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Population coding

¢ Describe a population as parallel point process
channels

% Variations X | y, L1
> Separate inputs
> Co}znmon irfput v &, ¢ Y, UL
> Dependence among channels — * $ :
** What do information theoretic : y
considerations suggest is best? Xy . Yyl




Modeling approach

** We would like to use point process models
for the outputs
> Technically very difficult to describe
connection-induced dependencies
> Use simpler Bernoulli models, capable of
describing complex correlation structures
** Assume homogeneous populations

P(X{,Xp,.... Xy )= P(X))P(Xy)-P(X ) (X5 =D



A note on modeling

* Correlation, orthogonal model
P(X1,X2,...,XN )=

P(z)'(Xi—Pi)(Xj—Pj)
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¢ Exponential model
P(X1, X2, s X )
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Fisher information analysis

** How should the stimulus be encoded in spike
rate to achieve constant Fisher information?

*¢ Input structure not important
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Kullback-Leibler distance and data analysis

] | p(x;aq)
Dy (o ‘0‘0) = Exp (v:a)log p(x;aq)

% 0y, a4 two ditterent stimulus conditions

°¢ p (x; o) - response probabilities
** K-L distance is the “exponential rate” of a
Neyman-Pearson classifier’s false-alarm
probability
PF ~ 2—NDX(a1||a0) for fixed PM
*¢ Distance resulting from information
perturbations is proportional to Fisher

information ,
Dy (ag +baag) * F(ag ) (6ax)



Data Processing Theorem Redux
X Y

LS R
Dy (ajjag)
Dx (ajag)
°¢ “Systems cannot create information”

rx.y(og,0q) = 0=<yx y(ay,0p) =<1

*¢ Basis for a system theory for information
processing and determining which structures
are inherently more effective



Population encoding properties from a
K-L distance perspective

¢ Individual inputs don’t necessarily achieve
maximal information transfer o
VXY(N)<maX)’X Y, .

¢ Explicitly indicating that the inputs encode a
single quantity reveals that perfect fidelity is
possible
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Another viewpoint: Channel Capacity

*¢ Capacity for the stationary point process
channel is known

>[f0<A <A, is the “power” constraint

C (bits/s) = 7max _ _“max
eln2 1.88417

> It we additionally constrain average rate
)Lmax , X > )“0 5

C (bits/s) = - €A1n2 N , A, = max
S InTMAX A < A €
In2 A

% Capacity achieved by a Poisson process

driven by a random telegraph wave
A —

max

Y



Channel capacity of populations

*¢ Use a Bernoulli model and investigate the small
probability limit to determine capacity for
parallel Poisson channels

** The two input structures have the same capacity
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Imposing connection dependence

changes the story

¢ Using Bernoulli models, connection dependence
can be added

¢ Caveat: modeling Poisson processes

*¢ Interesting restrictions arise
> Capacity depends only on pairwise
correlations (dependencies)
> Only positive pairwise correlations possible

> Restricted range of correlation values |

N -1
* For inhomogenous populations: 0 < p < pax

» For homogenous populations: 0 =< p <



Capacity results

* Capacity achieved with a homogeneous

population
¢ Correlation affects the two input structures
differently
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Correlation

¢ Qualitatively similar to Gaussian channel results
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However...

*¢ As population size increases, introducing
connection-induced dependence reduces
capacity

= Capacity unaffected by input- or connection-
induced dependence

*¢ Fits with previous results derived using
Fisher information



Poisson vs. Non-Poisson Models

*¢ Results derived using a Poisson assumption
¢ How about non-Poisson models?

°¢ Probably impossible to extend Bernoulli
approach to interesting non-Poisson cases,
but...

** Kabanov showed that the single-channel
Poisson capacity bounded the capacity of all
other point process models

* Does this bound apply to multi-channel
processes as well?



Connection-induced dependence

* Bernoulli model vague about how
correlations are induced

% If internal feedback is used...
> Feedback can increase capacity

> M. Lexa has shown that internal feedback
can increase the performance of
distributed classifiers




Conclusions

* From two theoretical viewpoints, connection-
induced dependence not required to increase
capacity

*¢ Specific forms of dependence may increase a
population’s processing power

*¢ Capacity atforded by non-Poisson models
probably bounded by Poisson result, but not in
detail



