turn, and a return to the waggling section as shown in
Figure 4.10. The turning direction is reversed after each alternate wag-
gling section. This is clearly seen in the orientation of both abdomen
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and the thorax. The sudden change in slope (from positive to negative
or vice versa) of the angle of orientation denotes the reversal of turning
direction. During the waggle portion of the dance, as the bee moves
its abdomen from one side to another, it continues to advance slowly.
The large local variation in the orientation of the abdomen just before
every reversal of direction shows the waggling nature of the abdomen.
Moreover, the average angle of the thorax during the waggle segments
denotes the direction of the waggle axis.

4.5 Simultaneous Tracking and Recognition

In this section, we show how the problems of tracking and recognition
can be posed as a joint state-estimation problem. This state consists of
both the motion and appearance parameters as is usually the case in
tracking applications, in addition to the unknown identity parameter.
The identity parameter would be used for recognition applications.
It is interesting to note that both these disparate applications can
be fused together in the Bayesian setting discussed previously. This
offers improvements compared to traditional track-then-recognize
approaches.

Tracking and Recognition with 2D Appearance Models

A 2D appearance model offers a simple yet effective feature for
classification. This consists of a probability distribution in image
space for each class. Typically, a parametric family of distributions
is chosen, and the parameters of the family are learned for each class
separately from the available training data. The most common para-
metric family is the Gaussian distribution or a mixture of Gaussian
distributions.

Such 2D appearance models are a natural choice, specifically for
modeling and recognizing planar or near-planar objects (ignoring effects
of self-occlusion), because it is fairly simple to account for the effect of
viewpoint on these appearance models. In particular, small viewpoint
changes produce affine deformations on the 2D appearance models.
Thus, affine-invariant 2D appearance models are common and effec-
tive representations for recognizing planar and near-planar objects.



4.5 Simultaneous Tracking and Recognition 69

Nevertheless, the problem with using a single 2D appearance model
occurs when the pose of a 3D object changes. In such a case, a simple
2D appearance model cannot account for this change in pose.

Several approaches use 2D affine-invariant appearance models for
simultaneous face tracking and recognition [3, 12, 143, 211, 234, 233].
As an example, let us consider the simultaneous face tracking and recog-
nition framework presented in [234]. First, a simple appearance-based
algorithm that uses a particle filter is used to track objects of interest.
For each person in the gallery, the set of all images inside the tracked
bounding box are used as training samples. These are then used to
learn the parameters of the appearance model (mixture weights, mean,
and covariance of each Gaussian component). A particle filter is then
used to estimate the position of the target’s face and the identity of
the individual simultaneously.

During testing, when a subject moves in front of the camera, the
observed appearance is compared with the models stored in the gallery
to recognize the individual. Again, recognition is usually performed
by MAP estimation. The top row of Figure 4.2 shows the stored 2D
appearance templates for the individuals in the gallery. In the bottom,
two images from a test sequence with the bounding box show the
location of the target’s face. The image within the bounding box
is matched with the stored 2D appearance models in the gallery to
perform recognition.

3D Face Tracking and Recognition with Geometric
Face Models

2D appearance models do not adequately account for the inherent
changes in the appearance that occur due to large pose changes in
the video (especially for non-planar objects like faces, cars, etc.). For
applications such as face tracking and recognition it becomes extremely
important to account for pose changes that occur throughout the video
to make continuous recognition possible. One way to account for pose
changes is to model the face as a 3D object with a certain structure and
a corresponding texture. Since the variations in face structure across
individuals tend to be modest, one can assume a generic 3D model
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for the face, varying the texture according to the individual. The tex-
ture forms the identity cue while the 3D generic face model allows
recognition to be performed irrespective of the pose. Several competing
approaches exist for fitting 3D models to a face for recognition purposes.
In [24, 59, 98], a statistical model of 3D faces is learned from a pop-
ulation of 3D scans, and recognition is performed after morphing the
acquired image to the 3D model. Unfortunately, moving from a planar
model to complicated 3D models also introduces the significant issue
of registering the acquired 2D image to the 3D model. As the number
of parameters in the 3D model increases, the registration task becomes
difficult. Therefore, several approaches have adopted simple parame-
terized 3D models to model the face, keeping the registration between
a 2D image and a 3D model simple.

A simple but effective model for the generic 3D model of a face is
that of a cylinder [4, 121]. Such a simple model has the advantage that
occlusion analysis becomes facile allowing efficient inference algorithms
to estimate the pose at each frame. Once this task is accomplished for
each independently, the image intensities in the original image are then
mapped onto the generic 3D model to obtain the texture map of the
face. The texture-mapped models obtained at each camera node can be
fused to obtain a complete 3D model of the face. This texture-mapped
model is then compared with the stored texture maps of all the 3D
models in the gallery to perform face-based person recognition. As the
face is assumed to be cylindrical, so after estimating the face’s pose,
the surface normals at each of the points on the face are known. This
allows us to extract texture features that are moderately insensitive
to illumination conditions. Therefore, modeling the 3D structure of
the face to perform simultaneous tracking and recognition allows us to
design recognition algorithms that are robust to both changes in facial
pose and illumination conditions. Figure 4.13 shows some results [4] of
3D facial pose tracking and recognition. Notice that the pose of the face
is accurately estimated in spite of the significant variations in lighting,
pose, and occlusions. The graphical rendering in the last column shows
the cylindrical face model at the pose estimated from the images in the
third column. An implementation of this algorithm suitable for smart
cameras is discussed in [174].
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Fig. 4.13 Tracking results under extreme poses and different illumination conditions. The
cylindrical grid is overlaid on the image plane to display the results. The three-tuple shows
the estimated orientation (roll, yaw, pitch) in degrees. The second column shows a cylin-
drical model in the pose estimated for the sequence in the first column. These results were
first reported in [4].

4.5.1 Local Feature-Based Methods for Object Recognition

In recent years local feature-based methods for object recognition have
gained popularity. It is extremely difficult to model the deformation
of global features due to changes in viewpoint and illumination condi-
tions, but it is relatively simple to model the local deformations due to
these structured changes. Feature-based object recognition can usually



72 Detection, Tracking, and Recognition in Video

be divided into three stages of processing. First, discriminative points
of interest are detected in each image frame. Several choices exist for
detecting interest points which include the Harris corner detector [86],
discriminative features [183], and scale-invariant features (SIFT) [133].
Next, a descriptor is then computed for each of these chosen feature
locations. This descriptor is typically chosen such that it is invariant
to local deformations so that pose and lighting changes do not affect
these local descriptors significantly. Examples of such popular descrip-
tors that include SIFT [112, 133] or the deformation invariant feature
proposed in [127]. Once such descriptors are computed for each feature
point, then the object is described using a collection or bag-of-features
model [125, 184]. In a bag-of-features model, the geometric relationship
between the feature points is usually discarded. Some approaches use
a coarse representation of the geometric relationship between feature
points to improve discrimination between object categories [65]. The
essential advantage of feature-based approaches for object recognition
is the fact that because these local features are robust to changes in
viewpoint and illumination, they can potentially be robust even under
large view changes and occlusions.

4.5.1.1 Feature-Based-Tracking and Recognition Across
a Sparse Camera Network

In a smart camera network, local feature-based methods allow for
object recognition to be performed simultaneously and independently
on each of the smart cameras. Moreover, even when cameras’ fields of
view do not overlap, such feature-based approaches may be used to
maintain the target’s identity across the smart camera network. As an
example, consider the scenario where a sparse collection of video cam-
eras monitors a large area. Target association across cameras needs to
be performed using only the appearance information of these targets
since the fields of views of these cameras might not overlap. Unfortu-
nately, global appearance models such as a 2D affine template image
are not sufficient because the target’s pose will differ when it reappears
in another camera view. Moreover, since the targets’ 3D structures
may differ greatly, it is not possible to use a generic 3D model as in
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face tracking. In such a scenario, local feature-based methods in com-
bination with structure from motion techniques provide an effective
alternative. In addition, structure from motion-based methods allow
for target specific 3D models to be built online as the target moves
within the field of view of each camera.

Consider a sparse distribution of cameras (see Figure 4.14) cov-
ering a large area with many unobserved regions. Let us suppose a
white SUV is seen approaching a camera. Suppose a list of authorized
vehicles is available with appropriate descriptions, then we could ver-
ify if the approaching vehicle is in the authorized list. Verification of
vehicle identity across non-overlapping views presents two important
challenges: pose and illumination. The models built for each vehicle
need to account for possible changes in both.

In [178], we address the problem of establishing identity of vehicles
across non-overlapping views, when the vehicle moves on a plane. We
use the 3D structure of the vehicle, along with statistical appearance

(a)

(b) (c)

Fig. 4.14 Tracking and verification across non-overlapping views. (a) A schematic top view
of the sensing area with fields of view of three cameras shown, (b) 3D structures (with
texture maps overlaid) of three vehicles, as estimated from one view. (c) Tracking results
with the output inlaid in magenta. These results were first reported in [178].
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models as the fingerprint representing the vehicles. Estimation of the
3D structure of the vehicle is performed using an approach specifically
suited to vehicles exhibiting planar motion [126]. The ability to estimate
3D structure allows us to address the changes in pose. The estimated
3D structure and its texture are used to generate synthetic views of the
object. These synthetic views are then compared with the view of the
vehicle in other cameras to perform recognition across non-overlapping
cameras. We formulate the problem as one of simultaneous tracking and
verification [235] (similar to the methods used in Section 4.5) of vehicle
identity using the structural and appearance models in the fingerprint.
In traditional tracking, the state space contains the position of the
object being tracked, while in a simultaneous tracking and verification
framework the state space is augmented with the identity of the vehicle.
Thus, simultaneous tracking and verification amounts to recursively
estimating the position and the identity of the vehicle. Estimating the
pose of the object in every frame enables recognition to be performed
irrespective of the viewpoint of the camera. Figure 4.14 summarizes
results from [178].



5
Statistical Analysis of Structure

and Motion Algorithms

5.1 Introduction

An image is the projection of the 3D world onto a 2D image plane. All
points on a single line passing through the optical center of the per-
spective camera project to the same point on the image plane. There-
fore, some information about the 3D structure of the object is lost in
this projection. To recover and estimate the structure of objects from
the captured images, one needs additional information apart from a
monocular image. The problem of estimating structure from images
can be solved either by using additional information about the objects
or by using multiple images. An example of using additional infor-
mation about the objects in the scene is shape from shading [31]. In
shape from shading, the object being imaged is assumed to have Lam-
bertian reflectance and piece-wise constant albedo. This allows us to
estimate the structure of the object from the shading exhibited by it.
Nevertheless, approaches for estimating structure from a single image
are significantly limited both in the robustness of the estimated recon-
struction and their applicability. In contrast, using multiple images to
estimate the structure of the objects in the scene is both popular and
proven to be a robust method for estimating structure.

75
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In order to estimate the structure of the scene using multiple images,
three fundamentally different approaches have been used. The first uses
a stereo pair of cameras or a multi-camera array. In this scenario, mul-
tiple cameras observe the scene, having relative position and orienta-
tion known a priori. Point correspondences are estimated between the
images acquired by the multiple cameras. These point correspondences
allow for triangulation of the original scene point and subsequently,
estimation of scene structure. Another common method for estimating
structure uses a moving camera. When a moving camera observes a
static scene, the various images captured at different instants can be
interpreted as being captured from multiple virtual cameras. This solu-
tion enables triangulation of scene points just as in the case of structure
from stereo. But unlike in stereo, one does not know the position of the
cameras and therefore this also needs to be simultaneously estimated.
In addition, the continuity and smoothness of the camera motion can
be used as additional priors to constrain both the search for point cor-
respondences and for the final structure estimation (see Figure 5.1).
These approaches are broadly termed as structure from motion (SfM).

