Correlations in Populations: Information-Theoretic Limits

Don H. Johnson
Ilan N. Goodman
dhj@rice.edu

Department of Electrical & Computer Engineering
Rice University, Houston, Texas
Population coding

* Describe a population as parallel point process channels

* Variations
 > Separate inputs
 > Common input
 > Dependence among channels

* What do information theoretic considerations suggest is best?
Modeling approach

* We would like to use point process models for the outputs
 ➢ Technically *very* difficult to describe connection-induced dependencies
 ➢ Use simpler Bernoulli models, capable of describing complex correlation structures
* Assume homogeneous populations

\[
P(X_1, X_2, \ldots, X_N) = P(X_1)P(X_2)\cdots P(X_N)P(X_j = 1)
\]
A note on modeling

※ Correlation, orthogonal model

\[P(X_1, X_2, \ldots, X_N) = \]

\[P(X_1)P(X_2)\cdots P(X_N) \left[1 + \sum_{i > j} \frac{\rho(2) \cdot (X_i - p_i)(X_j - p_j)}{\sqrt{p_i(1-p_i)p_j(1-p_j)}} \right] + \sum_{i > j > k} \frac{\rho(3) \cdot (X_i - p)(X_j - p)(X_k - p)}{\sqrt{p_i(1-p_i)p_j(1-p_j)p_k(1-p_k)}} \]

※ Exponential model

\[P(X_1, X_2, \ldots, X_N) \propto \exp \left\{ \sum_{i} \theta_i X_i + \sum_{i,j} \theta_{ij} X_i X_j + \sum_{i,j,k} \theta_{ijk} X_i X_j X_k + \cdots \right\} \]
Fisher information analysis

* How should the stimulus be encoded in spike rate to achieve constant Fisher information?

* Input structure not important

![Graphs showing two-neuron Bernoulli Model, three-neuron Bernoulli Model, and Poisson Counting Model]
Kullback-Leibler distance and data analysis

\[D_X (\alpha_1 \| \alpha_0) = \sum_x p(x; \alpha_1) \log \frac{p(x; \alpha_1)}{p(x; \alpha_0)} \]

* \(\alpha_0, \alpha_1 \) two different stimulus conditions
* \(p(x; \alpha) \) - response probabilities
* K-L distance is the “exponential rate” of a Neyman-Pearson classifier’s false-alarm probability

\[P_F \sim 2^{-ND_X (\alpha_1 \| \alpha_0)} \text{ for fixed } P_M \]

* Distance resulting from information perturbations is proportional to Fisher information

\[D_X (\alpha_0 + \delta \alpha \| \alpha_0) \propto F(\alpha_0) \cdot (\delta \alpha)^2 \]
Data Processing Theorem Redux

\[\gamma_{X,Y}(\alpha_0, \alpha_1) = \frac{D_Y(\alpha_1 \| \alpha_0)}{D_X(\alpha_1 \| \alpha_0)} \]

\[0 \leq \gamma_{X,Y}(\alpha_0, \alpha_1) \leq 1 \]

※ “Systems cannot create information”
※ Basis for a system theory for information processing and determining which structures are inherently more effective
Population encoding properties from a K-L distance perspective

- Individual inputs don’t necessarily achieve maximal information transfer
 \[\gamma_{X,Y}(N) \leq \max_i \gamma_{X_i,Y_i} \]

- Explicitly indicating that the inputs encode a single quantity reveals that \textit{perfect} fidelity is possible

\[\gamma_{X,Y}(N) \approx 1 - \frac{k}{N} \]

or

\[\gamma_{X,Y}(N) \approx 1 - e^{-kN} \]
Another viewpoint: Channel Capacity

* Capacity for the *stationary* point process channel is known

- If $0 \leq \lambda_t \leq \lambda_{\text{max}}$ is the "power" constraint

 $C \text{ (bits/s)} = \frac{\lambda_{\text{max}}}{e \ln 2} = \frac{\lambda_{\text{max}}}{1.88417}$

- If we additionally constrain average rate

 $C \text{ (bits/s)} = \begin{cases}
 \frac{\lambda_{\text{max}}}{e \ln 2}, & \bar{\lambda} > \lambda_o \\
 \frac{\bar{\lambda}}{\ln 2} \ln \frac{\lambda_{\text{max}}}{\bar{\lambda}}, & \bar{\lambda} < \lambda_o
\end{cases}$, \(\lambda_o = \frac{\lambda_{\text{max}}}{e} \)

* Capacity achieved by a Poisson process driven by a random telegraph wave
Channel capacity of populations

* Use a Bernoulli model and investigate the small probability limit to determine capacity for parallel Poisson channels

* The two input structures have the same capacity

\[
C^{(N)} = NC^{(1)} = N \cdot \frac{\lambda_{\text{max}}}{e \ln 2}
\]
Imposing connection dependence changes the story

☆ Using Bernoulli models, connection dependence can be added
☆ Caveat: modeling Poisson processes
☆ Interesting restrictions arise
 ➢ Capacity depends only on pairwise correlations (dependencies)
 ➢ Only positive pairwise correlations possible
 ➢ Restricted range of correlation values
 • For homogenous populations: $0 \leq \rho \leq \frac{1}{N - 1}$
 • For inhomogenous populations: $0 \leq \rho \leq \rho_{\text{max}}$
Capacity results

- Capacity achieved with a homogeneous population
- Correlation affects the two input structures differently

- Qualitatively similar to Gaussian channel results
However...

* As population size increases, introducing connection-induced dependence reduces capacity

\[\Rightarrow \text{Capacity unaffected by input- or connection-induced dependence} \]

* Fits with previous results derived using Fisher information
Poisson vs. Non-Poisson Models

- Results derived using a Poisson assumption
- How about non-Poisson models?
- Probably impossible to extend Bernoulli approach to interesting non-Poisson cases, but...
- Kabanov showed that the single-channel Poisson capacity bounded the capacity of all other point process models
- Does this bound apply to multi-channel processes as well?
Connection-induced dependence

- Bernoulli model vague about how correlations are induced
- If internal feedback is used...
 - Feedback can increase capacity
 - M. Lexa has shown that internal feedback can increase the performance of distributed classifiers

![Diagram of connection-induced dependence](image)
Conclusions

* From two theoretical viewpoints, connection-induced dependence not required to increase capacity
* Specific forms of dependence may increase a population’s processing power
* Capacity afforded by non-Poisson models probably bounded by Poisson result, but not in detail