Most approaches for solving the SfM problem can be categorized
as follows. Optical flow-based approaches, such as [2, 227], rely on
‘inverting’ the optical flow equation to estimate 3D structure and
3D motion parameters from the measured image-plane pixel veloci-
ties. These approaches usually provide dense estimates of the structure
of the scene. Factorization approaches, such as [156, 203, 204], esti-
mate the 3D structure and motion of a sparse set of feature points by
expressing the imaging equation in a factored form. These approaches
are batch procedures that solve for the unknown structure and motion
parameters over several frames simultaneously. Recursive approaches,
such as [7, 30], solve for the unknowns sequentially as new data become
available. These approaches cast the problem as one of sequential state-
estimation. Iterative approaches, such as bundle adjustment [205], cast
the problem as a function minimization problem. The cost function
to be minimized is the reprojection error. It is minimized by itera-
tively linearizing the cost function in the neighborhood of the current
estimate and applying function minimization techniques, such as the
Levenberg–Marquardt algorithm.
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Among the various techniques used for SfM, most can be formulated
or interpreted as a statistical inference problem with constraints. We
briefly discuss statistical methods for structure from motion in this sec-
tion. Several non-statistical algebraic techniques are available for struc-
ture from motion, including minimal algorithms such as eight-point
algorithm [132] and five-point algorithm [146]. We refer the interested
reader to the survey by Oliensis [148] for more details.

In the following we will discuss how the imaging equation studied in
Section 2 plays an important role in laying down the fundamental SfM
equations. We further illustrate how the SfM problem can be viewed
as a statistical estimation problem using two approaches — tracks of
feature points and optical flow. In both these approaches, estimating
structure is formulated as a dynamical inference problem for which
methods studied in Section 3 such as particle filters and Kalman filters
can be used. Irrespective of what estimator is used, we discuss how to
derive Cramer–Rao lower bounds for SfM that provide a theoretical
limit to the best performance achievable.

5.2 Feature-Based Methods

In this section, we discuss the feature-based methods for solving the
SfM problem that utilize either image features or optical flow obtained
from multiple cameras or a single moving camera. Consider an image
sequence with N images. Let us assume that certain feature points
are detected and tracked throughout the sequence. Suppose the scene
has M features, and their projections in each image are denoted by
xi,j = (ui,j ,vi,j)T where i ∈ {1, · · · ,M} denotes the feature index and
j ∈ {1, · · · ,N} denotes the frame index (see Figure 5.1). For the sake of
simplicity, assume that all features are visible in all frames. The SfM
problem involves solving for the camera locations and the 3D coordi-
nates of the feature points Xi,j in the world coordinate system. Two
paradigms can be considered in this context: batch algorithms and
recursive algorithms. Batch algorithms process all the feature points in
the entire video. This is especially suited for analyzing videos offline,
and building detailed models of sites and objects. In contrast, for
applications such as robotics and vehicle guidance, the estimation of
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Fig. 5.1 Illustration of the SfM problem: The goal is to estimate the 3D structure of the
body undergoing rigid motion from image plane measurements of optical flow or, in this
case, trajectories of feature points on the image plane.

structure and motion needs to happen in real time. This motivates the
need for recursive algorithms that causally estimate the structure of
the scene and its corresponding motion. In recursive algorithms, the
traditional approach is to formulate the problem as one of statistical
inference of a stochastic dynamic system. Such a formulation makes a
wide range of inference algorithms available for estimating the param-
eters of interest (see Section 3). We describe the batch methods first,
then the recursive methods.

5.2.1 Batch Methods: Factorization

One of the most elegant approaches for batch processing of feature tra-
jectories to obtain structure and motion parameters is the factorization
algorithm [203]. Let the camera pose at time instant j (j = 1, · · · ,N) be
specified by a rotation matrix Rj and a translation vector Tj . The coor-
dinates of a point in the camera system and world system are related
by Pc = RiPw + Ti, where Pc denotes the coordinates of a point in
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the camera coordinate system and Pw denotes the coordinates of the
same point in the world coordinate system. The 3D coordinates of the
world landmarks are denoted by Xi = (Xi,Yi,Zi)T for i = 1, · · · ,M . We
assume an orthographic projection model for the camera. Landmarks
are projected onto the image plane according to:(

ui,j
vi,j

)
= K ·

[
Rj Tj

]
Xi. (5.1)

In Equation (5.1), K denotes the 2 × 3 camera matrix. Let the centroid
of the 3D points be C, and the centroid of the image projections of
all features in each frame be cj . We can eliminate the translations
from these equations by subtracting C from all world point locations,
and cj from the image projections of all features in the j-th frame.
Let x̂i,j = xi,j − cj and X̂j = Xj − C. The projection equation can be
rewritten as:

x̂i,j = Pj · X̂i. (5.2)

In Equation (5.2), Pj = K · Rj denotes the 2 × 3 projection matrix of
the camera. We can stack the image coordinates of all the feature points
in all the frames and write it in matrix form as:

W =



x̂1,1 · · · x̂M,1

...
. . .

...
x̂1,N · · · x̂M,N


 =



P1
...
PN


[X̂1 · · · X̂M

]
. (5.3)

The matrix W of Equation (5.3) is the measurement matrix, and it
has been written as a product of a 2N × 3 projection matrix and a
3 × M structure matrix. This factorization implies that the measure-
ment matrix is at most of rank 3. This observation leads to a factoriza-
tion algorithm to solve for the projection matrices Pj and the 3D point
locations Xi. The details of the algorithm are described in [203]. Other
variants of the factorization approach extend the basic factorization
results to para-perspective imaging [156], projective imaging [204], and
planar motion [126]. Alternate batch processing algorithms can pro-
cess feature point trajectories. The most popular of these is the bundle
adjustment technique [205].
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A study of how perturbation errors in 2D image coordinates prop-
agates to the estimates of structure and motion parameters was
performed by Sun et al. [198]. They derived first-order perturbation and
covariance matrices of the estimates of the 3D shape and motion param-
eters using matrix perturbation theory. The approach studied how per-
turbations in the image coordinates effect the three dominant singular
values and corresponding eigenvectors of the measurement matrix. It
was shown that under small perturbations of image features, the vari-
ance of the error in structure and motion estimates grows linearly with
the perturbation noise variance. This approximation does not hold for
larger perturbation and experiments show that the estimation error
explodes with large perturbations of the measurement matrix.

5.2.2 Dynamical System Characterization

In this section, we discuss a recursive solution to the SfM problem by
formulating it as a sequential state estimation problem. Formulation
as a dynamical system allows for a simple yet powerful description
of the evolution of the structure and motion parameters in terms of
generative models. As before, these models can be broken down into
the state evolution and the observation models.

5.2.2.1 State Space

The state space can be broken down into two parts: the static structure
parameters and the dynamic motion parameters [30]. The structure
parameters are the 3D locations of the feature points Xi, i = 1, . . . ,M ,
which are assumed to be static. The motion parameters refer to the
camera rotation R(t) and its translation T (t) at a given time instant t.
Hence, at time t, the size of the state space is 6t + 3M .1 However,
the observations for a feature point at a given time instant have two
degrees of freedom, making the total number of degrees of freedom in
all observations up to at time instant t equal to 2Mt. The problem is
solvable only when 2Mt ≥ 6t + 3M .

1 There are three degrees of freedom for each structure point, and six degrees of freedom
for the rotation + translation of the camera at any given time instant.
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The camera rotation can be parameterized in multiple ways [197]
including Euler angles, quaternions, and rotation matrices. Euler angles
define the overall rotation as a sequence of rotations about three axes,
and allow for a unique 3D parameterization of almost all rotations.
However, the rotation matrix itself is highly non-linear in the Euler
angles, involving trigonometric relationships. Quaternions provide a
4D global parametrization of the rotation group, where the rotation
matrix can be defined using quadratic functions in the quaternions
themselves. Finally, rotation matrices can be identified as the space of
matrices that satisfy the property RTR = I,det(R) = 1 or the special
orthogonal group SO(n). Matrices on this manifold can be generated
using exponentials of skew-symmetric matrices.

It is possible to simplify the state space formulation in multiple
ways. The first approach assumes that the structure of the scene can be
parameterized by only its depth in some fixed camera reference [7]. This
approach further assumes that the image plane measurements are noise
free, and knowledge of the depth of the scene point in some reference
allows us to locate it on its pre-image. Such an assumption reduces the
number of unknowns at time t to 6t + M , making the problem better
conditioned.

In the case of recursive SfM, the parameters of interest encom-
pass the motion parameters (R(t),T (t), t = 1, . . . , t0) and the struc-
ture parameters (Xi, i = 1, . . . ,M). The observation Z encompasses
the trajectories of all observed feature points, namely Z = {ui(t), t =
1, . . . , t0, i = 1, . . . ,M}. The density f(Z|θ) can be written using the
basic equations of the dynamical system (see Section 3.4).

5.2.2.2 State Transition Models

The structure parameters Xi are assumed to be static subject to
Brownian evolution. For the motion parameters (rotation R(t) and
translation T (t)), the most common assumption is to enforce continuity
of the motion to various orders. This may include enforcing continu-
ity of the velocity vectors [30] or just that of the motion parameters
themselves [160].
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5.2.2.3 Observation Models: Reprojection

The most common observation model is that of reprojection of the
structure and motion parameters. Let ui(t) ∈ R

2 be the feature point
on the image plane associated with the i-th structure point at time t.
The reprojection model compares the error between reprojecting the
point Xi under the motion parameters R(t) and T (t) with ui(t) as:

ui(t) = P (K[R(t)Xi + T (t)]) + ωt, (5.4)

where ωt is the observation noise and P (·) the projection operator,

P


xy
z


 =

1
z

(
x

y

)
,z �= 0. (5.5)

Suitable inference can be performed using an extended Kalman filter
(EKF) by linearizing these models [7, 30]. More recent approaches [160]
have used particle filters to solve the inference problems. Using particle
filters for such high-dimensional problems requires additional modeling
assumptions, such as decoupling the structure and motion parameters
and solving a set of smaller problems [160]. We briefly discuss these
issues next.

5.2.3 Inference using Particle Filters

Particle filters compute the posterior density for non-linear non-
Gaussian dynamical systems by approximating the posterior using sam-
ples. The accuracy of the approximation depends on the number of the
particles used and the skewness of the density. For state spaces that are
partially observable, applying particle filters directly may require a pro-
hibitive number of particles for accurate representation of the density.
Exploiting additional structure specific to the problem often helps in
keeping the inference tractable. Toward this end, Qian and Chellappa
[160] propose a particle filter where the motion parameters are recov-
ered independently from feature trajectories. The posterior distribution
of the camera motion is used to recover the depth of the feature points
using a separate filter for each feature point.
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Fig. 5.2 Results on the PUMA2 sequence using particle filters. (a)–(e) show the posterior
distributions of the motion parameters, (f) shows feature locations and trajectories. These
results were first reported in [160].

The particle filter for obtaining camera motion parameters is formu-
lated with a 5D state space comprising camera rotation and translation
normalized to avoid the global scale ambiguity. The state transition
model is modeled as Brownian motion. The observation model exploits
the epipolar constraint induced by the motion parameters, and uses
the deviation of a feature point from its epipolar line as the observa-
tion error. Structure estimation is done independently for each point by
triangulating the trajectory of a feature point using the camera motion
posterior as additional input.

The particle filter solution was tested on the 30-frame long PUMA2
sequence (see Figure 5.2). Figure 5.2 shows the motion distributions
of this sequence at different time instants as well as the location and
trajectories of feature points used to compute the motion of the camera.
Plot (c) of Figure 5.2 shows the ground truth (the thick line) and
computed distribution of the rotation about the optical axis.

As a second example, a 3D face model is reconstructed from a face
sequence. Since the proposed method is feature-based, the depth values
of a set of feature points are first computed using the proposed approach
and then the depth field of the entire object is obtained by using the
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Fig. 5.3 The intensity texture map, tracked feature points on two frames, and images syn-
thesized from the reconstructed 3D model of the face. These results were first reported in
[160].

interpolation function griddata in MATLAB 6.1.0. Figure 5.3 shows the
intensity map of the face (the up-most-left one) and the reconstructed
face model from different viewpoints.
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5.2.4 Performance Analysis

For complex problems such as SfM, comparison of the performance of
the algorithm against the Cramer–Rao bounds is extremely valuable
for an objective evaluation of a particular method. However, as dis-
cussed in Section 3.3, application of CRLB to a particular estimation
technique has to consider whether the estimator is unbiased. When
the estimator is biased, the computation of the lower bound needs to
account for the bias. However, such computations require an analytical
expression for the bias. Nonetheless the CRLB allows us to characterize
the estimation error as a function of variates, such as the number of
feature points, number of frames, and observation errors. Toward this
objective, the CRLB offers a valuable tool in understanding the funda-
mental limitations and dependencies between the variables influencing
the problem and the parameters of interest.

Suppose θ is the parameter of interest, and θ̂ is an unbiased estimate,
then the CRLB can be stated as:

V = E
(
(θ̂ − θ)(θ̂ − θ)T

)
≥ J−1, (5.6)

where V is the error covariance of an estimator and J is the Fisher
Information matrix. For an unbiased estimation problem, the Fisher
Information matrix is given as,

J = E

(
∂ logf(Z|θ)

∂θ

∂ logf(Z|θ)
∂θ

T

|θ
)
, (5.7)

where f(Z|θ) encodes the dependence of the observations Z on the
parameters θ.

Broida and Chellappa [29] considered the special case of SfM when
the motion undergone by the camera (or equivalently, the object) is
a constant velocity. For this scenario, the motion can be characterized
using a 3D velocity vector for the translation and a 4D skew-symmetric
matrix characterizing the angular velocity of the quaternions. In par-
ticular, the parameters of interests can be defined using the angular
velocity ω = (ωx,ωy,ωz) and a translational velocity v = (ẋ, ẏ, ż). With
this, the quaternion q(t) describing the rotation of the object at time
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t can be written as,

q(t) =
(
ωx
|ω| sin(|ω|t/2),

ωy
|ω| sin(|ω|t/2),

ωz
|ω| sin(|ω|t/2),cos(|ω|t/2)

)T
.

(5.8)
Further, under the constant velocity model, we can express the motion
of an object point Xi in a camera coordinate system as,

Xi(t) = sR(t) + R(q(t))Xi, (5.9)

where R(q(t)) is the rotation as defined by the quaternion q(t), and
sR(t) is a translating reference point (sR(t) = sR(0) + vt). Under this
assumption, the state transition model is an identity transformation,
and the overall probability f(Z|θ) depends entirely on the observation
models. In this setting, assuming that ωt in Equation (5.4) is zero-mean
Gaussian with covariance σ2I independent of t,

∂ logf(Z|θ)
∂θ

=
1
σ2

t0∑
t=1

[
M∑
i=1

(
∂P (K[sR(t) + R(q(t))Xi])

∂θ

T

× (P (K[sR(t) + R(q(t))Xi]) − ui(t))

)]
. (5.10)

The Fisher information matrix can be expressed as,

J =
1
σ2

t0∑
t=1

[
M∑
i=1

(
∂P (K[sR(t) + R(q(t))Xi])

∂θ

T

× ∂P (K[sR(t) + R(q(t))Xi])
∂θ

)]
. (5.11)

Since this computation involves Mt0 sums of rank 2 matrices, it has
rank of at most 2Mt0. In comparison, the dimensionality of the param-
eter vector θ is 7 + 3M . Hence, J is full rank and invertible only when
2Mt0 ≥ 7 + 3M . Alternately, the parameters are unobservable when
2Mt0 < 7 + 3M . Once J is computed, the diagonal of its inverse can be
used as a set of lower bounds for the parameters.

All feature-based methods assume that features in the images can be
reliably extracted and matched across frames. In many real scenarios,
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such as in aerial imagery, few, if any, distinctive features exist. For such
situations, flow-based methods are more suitable. The next section will
discuss flow-based approaches.

5.3 Flow-Based Methods

Optical flow is the apparent motion of image pixels caused by the actual
relative motion between the scene and the camera. Given two images,
we are interested in computing the camera motion and structure of
the scene using the optical flow information. Let p(x,y) and q(x,y) be
the horizontal and vertical components of the flow observed at a point
(x,y) in the image. They are related to the 3D object motion and scene
depth (under the infinitesimal motion assumption) by,

p(x,y) = (−vx + xvz)g(x,y) + xyωx − (1 + x2)ωy + yωz,

q(x,y) = (−vy + yvz)g(x,y) + (1 + y2)ωx − xyωy − xωz, (5.12)

where V = (vx,vy,vz) and Ω = (ωx,ωy,ωz) are the translational and
rotational components of the camera motion, g(x,y) = 1/Z(x,y) is the
inverse scene depth, and all linear dimensions are normalized in terms
of the focal length f of the camera. Rewriting Equation (5.12) as,

p(x,y) = (x − xf )h(x,y) + xyωx − (1 + x2)ωy + yωz,

q(x,y) = (y − yf )h(x,y) + (1 + y2)ωx − xyωy − xωz, (5.13)

where (xf ,yf ) = (vx/vz,vy/vz) is known as the focus of expansion
(FOE) and h(x,y) = vx/Z(x,y).We first formulate a two-frame solution
for estimating V,Ω and Z from (p(x,y), q(z,y)) using Equation (5.13).

5.3.1 Two-Frame Solution

We first consider the case where the FOE is known [192] and then
discuss the unknown FOE case. In situations where the FOE does not
change appreciably over a few frames, it is possible to estimate the FOE
from the first two or three frames and assume that it remains constant
for the next few frames. Note that under known FOE, Equation (5.13)
is linear in its unknowns, h(x,y) and Ω. We can formulate the flow



88 Statistical Analysis of Structure and Motion Algorithms

relation on all the pixels as follows. Let

P =




x(1,1) − xf 0 · · · 0
y(1,1) − yf 0 · · · 0

0 x(1,2) − xf · · · 0
0 y(1,2) − yf · · · 0
0 0 · · · x(M,M) − xf
0 0 · · · y(M,M) − yf



, (5.14)

R =




x(1,1)y(1,1) −(1 + x(1,1)2) y(1,1)
1 + y(1,1)2 −x(1,1)y(1,1) −x(1,1)

...
...

...
...

...
...

x(M,M)y(M,M) −(1 + x(M,M)2) y(M,M)
1 + y(M,M)2 −x(M,M)y(M,M) −x(M,M)



, (5.15)

and

u = (p(1,1), q(1,1), · · · ,p(M,M), q(M,M))T . (5.16)

The system of equations relating the flow at each pixel to the motion
and structure parameters can be summarized as,[

P R
]
z = u, (5.17)

where z = (h(1,1), . . . ,h(M,M),ωx,ωy,ωz)T . Denoting B =
[
P R

]
,

the MMSE solution of z can be easily obtained by inverting the system
of linear equations, ẑ = B−1(u). We can also characterize the uncer-
tainty in the estimate, ẑ, when we have a characterization of the covari-
ance of the uncertainty in u. In particular, when the covariance matrix
of u is Ru = r2I, the covariance of ẑ is given as,

Rz = r2(BTB)−1. (5.18)

When the FOE is unknown, the linear structure of Equation (5.17) is
lost. The unknown vector z is estimated by formulating the reprojection
error and minimizing using optimization techniques. Uncertainty in the
estimate is computed as follows. Let z = ψ(u). Expanding ψ in a Taylor
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series around its mean, E[u],

ψ(u) = ψ(E[u]) + Dψ(E[u])(u − E[u]) + O(E[u])2, (5.19)

where O(·) denotes terms of order 2 or higher and Dψ = ∂ψ
∂x . Up to a

first-order approximation,

ψ(u) − ψ(E[u]) = Dψ(E[u])(u − E[u]). (5.20)

The covariance of z can then be written as,

Rz = E[(ψ(u) − ψ(E[u]))(ψ(u) − ψ(E[u]))T ]

= E[Dψ(E[u])(u − E[u])(u − E[u])T (Dψ(E[u]))T ]

= Dψ(E[u])RuDψ(E[u])T ,

(5.21)

where Ru is the covariance matrix of u and we have made an additional
assumption that E[z] = ψ(E[u]). The exact expression for the covari-
ance Rz can now be evaluated when the estimation function, ψ, and
the covariance matrix Ru are known. Please see [41] for more details.

5.3.2 Multi-frame Fusion using Stochastic Annealing

Figure 5.4 shows a block-diagram schematic of the complete multi-
frame fusion algorithm. The input is a video sequence of a static scene
captured by a moving camera. We choose least median square error
(LMedS) as our estimate for two-frame depth reconstruction (recall
that under unknown FOE, the relation between flow and the unknown
motion and structure parameters is non-linear). The two frames may
be adjacent ones, or may be farther apart. However, the constraint of
small motion in optical flow estimation needs to be borne in mind. Our
problem is to design an efficient algorithm to align the depth maps onto
a single frame of reference (since the camera is moving), fuse the aligned
depth maps in an appropriate way and evaluate the quality of the final
reconstruction. All this needs to be done after due consideration is given
to the possible sources of error and their effects as outlined earlier.

Roy Chowdhury and Chellappa [41] describe an algorithm for multi-
frame fusion. Given pairs of frames, the two-step algorithm described
earlier is used to get an LMedS estimate of the motion and depth of
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Fig. 5.4 Block diagram of the multi-frame fusion system. This was first reported in [41].

the scene points. Covariance of the LMedS is also computed by lin-
earizing the cost function around this estimate. Prior to fusion, the
camera motion estimates are used to register all the depth estimates
to a common reference. Fusion of the depth estimates is performed
using Robbins–Monro stochastic approximation (RMSA) [167]. The
reason for choosing stochastic approximation (SA) over other meth-
ods is as follows. Stochastic approximation is a recursive estimation
method, that chooses an appropriate weight for update, with the guar-
antee that the limit it converges to is the parameter value sought. It
provides an elegant tool to deal with problems where characterization
of the error distribution is known. Besides, it provides a recursive algo-
rithm and guarantees local optimality of the estimate, which can be
non-linear. Since LMedS is a non-linear estimator and the distribution
of the depth subestimates is unknown, SA is used to obtain an opti-
mal solution based on the method of calculating the quantile of any
distribution recursively, following the method originally proposed by
Robbins and Monro [167]. The issues of convergence and optimality of
RMSA have also been studied in depth.
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5.3.3 Experimental Results

In Figure 5.5, we show 3D reconstruction results on a 15-frame video
sequence of a human face. The focus of expansion is above the left
eye as shown in Figure 5.5(a). Results of 3D reconstruction are shown
in Figure 5.5(d)–(f) using the RMSA algorithm described above. To
study the effect of bias compensation, we show reconstruction results
on public database. This database includes the 3D depth model of faces
obtained from a range scanner and a frontal image of the face for tex-
ture mapping. We used the 3D model and the texture map to create
a sequence of images after specifying the camera motion. The camera
motion consisted of translation along the x and z axes and rotation
about the y axis. Given this sequence of images, we estimate the 3D
model using a 3D face reconstruction algorithm [41] and the bias in the

Fig. 5.5 (a) and (b) represent two images from a face video sequence. The focus of expan-
sion is marked on the image in (a) (above the left eye), (c) represents the depth map, with
intensity corresponding to depth. The remaining figures (d)–(f) are results of 3D recon-
structions from 15 frames for different viewing angles using the RMSA algorithm. These
results were first reported in [41].
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Table 5.1. Effect of bias on 3D face reconstruction. These results
were first reported in [172].

Subject Index Peak % Bias

Avg. % Error
(before bias

compensation)

Avg. % Error
(after bias

compensation)

1 (frame 001) 30 3.8 3.6
2 (frame 002) 34 3.2 3.1
3 (frame 003) 29 3.0 2.7
4 (frame 004) 21 3.9 3.7
5 (frame 005) 26 3.2 3.0

reconstruction. We present here the results on the first five face mod-
els in the above-mentioned database. From Table 5.1, we see that the
peak value of the bias is a significant percentage of the true depth value.
This happens only for a few points. However, it has significant impact
on the 3D face model because of interpolation techniques which, invari-
ably, are a part of any method to build 3D models. The third and fourth
columns in Table 5.1 represent the root mean square (RMS) error of
the reconstruction represented as a percentage of the true depth and
calculated before and after bias compensation. The change in the aver-
age error after bias compensation is minimal. However, this number is
misleading by itself. The average error in reconstruction may be small,
but, even one outlier has the potential to create a poor reconstruction.
Hence, it is crucial to compensate for the bias in problems related to
3D reconstruction from a monocular video.

5.3.4 Performance Analysis

We analyze the statistical ambiguities inherent to the optical flow-
based SfM approach. Given the random nature of the noisy image
measurements, any motion and structure estimator will have an associ-
ated uncertainty. We now derive the CRLB for the SfM problem using
optical flow. This was first reported by Young and Chellappa [227]. In
particular, consider the case when the measurements are contaminated
by independent and identically distributed (i.i.d.) additive Gaussian
noise, assume the measurement model:

u = B(z) + n, (5.22)
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where B is deterministic, z = (xf ,yf ,ωx,ωy,ωz,Z(x,y)) and the com-
ponents of the noise vector n are i.i.d. Gaussian random variables with
mean zero and variance σ2. Then the Fisher information matrix sim-
plifies to:

J =
1
σ2

(
∂B

∂z

)T (∂B
∂z

)

=
1
σ2

∑
i

(
∂Bi
∂z

)T (∂Bi
∂z

)
, (5.23)

in which Bi is the i-th component of B. If the optical flow field is
available at M image points, the free parameters are the five motion
parameters,

κ ≡ (xf ,yf ,ωx,ωy,ωz)
T ,

and the M structure parameters,

Z ≡ (Z1,Z2,Z3, . . . . . . ,ZM )T .

The measurements are:

ui,vi, i = 1,2, . . . ,M.

such that, assume that the noise in the extracted motion field obeys
the simple Gaussian model,

ui = Bui (xf ,yf ,ωx,ωy,ωz,Zi) + nui,

vi = Bvi (xf ,yf ,ωx,ωy,ωz,Zi) + nvi, (5.24)

where nui and nvi are i.i.d. zero-mean Gaussian random variables
with variance σ2. Quantitatively, the CRLB can be used to investigate
the variances of the parameter estimates. Using Equation (5.23) with
the simple model of Equation (5.24), the Fisher information matrix is
given as,

J =
1
σ2

M∑
i=1

[(
∂Bui
∂z

)T (∂Bui
∂z

)
+
(
∂Bvi
∂z

)T (∂Bvi
∂z

)]
, (5.25)
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where

z = (xf ,yf ,ωx,ωy,ωz,Z1,Z2, .....,ZM )T

=
(
κT ,ZT

)T
.

It has the partition

J =
(
α β

βT γ

)
, (5.26)

where α is a 5×5 matrix, and

α =
1
σ2

M∑
i=1

[(
∂Bui
∂κ

)T (∂Bui
∂κ

)
+
(
∂Bvi
∂κ

)T (∂Bvi
∂κ

)]
,

β =
1
σ2

M∑
i=1

[(
∂Bui
∂κ

)T (∂Bui
∂Z

)
+
(
∂Bvi
∂κ

)T (∂Bvi
∂Z

)]
,

γ =
1
σ2

M∑
i=1

[(
∂Bui
∂Z

)T (∂Bui
∂Z

)
+
(
∂Bvi
∂Z

)T (∂Bvi
∂Z

)]
. (5.27)

From Equation (5.12), we note that γ is a diagonal matrix with the
j-th diagonal term,

[γ]jj =
1
σ2

[
(xj − xf )2 + (yj − yf )2

]
. (5.28)

Thus, γ−1 is also diagonal with the j-th term,[
γ−1]

jj
=

σ2

(xj − xf )2 + (yj − yf )2
. (5.29)

Since the CRLBs for the motion parameters (xf ,yf ,ωx,ωy,ωz) are the
first five diagonal terms of J−1, they are the five diagonal terms of the
5×5 matrix Q defined as,

J−1 =
(
α β

βT γ

)−1

≡
(
Q S

ST G

)
. (5.30)

When J is nonsingular, it can be shown that [189]:

Q = (α − βγ−1βT )−1 = α−1 + α−1βGβTα−1,

G = (γ − βTγ−1β)−1 = γ−1 + γ−1βTQβγ−1, (5.31)

S = −Qβγ−1 = −α−1βG.
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By Equations (5.27), (5.29), and (5.32), Q can be calculated as,

Q = (α − βγ−1βT )−1

= σ2




M∑
j=1

[
(yj − yf )

∂Buj

∂κ − (xj − xf )
∂Bvj

∂κ

]T
×
[
(yj − yf )

∂Buj

∂κ − (xj − xf )
∂Bvj

∂κ

]
(xj − xf )2 + (yj − yf )2




−1

.(5.32)

Since the CRLBs of the five motion parameters (xf ,yf ,ωx,ωy,ωz) are
the diagonal terms of Q, they can be computed for any 3D motion and
surface by inverting a 5×5 matrix. From Equation (5.32), it can also
be seen that the CRLBs are independent of the rotation parameters
(A,B,C) and proportional to σ2. As large CRLBs indicate high uncer-
tainty in the estimates of the motion parameters, we have the following
observations for the ambiguity of the parameters of a general motion
in an arbitrary environment:

• the motion parameters are ambiguous if the noise level of the
optical flow field is high; and

• the ambiguity of the motion parameters (both transla-
tional and rotational parameters) is independent of the true
rotational motion.



6
Shape, Identity, and Activity Recognition

6.1 Introduction

The analysis and interpretation of video data comprises an important
part of modern vision systems. Applications of video-based systems
arise in areas such as biometrics, surveillance, motion-synthesis, and
Web-based user interfaces. A common requirement among these differ-
ent applications is to learn statistical models of appearance and motion
from a collection of images and videos, then use them for recognition.
Several image analysis tasks, such as object recognition, activity anal-
ysis, and gait-based human identification, amount to comparing the
shapes of objects and characterizing the variation of shape with time.
It has been shown that the shape of the outer contour of objects can
be used as an efficient descriptor of the object. Similarly, several video-
processing tasks reduce to comparing shape sequences. The essential
information conveyed by the video can usually be captured by analyz-
ing the boundary of each object as it changes with time.

There are several situations where we are interested in studying
either the shape of an object or the way in which the shape of an
object changes with time. The manner in which this shape changes

96
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Fig. 6.1 Sequence of shapes as a person walks frontoparallely. It is clear that these belong
to a walking individual. This shows that shape is a good feature for action recognition and
gait analysis. Image courtesy [217]. Original video sequences were collected at University of
Southern Florida as part of the DARPA HID effort [154].

provides cues about the nature of the object and sometimes even about
the activity performed by the object. Consider the images shown in
Figure 6.1. It is fairly easy to recognize that these represent the silhou-
ette of a walking human. Apart from providing information about the
activity being performed, often the manner of shape change provides
valuable insights into the identity of the object.

As a motivating example, we shall consider the problem of gait-
based recognition. Gait is defined as the style or manner of walking.
Studies in psychophysics suggest that people can identify familiar indi-
viduals using just their gait. This has led to a number of automated
vision-based algorithms that use gait as a biometric. Using gait as a
biometric has the advantage of being non-intrusive, meaning it does
not require co-operation from subjects and performs reliably at moder-
ate to large distances from the subjects. Several experiments on large,
publicly available databases [180] have strongly indicated that the dis-
criminative information in gait is present in the silhouettes of the sub-
jects and the dynamics of the silhouette during a complete walking
cycle. The first row in Figure 6.2 shows the tracked bounding box
around the object in each video-frame. Since the subject is moving,
tracking needs to be performed before such a bounding box can be
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Fig. 6.2 (Top row) Image within the tracked bounding box as a subject is walking. (Mid-
dle row) Binary background subtracted image sequence. (Bottom row) Extracted shape
sequence containing the discriminative information for classification. Image courtesy [217].

extracted. Background subtraction from each camera view provides us
the binary image shown in the second row. The third row shows the
extracted silhouette. Note that the characteristics of the individual’s
shape and identity and the subject’s unique mannerisms during walk-
ing are captured in the sequence of shapes shown in the third row of
Figure 6.2.

Gait-based person identification differs from most other traditional
biometrics in the sense that some of the discriminative information
is present in the dynamics or the temporal variation in the extracted
features. Therefore, it becomes important to either model the dynam-
ics explicitly or to account for the changes in dynamics by performing
explicit time normalization. Some popular methods that model and
account for both the variations in shape and the variations in dynam-
ics during gait are the hidden Markov models (HMMs) [104, 131],
dynamic time warping (DTW) [214, 217], and time series methods
like the autoregressive moving average (ARMA) model [217]. HMMs
are discussed in greater detail in Section 3.4.1. During training, the
model parameters (HMM, ARMA, etc.) for each person in the gallery
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are stored for all available views. During the test phase, the model
parameters for the test video are estimated and compared with all the
model parameters stored in the gallery in order to perform recognition
using MAP classification. As this example illustrates, shape analysis
and shape sequence analysis are crucial to several problems, including
human pose estimation, gait-based person identification, human activ-
ity recognition, shape-based object recognition, etc. In this section, we
will study the problem of shape and appearance-based activity recog-
nition, gait analysis, and human recognition. By using parametric and
non-parametric methods for modeling the evolution of features, we will
discuss how maximum likelihood and MAP estimates of identity or
activity can be derived.

6.2 Shape Representations

An object’s shape can be defined and parameterized in several ways.
In this section we discuss several standard methods for representing
shapes. Most of the approaches described below extract descriptors
derived from the locations of distinctive feature positions — such as
the boundary of an object, corners of an object, etc. Pavlidis [151]
categorized shape descriptors as taxonomies according to different cri-
teria. Descriptors that use the points on the boundary of the shape
are called external (or boundary) descriptors [14, 109, 153], while those
that describe the interior of the object are called internal (or global)
descriptors [25, 91]. Descriptors that represent shape as a scalar or
as a feature vector are called numeric, while those, like the medial
axis transform, that describes the shape as another image are called
non-numeric descriptors. Descriptors are also classified as information
preserving or not depending on whether the descriptor allows accurate
shape reconstruction.

6.2.1 Global Methods for Shape Matching

Global shape matching procedures treat the object as a whole and
describe it using features extracted from the object. These methods
have the disadvantage that they assume the given image is segmented
into various objects, which is itself not an easy problem. In general,
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these methods cannot handle occlusion and are not particularly robust
to segmentation errors. Popular moment-based descriptors of the
object, such as [38, 91, 116], are global and numeric descriptors. Gosh-
tasby [80] used the pixel values corresponding to polar coordinates
centered around the shape’s center of mass, the shape matrix, as a
description of the shape. Parui et al. [149] used relative areas occupied
by the object in concentric rings around the centroid of the objects as
a description of the shape. Blum and Nagel [25] used the medial axis
transform to represent the shape.

6.2.2 Boundary Methods for Shape Matching

Shape matching methods based on an object’s boundary or on a set of
pre-defined landmarks have the advantage that they can be represented
using a 1D function. In the early 1960s, Freeman [72] used chain coding
(a method for coding line drawings) for the description of shapes. Arkin
et al. [6] used the turning function for comparing polygonal shapes.
Persoon and Fu [153] described the boundary as a complex function
of the arc-length. Kashyap and Chellappa [109] used a circular autore-
gressive model of the distance from the centroid to the boundary to
describe the shape. The problem with the Fourier representation [153]
and the autoregressive representation [109] is that the local informa-
tion is lost in these methods. Srivastava et al. [195] propose differential
geometric representations of continuous planar shapes.

Several authors have recently described shape as a set of finite
ordered landmarks. Kendall [113] provided a mathematical theory for
the description of landmark-based shapes. Bookstein [28] and Dryden
and Mardia [57] have furthered the understanding of such landmark-
based shape descriptions. A lot of work has been accomplished on
planar shapes [74, 158]. Prentice and Mardia [158] provided a statis-
tical analysis of shapes formed by matched pairs of landmarks on the
plane. They provided inference procedures on the complex plane and
a measure of shape change in the plane. Berthilsson [15] and Dryden
[56] describe a statistical theory for shape spaces. Projective shape
and their respective invariants are discussed in [15], while shape mod-
els, metrics, and their role in high level vision are discussed in [56].
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The shape context [14] of a particular point in a point set captures the
distribution of the other points with respect to it. Belongie et al. [14]
use the shape context for the problem of object recognition. The soft-
assign Procrustes matching algorithm [165] simultaneously establishes
correspondences and determines the Procrustes fit.

6.3 Manifold Representation of Shapes

In this section, we will review methods based on describing a shape
using a finite set of landmark points. In applications involving humans
and their activities, the silhouette of the human body contains distinc-
tive landmarks such as the hands, legs, and torso. This suggests the
use of a representation that exploits the entire information offered by
the location of landmarks instead of relying on coarse features. Since
the descriptor for a shape needs to be invariant to a variety of trans-
formations (translation, rotation, and scale), these descriptors do not
usually live on Euclidean spaces. Under the requirement of rotation,
scale, and translation invariance, the shape space can be analytically
represented as a complex spherical manifold. Under the requirement of
full affine invariance (rotation, non-uniform scale, skew, translation),
the shape space can be analytically described as a Grassmann mani-
fold. This choice then leads to appropriate distance measures on the
shape space.

To develop accurate inference algorithms on the manifolds discussed
above we need to (a) understand the geometric structure of these
manifolds, (b) derive appropriate distance measures, and (c) develop
probability distribution functions (pdf) and estimation techniques
consistent with the geometric structure of these manifolds. Given a
database of examples and a query, the following two questions are usu-
ally addressed — (a) what is the ‘closest’ example to the query in
the database?, (b) what is the ‘most probable’ class to which the query
belongs? A systematic solution to these problems involves a study of the
manifold on which the data lie. The answer to the first question involves
study of the geometric properties of the manifold, which then leads to
appropriate definitions of distances on the manifold (geodesics). The
answer to the second question involves statistical modeling of inter- and
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intra-class variations on the manifold, and extends far beyond sim-
ply defining distances. Given several samples per class, one can derive
efficient probabilistic models on the manifold by exploiting the class
ensemble populations that are also consistent with the geometric struc-
ture of these manifolds. This offers significant improvements in per-
formance compared to a distance-based nearest-neighbor classifier. In
addition, statistical models also provide generative capabilities via
appropriate sampling strategies.

6.3.1 Kendall’s Statistical Shape and the Spherical
Manifold

‘Shape is all the geometric information that remains when location,
scale and rotational effects are filtered out from the object.’ Using this
definition, Kendall [57] provides a description of the various tools in sta-
tistical shape analysis. Kendall’s statistical shape is a sparse descriptor
of the shape that describes the configuration of m landmark points in
an k-dimensional space as a m×k matrix containing the coordinates
of the landmarks. In our analysis we have a k = 2 dimensional space,
so it is convenient to describe the shape vector as an m-dimensional
complex vector.

Let the configuration of a set of m landmark points be given by an
m-dimensional complex vector containing the positions of landmarks.
Let us denote this configuration as X. Centered pre-shape is obtained
by subtracting the mean from the configuration and then scaling to
norm one. The centered pre-shape is given by:

Zc =
CX

‖ CX ‖ , where C = Im − 1
m

1m1Tm, (6.1)

where Im is anm×m identity matrix and 1m is anm-dimensional vector
of ones.

The pre-shape vector extracted by the method described above lies
on a complex spherical manifold, i.e., ‖Zc‖ = 1. Therefore, a concept
of distance between two shapes must include the non-Euclidean nature
of the shape space. Several distance measures have been defined in
[57]. Consider two complex configurations X and Y with corresponding
pre-shapes α and β. The full Procrustes distance between the configu-
rations X and Y is defined as the Euclidean distance between the full



6.3 Manifold Representation of Shapes 103

Procrustes fit of α and β. The full Procrustes fit is chosen to minimize:

d(Y,X) =‖ β − αsejθ − (a + jb)1k ‖, (6.2)

where s is a scale, θ is the rotation, and (a + jb) is the translation. The
full Procrustes distance is the minimum full Procrustes fit, i.e.,

dFull(Y,X) = inf
s,θ,a,b

d(Y,X). (6.3)

We note that the pre-shapes are actually obtained after filtering the
effects of translation and scale. Hence, the translation value that min-
imizes the full Procrustes fit is given by (a + jb) = 0, while the scale
s = |α∗β| is unity. The rotation angle θ that minimizes the full Pro-
crustes fit is given by θ = arg(|α∗β|). The partial Procrustes distance
between configurations X and Y is obtained by matching their respec-
tive pre-shapes α and β as closely as possible over rotations, but not
scale. So,

dPartial(X,Y ) = inf
ΓεSO(m)

‖ β − αΓ ‖ . (6.4)

It is interesting to note that the optimal rotation θ remains the same
whether we compute the full Procrustes distance or the partial Pro-
crustes distance. The Procrustes distance ρ(X,Y ) is the closest great
circle distance between α and β on the pre-shape sphere. The mini-
mization is performed over all rotations. Thus, ρ is the smallest angle
between complex vectors α and β over rotations of α and β. The three
distance measures defined above are all trigonometrically related as:

dFull(X,Y ) = sinρ, (6.5)

dPartial(X,Y ) = 2sin
(ρ

2

)
. (6.6)

When the shapes are very close to each other, little difference exists
between the various shape distances.

6.3.2 The Tangent Space

The shape tangent space is a linearization of the spherical shape space
around a particular pole. Figure 6.3 illustrates that around a local
neighborhood of a point, which is denoted as the pole, there exists
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Fig. 6.3 Tangent plane at a pole of the manifold is a local linear approximation of the
manifold. The mapping from the tangent plane to the manifold is called the exponential
map, and its inverse is called the logarithmic map.

a unique local mapping that takes points from the tangent space to
the manifold and vice versa. The mapping from the tangent space
to the manifold is called the exponential map, and its inverse is called
the inverse-exponential or logarithmic map. Usually, the Procrustes
mean shape of a set of similar shapes (Yi) is chosen as the pole for the
tangent space coordinates. The Procrustes mean shape (µ) is obtained
by minimizing the sum-of-squares of full Procrustes distances from each
shape Yi to the mean shape, i.e.,

µ = arg inf
µ

∑
i

d2
Full(Yi,µ). (6.7)

The pre-shape formed by m points lies on an m − 1 dimensional com-
plex hypersphere of unit radius. If the various shapes in the data are
close to each other, then these points on the hypersphere will also lie
near one another. The Procrustes mean of this data set will also lie close
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to these points. Therefore, the tangent space constructed with the Pro-
crustes mean shape as the pole is an approximate linear space for these
data. The Euclidean distance in this tangent space provides a good
approximation to various Procrustes distances dFull, dPartial, and ρ

in shape space in the vicinity of the pole. The tangent space has the
advantage of being Euclidean, enabling the use of standard statisti-
cal methods for modeling and classification. The Procrustes tangent
coordinates of a pre-shape α are given by:

v(α,µ) = αα∗µ − µ|α∗µ|2. (6.8)

where µ is the Procrustes mean shape of the data.

6.3.3 Affine Shape Space and the Grassmann Manifold

The shape observed in an image is a perspective projection of the origi-
nal shape. To account for this, shape theory studies the equivalent class
of all configurations obtained by a specific class of transformation (e.g.,
linear, affine, projective) on a single basis shape. Suppose, a shape is
represented by a set of landmark points on its contour, represented
by an m × 2 matrix S = [(x1,y1); (x2,y2); . . . ; (xm,ym)], of the set of m
landmarks of the centered shape. The shape space of a base shape is
the set of equivalent configurations obtained by transforming the base
shape by an appropriate spatial transformation. For example, the set of
all affine transformations of a base shape forms its affine shape space.
More rigorously, let χ = (x1,x2, . . . ,xm) be a configuration of m points
where each xi ∈ R

2. Let γ be a transformation on R
2. For example, γ

could belong to the affine group, linear group, or projective group. Let

A(γ,(x1, . . . ,xm)) = (γ(x1), . . . ,γ(xm)) (6.9)

be the action of γ on the point configuration.
In particular, the affine shape space [78, 190] is important because

the effect of the camera location and orientation can be approximated
as affine transformations on the original base shape. The affine trans-
forms of the shape can be derived from the base shape simply by mul-
tiplying the shape matrix S by a 2 × 2 full-rank matrix on the right
(translations are removed by centering). Multiplication by a full-rank
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matrix on the right preserves the column space of the matrix S. Linear
subspaces such as these can be identified as points on a Grassmann
manifold [150]. Thus, all affine deformations of the same base shape
map to the same point on the Grassmann manifold [190], and a sys-
tematic study of affine shape space requires a study of the Grassmann
manifold. We next discuss distance measures and statistical models on
the Grassmann manifold. Specifically, parametric and non-parametric
distributions and parameter estimation are reviewed. Procrustes anal-
ysis and corresponding distance measures on the manifolds are also
presented in [40].

6.3.3.1 Definitions

The Grassmann Manifold Gk,m [40]: The Grassmann manifold
Gk,m is the space whose points are k-planes or k -dimensional hyper-
planes (containing the origin) in R

m.
Points on the Grassmann manifold are usually represented by tall-

thin orthonormal matrices Y such that the columns of Y span the cor-
responding subspace. Since several orthonormal bases exist for a given
subspace, each point on the Grassmann manifold can be interpreted as
an equivalence class over the set of orthonormal basis. More formally,
the set of m × k orthonormal matrices is defined as the Stiefel mani-
fold. The Grassmann manifold is then defined in terms of equivalence
classes on the Stiefel manifold.

The Stiefel Manifold Vk,m [40]: The Stiefel manifold Vk,m is
the space whose points are k-frames in R

m, where a set of k orthonormal
vectors in R

m is called a k-frame in R
m (k ≤ m). Each point on the

Stiefel manifold Vk,m can be represented as an m × k matrix X such
that XTX = Ik, where Ik is the k × k identity matrix.

An equivalent definition of the Grassmann manifold is as follows:
to each k -plane ν in Gk,m corresponds a unique m × m orthogonal
projection matrix P idempotent of rank k onto ν. If the columns of an
m × k orthonormal matrix Y span ν, then, Y Y T = P .

For the case of k = 1, the Stiefel manifold reduces to the unit hyper-
sphere in m-dimensions. Each point on the manifold represents a vector
of unit length. Similarly, for k = 1 the Grassmann manifold reduces to
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the real projective space, which consists of all lines passing through the
origin.

6.3.3.2 Distances on the Grassmann Manifold

The Stiefel and Grassmann manifolds are endowed with a Riemannian
structure that lends itself to computation of distances between points
on the manifold via geodesics [1, 58]. Instead of geodesic computations,
we adopt the Procrustes distance proposed in [40] that is defined in
the ambient Euclidean space. As discussed below, this choice results in
efficient computation of distances and the class conditional probability
density estimators on the manifolds.

Procrustes representations and corresponding distances are defined
to be invariant to specific classes of transformations. Assuming that
each point on the Grassmann manifold is represented by a represen-
tative element from the equivalence class on the Stiefel manifold, the
transformation to which we seek invariance is within plane rotations of
the basis vectors. This leads us to the representation as defined below
[40].

Procrustes Representation: A point X on Gk,m is identified with
an equivalence class of m × k matrices XR in Vm,k, for orthogonal R.
The squared Procrustes distance for two given matrices, X1 and X2 on
Gk,m, is the smallest squared Euclidean distance between any pair of
matrices in the corresponding equivalence classes. Hence

d2
procrust(X1,X2) = min

R
tr(X1 − X2R)T (X1 − X2R) (6.10)

= min
R
tr(RTR − 2XT

1 X2R + Ik). (6.11)

Lemma: Let A be a k × k constant matrix. Consider the minimiza-
tion of the quadratic function g(R) = tr(RTR − 2ATR) of a matrix
argument R.

(1) If R varies over the space Rk,k of all k × k matrices, the
minimum is attained at R = A.

(2) If R varies over the space of all k × k positive semi-definite
matrices, the minimum is attained at R = B+, where B+ is
the positive semi-definite part of B = 1

2(A + AT ).
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(3) If R varies over the orthogonal group O(k), the minimum is
attained at R = H1H

T
2 = A(ATA)−1/2, where A = H1DH

T
2

is the singular value decomposition of A.

We refer the reader to [40] for proofs. Thus, for the case of the first con-
straint, where R varies over the space Rk,k of all k × k matrices, the dis-
tance is given by d2

procrust(X1,X2) = tr(Ik − ATA), where A = XT
1 X2.

We have used this metric in all experiments reported in this mono-
graph. A closer inspection reveals that these measures are ‘divergences’
because they are not symmetric in their arguments, hence are not true
distance functions. This can be solved by defining a new metric as the
average of the divergence between the two points taken in forward and
backward directions.

Note that the Procrustes representation defines an equivalence class
of points on the Stiefel manifold which are related by a right transfor-
mation. This directly relates to the interpretation of the Grassmann
manifold as the orbit-space of the Stiefel manifold. All points on the
Stiefel manifold related by a right transformation map to a single point
on the Grassmann manifold. To compare two subspaces represented by
two orthonormal matrices, sayX1 andX2, we compute their Procrustes
distance on the Stiefel manifold. We do not explicitly use the repre-
sentation of points on the Grassmann manifold as m × m idempotent
projection matrices (Section 6.3.3.1). Instead, the Procrustes represen-
tation leads to methods that are more computationally efficient, as
opposed to working with large m × m matrices.

6.3.3.3 Non-parametric Kernel Density Estimation

Parametric density forms can provide analytical tractability for esti-
mation problems, but imposing parametric density forms on real-world
data can be inappropriate. Kernel methods for estimating probability
densities have proved popular in several pattern recognition problems in
recent years [20], driven by improvements in computational power. Ker-
nel methods provide a better fit to the available data than simpler para-
metric forms. Given several examples from a class (X1,X2, . . . ,Xn) on
the manifold Vk,m, the class conditional density can be estimated using
an appropriate kernel function. We first assume an appropriate choice
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of a divergence or distance measure on the manifold (Section 6.3.3.2).
For the Procrustes distance, d2

procrust, the density estimate is given
by [40] as:

f̂(X;M) =
1
n
C(M)

n∑
i=1

K[M−1/2(Ik − XT
i XX

TXi)M−1/2], (6.12)

where K(T ) is the kernel function, M is a k × k positive definite matrix
which plays the role of the kernel width or a smoothing parameter.
C(M) is a normalizing factor chosen so the estimated density integrates
to unity. The matrix-valued kernel function K(T ) can be chosen in
several ways. Most of the results shown in this section were originally
presented in [207] and used K(T ) = exp(−tr(T )).

6.4 Comparing Sequences on Manifolds

Consider a situation having two shape sequences, and we wish to com-
pare their similarities. Since, these shape sequences may differ in length
(number of frames), we need to perform time normalization (scaling).
Dynamic time warping (DTW), which has been successfully used by the
speech recognition [164] community is an ideal candidate for perform-
ing this non-linear time normalization. However, certain modifications
to the original DTW algorithm are also necessary to account for the
non-Euclidean structure of the shape space, i.e., we should be able to
incorporate a distance consistent with the geometry of the space under
consideration (complex spherical/Grassmann).

6.4.1 Dynamic Time Warping

Dynamic time warping is a method for computing a non-linear time
normalization between a template vector sequence and a test vector
sequence. These two sequences could have differing lengths. Forner–
Cordero et al. [69] show experiments that indicate that the intra-
personal variations in gait of a single individual can be better captured
by DTW rather than by linear warping. The DTW algorithm is based
on dynamic programming and computes the best non-linear time
normalization of the test sequence in order to match the template
sequence, by performing a search over the space of all allowed time
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normalizations. This space is constructed using certain temporal con-
sistency constraints. We list the temporal consistency constraints in
our implementation.

• End point constraints: The beginning and the end of each
sequence are rigidly fixed. For example, if the template
sequence is of length N and the test sequence is of length
M , then only time normalizations that map the first frame
of the template to the first frame of the test sequence and
map the N -th frame of the template sequence to the M -th
frame of the test sequence are allowed.

• The warping function (mapping function between the test
sequence time to the template sequence time) should increase
monotonically. In other words, the sequence of ‘events’ in
both the template and the test sequences should be the same.

• The warping function should be continuous.

Dynamic programming efficiently computes the best warping function
and the global warping error. Let us assume that we have chosen to
represent the shapes either as a point on a spherical manifold (rotation,
scale, translation invariant) or as a subspace that can be identified as
a point on the Grassmann manifold (full affine invariance). The man-
ifold nature of the shape-space must be accounted for in the imple-
mentation of the DTW algorithm. This implies that during the DTW
computation, the local distance measure used must account for the non-
Euclidean nature of the shape-space. Therefore, it is only meaningful to
use the appropriate distance measure — shape Procrustes in the case
of the spherical manifold, and the Grassmann Procrustes in the case of
the Grassmann manifold — as described earlier. It is important to note
that the Procrustes measure is not a true distance function as it is not
symmetric. Moreover, the nature of the constraints makes the DTW
algorithm non-symmetric even when we use a symmetric distance for
the local feature error. If A(t) and B(t) are two shape sequences, we
define the distance between these two sequences D(A(t),B(t)) as:

D(A(t),B(t)) = DTW (A(t),B(t)) + DTW (B(t),A(t)), (6.13)

whereDTW (A(t),B(t)) = 1/T
∑T

t=1 d(A(f(t)),B(g(t))) (f and g being
the optimal warping functions). Such a distance between shape
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sequences is symmetric. The isolation property, i.e., D(A(t),B(t)) = 0
iff A(t) = B(t), is enforced by penalizing all non-diagonal transitions in
the local error metric.

6.5 Applications

Shape matching and shape sequence analyses have several applications
in gait-based human recognition, shape retrieval, etc. We next describe
a few experiments that demonstrate the strength of these approaches.

6.5.1 Applications in Gait-Based Person Identification

We consider the problem of gait-based person identification, in which
our goal is to identify the individual from a video sequence of the indi-
vidual walking. Given a video sequence, we first perform background
subtraction to extract the silhouette of the human. We then uniformly
sample points on the outer contour of the silhouette to obtain the
pre-shape vector. The procedure for obtaining shapes from the video
sequence is illustrated in Figure 6.4. Note that each frame of the video
sequence maps to a point on the hyper-spherical shape manifold.

6.5.1.1 Results on the USF database

The USF database [154] consists of 71 people in the gallery. Several
covariates, such as camera position, shoe type, surface and time, were
varied in a controlled manner to design a set of challenge experiments
[154]. The results are evaluated using cumulative match score1 (CMS)
curves and the identification rate. The results for the seven experiments
on the USF database are shown in Figure 6.5. These results were orig-
inally reported in [217].

By incorporating the effects of execution rate variations by means
of dynamic time-warping, and learning statistical models on the space
of warping functions, we obtain further improvement in results. Details
of this approach can be found in [218]. We summarize the results
in Table 6.12 shows the identification rates of our algorithm with a

1 Plot of percentage of recognition vs rank.
2 Note that the experimental results reported in this table contain varying amounts of
training data. While columns 2-6 (Baseline - pHMM) used only the gallery sequences for
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Fig. 6.4 Illustration of the sequence of shapes obtained during a walking cycle. Each frame
in the video is processed to obtain a pre-shape vector. These vectors lie on a complex
hyper-spherical manifold. Image courtesy [217].

uniform distribution on the space of warps (PUnif ), our algorithm
with a wrapped Gaussian distribution on the tangent space of warps
with shape as a feature and with binary image feature (PGauss and

training, the results reported in columns 7-10 (PLW - PGaussIm) used all the probes
except the test probe during training.
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Fig. 6.5 Cumulative match scores using dynamic time warping on shape space. These results
were first reported in [217].

PGaussIm). For comparison the table also shows the baseline algorithm
[180], simple DTW on shape features [217] and the image-based
HMM [104] algorithm on the USF dataset for the 7 probes A-G.
Since most of these other algorithms could not account for the
systematic variations in time-warping for each class the recognition
experiment they performed was not round robin but rather used
only one sample per class for learning. Therefore, to ensure a fair
comparison, we also implemented a round-robin experiment using the
linear warping (PLW ).

The average performance of our algorithms PUnif and PGauss
is better than all the other algorithms that use the same feature,
(DTW/HMM (shape) [217] and linear warping PLW ) and is also better
than the baseline [180] and HMM [104] algorithms that use the image
as a feature. The experimental results presented here clearly show that
using multiple training samples per class and learning the distribution
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Table 6.1. Comparison of Identification rates on the USF dataset. Note that the exper-
imental results reported in this table contain varying amounts of training data. While
columns 2–6 (Baseline - pHMM) used only the gallery sequences for training, the results
reported in columns 7–10 (PLW - PGaussIm) used all the probes except the test probe
during training.

Base- DTW HMM HMM pHMM
Probe line Shape Shape Image [131] PLW PUnif PGauss PGaussIm

Avg. 42 42 41 50 65 51.5 59 59 64
A 79 81 80 96 85 68 70 78 82
B 66 74 72 86 89 51 68 68 78
C 56 52 56 74 72 51 81 82 76
D 29 29 22 32 57 53 40 50 48
E 24 20 20 28 66 46 64 51 54
F 30 19 20 17 46 50 37 42 56
G 10 19 19 21 41 42 53 40 55

of their time warps makes significant improvement to gait recognition
results.

6.5.2 Applications to Affine Shape Analysis

We test the Grassmann manifold formulation of affine shape spaces on
several standard shape databases for recognition and retrieval tasks.

6.5.2.1 Articulation Database

We conducted a retrieval experiment on the articulated shape database
from [128]. We used the same test scheme proposed in [128]. The
database consists of eight object classes with five examples for each
class. For each shape, four top matches are selected and the number of
correct hits for ranks 1,2,3, and 4 is reported. Table 6.2 summarizes the
results obtained on this data set. The proposed approach compares well
with other approaches. It should be noted that this is not a completely
fair comparison, as we do not use any articulation-invariant descriptors
such as the ones used in [128] and [22]. In spite of this, manifold-based
distances perform well.

6.5.2.2 Affine MPEG-7 Database

The strength of the approach lies in affine-invariant representation of
shapes, so we conducted a synthetic experiment using the MPEG-7
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Table 6.2. Retrieval experiment on articulation data set. Last
row is the results obtained using Grassmann manifold Procrustes
representation. No articulation invariant descriptors were used.
These results were first reported in [207].

Algorithm Rank 1 Rank 2 Rank 3 Rank 4

SC [128] 20/40 10/40 11/40 5/40
IDSC [128] 40/40 34/40 35/40 27/40
Hashing [22] 40/40 38/40 33/40 20/40
Grassmann Procrustes 38/40 30/40 23/40 17/40

Fig. 6.6 Synthetic data generated from the MPEG database. The first column shows base
shapes from the original MPEG data set for five objects. The remaining columns show
random affine warps for the base shapes with increasing levels of additive noise. These
results were first reported in [207].

database. We took one base shape from each of the 70 object classes
and created 10 random affine warps of the shapes with varying lev-
els of additive noise. This new set of shapes formed the gallery for the
experiment. The generated sample shapes are shown in Figure 6.6. The
test set was created by randomly choosing a gallery shape and affine
warping it with additive noise. The recognition experiment was per-
formed using the Procrustes distance and the kernel density methods.
For comparison, we used the popular shape Procrustes distance [113]
as a baseline measure. We also used the ‘arc-length’ distance of [11],
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which is the Frobenius norm of the angles between two subspaces. In
all cases, the experiments were repeated with 100 Monte Carlo tri-
als for each noise level in order to evaluate the performance robustly.
This performance is compared in Figure 6.7, as a function of noise to
signal ratio. It can be seen that manifold-based methods perform signif-
icantly better than straightforward shape Procrustes measure. Among
the manifold methods, the kernel density method outperforms both
the Procrustes and the arc-length distance measures. Since the Grass-
mann manifold-based methods accurately account for the affine varia-
tions found in the shape, they outperform simple methods that do not
account for affine invariance. Moreover, since the kernel method esti-
mates a pdf for the shapes on the Grassmann manifold, it outperforms
distance-based nearest-neighbor classifiers using Grassmann arc-length
and Grassmann Procrustes.
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Fig. 6.7 Comparison of recognition performance on MPEG-7 database. For comparison
we used the shape Procrustes measure [113] and the Grassmann arc-length distance [11].
Manifold-based methods perform significantly better than direct application of shape Pro-
crustes measure. Among the manifold methods, statistical modeling via kernel methods
outperforms the others. These results were first reported in [207].
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6.5.2.3 Sampling from Distributions

Generative capabilities of parametric probability densities can be
exploited via appropriate sampling strategies. Once the distribution is
learned, we can synthesize samples from the distribution in a two-step
process. We first create a sample from a proposal distribution (we used a
matrix-variate normal centered around the class mean), then we use an
accept–reject strategy to generate the final shape [40]. We show a sam-
pling experiment using this technique. For this experiment, we chose
one shape from each of the object classes in the MPEG-7 database and
corrupted it with additive noise to generate several noisy samples for
each class. We used the Grassmann representation of points as idem-
potent projection matrices. Then, we learned a parametric Langevin
distribution [40] on the Grassmann manifold for each class. Note that
the distribution is learned on the Grassmann manifold, hence, a sample
from the distribution represents a subspace in the form of a projection
matrix. To generate an actual shape, we need to first choose a two-frame
for the generated subspace which can be performed via singular value
decomposition (SVD) of the projection matrix. Once the two-frame is
chosen, actual shapes can be generated by choosing random coordinates
in the two-frame. We show sampling results in Figure 6.8.

6.5.3 Applications to Spatio-Temporal Dynamical Modeling

The Grassmann manifold models described above provide a rich class
of statistical methods with applications extending beyond shape clas-
sification. We discuss several other applications in this section that
involve comparison of points on the Grassmann manifold. Specifically,
we discuss a Grassmann manifold formulation of autoregressive moving
average (ARMA) models and show how these methods can be applied
to activity analysis and video-based face recognition. A wide variety of
time series data such as dynamic textures, human joint angle trajec-
tories, shape sequences, and video-based face recognition etc are fre-
quently modeled as autoregressive and moving average (ARMA) models
[3, 21, 217, 188]. The ARMA model equations are given by:

f(t) = Cz(t) + w(t), w(t) ∼ N(0,R), (6.14)

z(t + 1) = Az(t) + v(t), v(t) ∼ N(0,Q), (6.15)
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Fig. 6.8 Samples generated from estimated class conditional densities for a few classes of
the MPEG data set. These results were first reported in [207].

where z is the hidden state vector, A the transition matrix, and C

the measurement matrix. f represents the observed features while w
and v are noise components modeled as normal with 0 mean and
covariances R and Q, respectively. Closed form solutions for learn-
ing the model parameters (A,C) from the feature sequence (f1:T ) are
widely used in the computer vision community [188]. Let observations
f(1),f(2), . . . ,f(τ) represent the features for the time indices 1,2, . . . , τ .
Let [f(1),f(2), . . . ,f(τ)] = UΣV T be the singular value decomposition
of the data. Then Ĉ = U,Â = ΣV TD1V (V TD2V )−1Σ−1, where D1 =
[0 0;Iτ−1 0] and D2 = [Iτ−1 0;0 0].

For comparison of two models, we compare the subspaces spanned
by the respective observability matrices [42]. The extended observabil-
ity matrix for a model (A,C) is given by:

OT∞ =
[
CT ,(CA)T ,(CA2)T , . . . ,(CAn−1)T . . .

]
. (6.16)

Thus, a linear dynamical system can be alternately identified as a point
on the Grassmann manifold, corresponding to the column space of its
observability matrix. In the experiments shown here (and originally
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reported in [207]), the extended observability matrix was approximated
by the finite observability matrix as is commonly done [175]:

OTn =
[
CT ,(CA)T ,(CA2)T , . . .(CAn−1)T

]
. (6.17)

As already discussed in Section 6.3.3.2, comparison of two points
on the Grassmann manifold can be performed by using the Procrustes
metric (denoted as NN-Procrust). Moreover, if several observation
sequences are available for each class, then one can learn the class
conditional distributions on the Grassmann manifold using kernel den-
sity methods. Maximum likelihood classification can be performed for
each test instance using these class conditional distributions (denoted
as Kernel-Procrust).

6.5.3.1 Activity Recognition

We performed a recognition experiment on the publicly available
INRIA data set [221]. The data set consists of 10 actors performing 11
actions, each action executed three times at varying rates while freely
changing orientation. We used the view-invariant features as proposed
in [221]. Specifically, we used the 16 × 16 × 16 circular FFT features
proposed by [221]. Each activity was modeled as a linear dynamical sys-
tem. Testing was performed using a round-robin experiment, in which
activity models were learned using nine actors and tested on the remain-
ing actor. For the kernel method, all available training instances per
class were used to learn a class conditional kernel density, as described
in Section 6.3.3.3. In Table 6.3, we show the recognition results obtained
using four methods. The first column shows the results obtained using
dimensionality reduction approaches of [221] on 16 × 16 × 16 features.
Weinland et al. [221] report recognition results using a variety of
dimensionality reduction techniques (PCA, LDA, Mahalanobis), and
we choose the best performance from their experiments (denoted ‘Best
Dim. Red.’) which were obtained using 64 × 64 × 64 circular FFT fea-
tures. The third column corresponds to the method of using subspace
angles-based distance between dynamical models [42]. Column 4 shows
the nearest-neighbor classifier performance using Procrustes distance
measure on the Stiefel manifold (16 × 16 × 16 features). We see that
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Table 6.3. Comparison of view-invariant recognition of activities in the INRIA data set
using (a) Dimensionality reduction approaches of [221] on 16 × 16 × 16 features, (b) Best
performance obtained in [221] on 64 × 64 × 64 features, (c) Nearest neighbor using Pro-
crustes distance (16 × 16 × 16 features), (d) Maximum likelihood using kernel density
methods (16 × 16 × 16 features). These results were first reported in [207].

Activity

Dim.
Red. [221]
163 volume

Best Dim.
Red. [221]
643 volume

Subspace
Angles 163

volume
NN-Procrust
163 volume

Kernel-
Procrust

163 volume

Check Watch 76.67 86.66 93.33 90 100
Cross Arms 100 100 100 96.67 100
Scratch Head 80 93.33 76.67 90 96.67
Sit Down 96.67 93.33 93.33 93.33 93.33
Get Up 93.33 93.33 86.67 80 96.67
Turn Around 96.67 96.67 100 100 100
Walk 100 100 100 100 100
Wave Hand 73.33 80 93.33 90 100
Punch 83.33 96.66 93.33 83.33 100
Kick 90 96.66 100 100 100
Pick Up 86.67 90 96.67 96.67 100

Average 88.78 93.33 93.93 92.72 98.78

Table 6.4. Comparison of video-based face recognition approaches
(a) ARMA system distance, (b) Grassmann Procrustes distance, and (c) Ker-
nel density on Grassmann manifold. These results were first reported in [207]

Test condition
ARMA model
distance [42] Procrustes Kernel density

1 Gallery1, Probe2 81.25 93.75 93.75
2 Gallery2, Probe1 68.75 81.25 93.75

3 Average 75% 87.5% 93.75%

the manifold Procrustes distance performs as well as ARMA model dis-
tance [42]. However, statistical modeling of class conditional densities
for each activity using kernel density methods on the Grassmann man-
ifold leads to a significant improvement in recognition performance.
Note that even though the manifold approaches use only 16 × 16 × 16
features they outperform other approaches that use higher resolution
(64 × 64 × 64 features), as shown in Table 6.3.

6.5.3.2 Video-Based Face Recognition

Video-based face recognition (FR) by modeling the ‘cropped video’
either as dynamical models [3] or as a collection of PCA subspaces
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Fig. 6.9 Sample images from the skating video from [220].

Fig. 6.10 Shown above are a few sequences from Cluster 1. Each row shows contiguous
frames of a sequence. We see that this cluster dominantly corresponds to ‘Sitting Spins’.
Image best viewed in color. These results were first reported in [209].

[124] has recently gained popularity because of its ability to recognize
faces from low-resolution videos. In this case, we use only the C matrix
of the ARMA model or PCA subspace as the distinguishing model
parameter, as the C matrix encodes the appearance of the face. The
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C matrices are orthonormal, hence are points on the Stiefel manifold.
For recognition applications, the important information is encoded in
the subspace spanned by the C matrix. Hence, we identify the model
parameters (Cs) as points on the Grassmann manifold, and both Pro-
crustes distance and kernel density methods are directly applicable. We
tested our method on the data set used in [3]. The data set consists
of face videos for 16 subjects with two sequences per subject. Subjects
arbitrarily change head orientation and expressions. The illumination
conditions differed widely for the two sequences of each subject. For
each subject, one sequence was used as the gallery and the other formed
the probe. The experiment was repeated by swapping the gallery and
the probe data. The recognition results are reported in Table 6.4. For
kernel density estimation, the available gallery sequence for each actor
was split into three distinct sequences. As seen in the last column, the
kernel-based method outperforms the other approaches.

Fig. 6.11 Shown above are a few sequences from Cluster 2. Each row shows contiguous
frames of a sequence. Notice that this cluster dominantly corresponds to ‘Standing Spins’.
Image best viewed in color. These results were first reported in [209].
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6.5.3.3 Video Clustering

In [209], the ARMA model was used to perform activity based cluster-
ing of video sequences. The algorithm clusters a long video sequence
into several clusters by modeling short segments of the video as out-
puts of an ARMA model. Further, by combining principles of geometric
invariance with system identification, limited view and execution-rate
invariance were also built into the system. Here, we describe a cluster-
ing experiment on the figure skating data set from [220]. These data
are very challenging since these are unconstrained and involves rapid
motion of the skater and real-world motion of the camera including
pan, tilt, and zoom. Some representative frames from the raw video
are shown in Figure 6.9. To obtain low-level features, color models of
the foreground and background were built using normalized color his-
tograms. The color histograms are used to segment the background and
foreground pixels. Median filtering followed by connected component

Fig. 6.12 Shown above are a few sequences from Cluster 4. Each row shows contiguous
frames of a sequence. This cluster dominantly corresponds to ‘Camel Spins’. Image best
viewed in color. These results were first reported in [209].
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analysis is performed to reject small isolated blobs. From the segmented
results, a bounding box enclosing the foreground pixels is estimated.
Temporal smoothing of the bounding box parameters is performed to
remove jitter. The final feature is a rescaled binary image of the pix-
els inside the bounding box. We show some sample sequences in the
obtained clusters in Figures 6.10–6.12. We observe that Clusters 1–3
correspond dominantly to ‘Sitting Spins’, ‘Standing Spins’, and ‘Camel
Spins’ respectively. More detailed results can be seen in [209].



7
Future Trends

We have examined several interesting computer vision applications such
as target tracking, structure from motion, shape recovery, face recogni-
tion, gait-based person identification, and video-based activity recogni-
tion. We explored the fundamental connections between these various
problems in terms of the geometric modeling assumptions necessary
to solve them and studied the statistical techniques that enable robust
solutions to these problems. Recent research in statistical methods have
made significant progress, and, of the various statistical methods that
have recently emerged, we highlight a few recent trends that we believe
will have significant impact on various computer vision tasks.

7.1 New Data Processing Techniques: Non-linear
Dimensionality Reduction

Images and video data lead to extremely high-dimensional data sets
and in order to represent, visualize, analyze, interpret, and process
such high-dimensional data, one needs to encapsulate the salient
characteristics of the data in a lower dimensional representation.
Traditionally, this has been performed using linear dimensionality
reduction techniques such as principal component analysis (PCA) [185]
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or independent component analysis (ICA) [94]. Such linear dimension-
ality reduction methods are limited in applicability for vision applica-
tions, because the geometric constraints imposed by the imaging device
and the lighting characteristics lead to non-linear constraints on image
and video data. Recent research in the fields of manifold learning and
non-linear dimensionality reduction (NLDR) has led to an explosion of
new results and algorithms designed to tackle such non-linear embed-
dings of the high-dimensional data.

NLDR approaches such as the locally linear embedding [171] (LLE),
Hessian LLE [52], Isomap [201], the Laplacian eigenmap [13], and local
tangent space alignment (LTSA) [230] construct and represent the high-
dimensional data using a low-dimensional representation. The param-
eters of the representation are obtained by optimizing an appropriate
cost function that leads to embeddings that are ‘Euclidean-like’ locally,
but globally are highly nonlinear. Moreover, most of these techniques
also have an elegant graph formulation that explicitly describes the
local properties that these approaches preserve. Such approaches for
NLDR find several natural and compelling applications in vision tasks,
as both image and video data are inherently high-dimensional and lend
themselves to non-linear dimensionality reduction.

7.1.1 Applications in Classification

The success of dimensionality reduction approaches in vision tasks
comes far since the early days of eigenfaces [210]. One of the drawbacks
of early classifiers was that the complexity of the decision boundaries
increased with increase in the dimensionality of data. Therefore, the
number of training samples required to learn these decision boundaries
was large. One way to address this problem is via dimensionality reduc-
tion, where the high-dimensional data points embedded into a lower
dimensional space and the classifiers are trained on this lower dimen-
sional space. If the dimensionality reduction is done ‘properly’ then one
could obtain reduction in the complexity of the classifier without sac-
rificing performance. Non-linear dimensionality reduction techniques
have found applications in face recognition [5, 171, 228] and in hand-
writing recognition [119].
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7.1.2 Applications in Video Processing

Video sequences are also naturally amenable to analysis using non-
linear dimensionality reduction approaches. As an example consider
action analysis and activity recognition. The goal is to recognize the
pose of the subject from images, then use the knowledge about pose
to perform activity recognition. Since the human body can be modeled
as a kinematic chain with small degrees of freedom and, in most cases,
the camera is assumed static, this means that the obtained silhouettes
of the subject span a low-dimensional space. If NLDR approaches were
used to extract this low-dimensional representation, then problems such
as pose recognition and activity recognition could be solved using these
projections, as opposed to the original imaging data. Similar ideas and
approaches for pose recognition have been gaining popularity in recent
years [39, 61, 62].

Another interesting application of manifold learning approaches in
video processing is visualization. Multiple cameras are used constantly
in security and surveillance applications, and there is growing need to
visualize the data in a form that emphasizes the content of the data
rather than presentation in a time-ordered fashion. NLDR approaches
can be used to cluster the data in a low-dimensional space, and the
clustered results are then presented to the human operators. In Figure
7.1 we show that an individual’s actions cluster into trajectories when
embedded in a low-dimensional Laplacian eigenspace.

NLDR approaches may also apply in extracting the inherent under-
lying structure of 3D data obtained using multiple cameras. In [199],
it is shown that the Laplacian eigenspace maps voxels on long articu-
lated chains to smooth 1D curves. This facilitates discrimination of the
limbs and helps to segment the voxel data into limbs, head, and trunk.
Figure 7.2 illustrates this idea for segmenting and registering 3D voxel
data of a human.

7.2 New Hardware and Cameras: Compressive Sensing

Recent advances in sparse approximations and reconstruction algo-
rithms that use sparsity priors have huge relevance to imaging and
vision applications. Images and video are typically high-dimensional
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Fig. 7.1 Example of NLDR used for visualizing the actions performed in a video sequence
(courtesy: [208]). (a) Visualization of the clusters in Laplacian space dimensions 1–3. (b)
Visualization of clusters in Laplacian space dimensions 4–6. Best viewed in color.

Fig. 7.2 Segmentation and registration in 3D using Laplacian eigenmaps (courtesy: [199]).
The nodes are segmented in LE (b–c). The labels are represented in the original 3D space
in (d). The computed skeleton is presented in (e) and the two joints in (f). The correct
registration is shown in (g).
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data, but simple and sometimes even linear, transformations of images
and video lead to sparse coefficients. Under this assumption, recent
advances in the field of compressive sensing [10, 32, 33, 51] can lead to
interesting consequences for vision algorithms.

7.2.1 Compressive Sensing Theory

Estimating a K-sparse vector s that satisfies y = As + e (where e is the
noise), can be formulated as the following L0 optimization problem:

(P0) : min ||s0|| s.t. ||y − As||2 ≤ ε, (7.1)

where the L0 norm counts the number of non-zero elements. This is
typically an NP-hard problem. However, the surprising equivalence
between L0 and L1 norm for such systems [33] allows us to reformulate
the problem as one of L1 norm minimization:

(P1) : min ||s1|| s.t ||y − As||2 ≤ ε (7.2)

with ε being a bound for the measurement noise e. It has been shown
that the solution to (P1) is, with high probability, the K-sparse solu-
tion that we seek. Further, (P1) is a convex program for which there
are efficient polynomial-time solutions, as well as effective numerical
implementations.

A wide variety of reconstruction algorithms can solve the convex
optimization problem (P1). One condition must be satisfied so that the
reconstruction algorithm is robust and accurate. The effective mixing
matrix A should have the restricted isometry property (RIP) of order
3K or more, so a K-sparse signal can be effectively reconstructed.

7.2.2 Application to Image Capture

Since it can be shown that images are sparse in the wavelet basis,
we can reconstruct their wavelet coefficients if we can measure arbi-
trary linear combinations of the images using an optical device. The
Rice compressive sensing camera [200] achieves this by using a digital
micromirror array device (DMD). The DMD array can essentially turn
each pixel ‘ON’ or ‘OFF’, and a single photosensor inside the camera
measures the sum of all the light intensity that enters the camera. So,
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each measurement of the photosensor is one projection of the image. By
programming the DMD device, we can measure multiple independent
projections of the image. Compressive sensing techniques can then be
used for reconstructing the image from the linear measurements.

7.2.3 Application in Reflectance Field Measurement

Acquiring the reflectance field of real objects is an important problem
often encountered in solving several imaging, vision, and graphics tasks
such as relighting. Typical methods for capturing such reflectance fields
are based on acquiring images with a single light source direction turned
on. Recently, Schechner et al. [181] have shown that using multiple light
sources per each acquired image and performing a linear inversion to
recover the reflectance field results in higher signal to noise ratios of the
captured reflectance fields. Nevertheless, the number of images to be
acquired to infer the reflectance field remains identical to the number of
illumination sources. However, reflectance fields are inherently sparse
in various bases. We can show that depending on the surface charac-
teristic (Lambert, Phong) the reflectance field of a surface is highly
compressible in the DCT or the Haar wavelet basis [152]. Using this as
a motivation, similar to the single pixel camera (SPC), we show that
the reflectance field associated with a scene can be obtained by just
a few random projections. Figure 7.3 shows reconstructed reflectance
fields obtained from such an approach.

7.2.4 Applications in Video

In security and surveillance applications, sometimes the goal is not to
capture the entire video but just the moving objects in the scene. This
process, also called background subtraction, is usually done by first
capturing the entire video data, then performing statistical analysis to
determine what pixels in the image are moving. The number of moving
pixels in an image is usually much smaller than the total number of
pixels in an image. This means that such background subtracted images
are inherently sparse in the image domain. In [35], it is shown to be pos-
sible to reconstruct background silhouettes directly from compressive
measurements of images. Further, it is possible to obtain background
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Fig. 7.3 Results of reflectance field acquisition obtained from compressed measurements of
various compression factors. Each column corresponds to a different compression factor (L
to R: 1.3, 1.7, 2, 2.7, 4), and each row corresponds to a different source direction. Images
courtesy [176].

subtraction silhouettes at compression ratios far higher than required
to reconstruct the original images. Figure 7.4 illustrates this idea in
detail.

Similarly, Veeraraghavan et al. [216] shows that one can use a simple
temporal modulation in the aperture to convert an off-the-shelf video
camera into a high-speed camera. This is done by modeling the high
speed video observed at a pixel as being sparse in the Fourier domain.
This is possible since the signal being observed is periodic, hence, in
the ideal case, its Fourier transform consists of a train of impulses.

7.3 Mathematical Tools: Analytic Manifolds

As we have seen so far, applications in computer vision involve the
study of geometric scenes and their interplay with physical phenom-
ena such as illumination and motion. When these scenes are imaged
using cameras, the observed appearances obey certain mathematical
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Fig. 7.4 Background subtraction experimental results using an SPC (figure courtesy [35]).
Reconstruction of background image (top row) and test image (second row) from compres-
sive measurements. Third row: conventional subtraction using the above images. Fourth row:
reconstruction of difference image directly from compressive measurements. The columns
correspond to measurement rates M/N of 50%, 5%, 2%, 1%, and 0.5%, from left to right.
Background subtraction from compressive measurements is feasible at lower measurement
rates than standard background subtraction.

constraints that are induced by the underlying physical constraints.
Examples include the observation that images of a convex object under
all possible illumination conditions lie on the so-called ‘illumination-
cone’ [76]. Images taken under a stereo pair are constrained by the
epipolar geometry of the cameras [87]. Similarly, the 3D pose of the
human head is parameterized by three angles — hence, under constant
illumination and expression, the observed face of a human under dif-
ferent viewing directions lies on a 3D manifold. In a particular applica-
tion, if the physical and mathematical constraints are well-understood,
such as in epipolar geometry and illumination modeling, then one can
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design accurate modeling and inference techniques derived from this
understanding.

In several applications such as gait-based human ID, activity
recognition, shape-based dynamics modeling, and video-based face
recognition, some of the constraints that arise have a special form.
These special constraints can often be expressed in the form of an equa-
tion with some smoothness criteria. Such constraints can be formally
defined as manifolds. Rather informally, we will assume that a ‘mani-
fold’ is defined as a set of points in R

n that satisfy an equation f(x) = 0
(with appropriate conditions on f()). For example, the set of points
that satisfy the equation f(x) = xTx − 1 = 0 is the unit hyper-spherical
manifold in R

n. We provide specific examples of various analytical man-
ifolds found in different applications of computer vision below.

1. Feature Manifolds: Image and video understanding
typically begins with the extraction of some specific fea-
tures from raw data. Examples of these features include
background-subtracted images, shapes, intensity features,
motion vectors, etc. These features extracted from the videos
might satisfy certain geometric and photometric constraints.
The feature space deals with understanding and character-
izing the geometry of features that can be extracted from
videos. The study of this space then enables appropriate
modeling methodologies to be designed. Consider the exam-
ple of the shape feature. Shapes in images are commonly
described by a set of landmarks on the object being imaged.
After appropriate translation, scale and rotation normaliza-
tion it can be shown that shapes reside on a complex spher-
ical manifold. Further, by factoring out all possible affine
transformations, it can be shown that shapes reside on a
Grassmann manifold. More recently, shapes have been con-
sidered to be continuous closed planar curves. The space of
such curves can also be characterized as a manifold [193].
A recently developed formulation of using the covariance
of features in image-patches has found several applications
such as texture classification [212], pedestrian detection [213],
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and tracking [157]. The Riemannian geometry of covariance
matrices was exploited effectively in all these applications to
design state-of-the-art algorithms.

2. Model Spaces: After features are extracted from imagery,
the next step is to describe the features using appropriate
spatio-temporal models. One specific example of this is
modeling a feature sequence as realizations of dynamical
systems. Examples include dynamic textures, human joint
angle trajectories, and silhouette sequences [188]. One pop-
ular dynamical model for such time-series data is ARMA
model. The space spanned by the columns of the observ-
ability matrix of the ARMA model can be identified as a
point on the Grassmann manifold. Time-varying and switch-
ing linear dynamical systems can then be interpreted as paths
on the Grassmann manifold [206, 207]. The traditionally
used linear subspace models of data can be studied by
understanding their structure as a Grassmann manifold.
This enables application-driven dimensionality reduction
approaches where the cost function to be optimized can be
quite arbitrary [194], such as enforcing sparsity in coeffi-
cients, or improving discrimination in classification.

3. Transformation Spaces: Finally, the transformation
space studies all the possible manifestations of the same
semantic content, and is thus important to achieve invariance
to factors such as view changes and execution-rate changes.
The space of execution-rate variations in human activities,
which is modeled as temporal warps of feature trajectories, is
the space of positive and monotonically increasing functions
mapping the unit-interval to the unit-interval. The deriva-
tives of warping functions can be interpreted as probability
density functions. The square-root form of pdfs can further
be described as a sphere in the space of functions. This for-
malism is used to achieve execution-rate invariance in human
activity modeling by Veeraraghavan et al. [218]. Variability
in sampling closed planar curves gives rise to variations in
observed feature points on shapes [141]. This variability can
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also be modeled as a sphere in the space of functions (also
known as a Hilbert sphere).

As these examples illustrate, manifolds arise quite naturally in sev-
eral vision-based applications. The area of statistics and inference on
manifolds has seen a large growth in recent years. Many of the ideas
have been formally introduced and advanced through the efforts of
many researchers. In several applications, the superior performance of
algorithms that exploit the geometric properties of the underlying man-
ifold has been demonstrated.
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