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What’s the problem?
Signal processing has been concerned with form, not
what the signal represents
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Not all signals are so easy to analyze



Neural representation of information

Information represented by when spikes occur either in
single neuron responses or, more importantly, jointly in
population (ensemble) neural responses
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Beginnings of information processing
o Information is “in the eye of the beholder”

h Cellular telephony example (interference to one is
information to another)

h Without interacting with information encoded by
a signal, examining signals won’t reveal how well
(or if) information is represented

o Signals convey information, but how effectively to
they do so?

o Systems process information, selectively suppressing
irrelevant information and accentuating important
information by acting on signals (information filters)

o System design is usually signal-based, not
information based. What effect does system design have
on information processing?



Canonic information processing structure

o Information a is always represented—encoded—by
signals

o Systems “process information” indirectly by acting on
signals

o Result Z is an action or a behavior (i.e., a measurable
quantity)

o Any viable information processing theory must
encompass a variety of signals

o Here, all signals are assumed to be stochastic
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Signals represent information
o Let a represent the information encoded in a signal

X(a)
o Quantify how accurately information changes

a0 Æ a1 are represented by signals with a distance
measure dX(a0, a1)

o Choose a distance measure related the performance
of optimal information processing systems

Encoder
a0 X(a0)

a1 X(a1)
dX (a0, a1)



How to choose a distance?
o Calculate distance between the probability distributions

pX(x; a0), pX(x; a1) characterizing the signal
o Because pX(x; •) maps the signal domain to the real-line,

we can calculate distances regardless of the kind of signal
o Information extraction systems—determining a from

X(a)—fall into two categories
h Classification: Which of several values of a occurred

Optimal classifier is the likelihood ratio test
No general formula for performance is known

h Estimation: Determine a from a continuum of values
Mean-squared error a frequently used performance
measure



Distances and optimal processing
o The optimal classifier that tries to determine whether a0

or a1 was encoded will have an error probability of the
form

o Cramér-Rao lower bound on the mean-square error
incurred by any (unbiased) estimator

o Fisher information matrix related to distance induced by
small information changes (locally Gaussian property)

o With one distance, we can quantify how well information is
represented from both classification and estimation viewpoints

  

† 

E[e2 ] ≥
1

F(a)
   (scalar a)   E[ee' ] ≥ [F(a)]-1   (vector a)

Fisher information
matrix

† 

dX(a 0,a 0 + da) ª K •d ¢ a F(a 0)da

† 

Pe ~ 2-dX (a0,a1)

† 

[F(a)]ij = E ∂ ln pX (x;a)
∂ai

∂ ln pX (x;a)
∂a j

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 



o Information-theoretic distance measures obey the Data
Processing Theorem:

Systems cannot increase how well information is
represented by their inputs

Information processing fundamental

dX (a0,a1) ≥ dY (a0,a1)

System
X(a1) Y(a1)

X(a0) Y(a0)

† 

dY(a0,a1)dX (a0, a1)

o This result applies regardless of the nature of the input
and the output



Choosing a distance measure
o Many information theoretic distances have the locally

Gaussian property
o Only two are known to be related to optimal

classifier performance
o We choose distance measures related to the Kullback-

Leibler distance

o Choose base-2 logarithms, which gives distance
“units” of bits.

† 

DX(a1 a 0) = pX (x;a1)log pX (x;a1)
pX (x;a 0)x

Â



Properties of K-L distance
o

  

If X(a) has statistically independent components,
        DX (a1 || a0 ) = DXn (a1 || a0 )

n
Â

  PF ~ 2-NDX (a1||a0 )  for fixed PM

K-L distance is the “exponential rate” of Neyman-
Pearson detector’s false-alarm probability

Distance resulting from information perturbations is
“proportional” to Fisher information

DX(a0 +da || a0 ) ª
d ¢ a F(a0 )da

2 ln 2

o

o

o

  

† 

DX(a1 || a 0) ≠ DX (a 0 || a1) (K - L “distance” is not 
                                               necessarily symmetric)

o

  

† 

DX(a1 || a 0) ≥ 0   Equality only when pX (x;a1) = pX (x;a 0)



Distance between LSO response patterns

cumulative KL distance



Analyzing system performance
o Quantify a system’s information processing

performance with the information transfer ratio

h 0 ≤ gX,Y (a0 , a1)  ≤ 1
h If gX,Y (a0 , a1) = 1, the information change is well

encoded in the output signal.
h If gX,Y (a0 , a1) << 1, the information change is

poorly encoded in the output signal
o Choose a reference a0; explore how g varies about

this point
o Information filtering

g X,Y (a0,a1) =
dY(a0 ,a1)
dX(a0 ,a1)



Information transfer across a synapse
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–2t* –t* 0 +t* +2t*

+
Y(t)

[X0(t) X1(t) X2(t) X3(t) X4(t)]X=

–2n*

[X0(t) X1(t) X2(t) X3(t) X4(t)]X=

LPF LPF LPF LPF LPF

samp samp samp sampsamp

–n* 0 +n* +2n*

+
Y(n)

Information filtering: Array processing



System theory of information processing
Cascade of systems

Multiple input systems

Multiple output systems (e.g., neural populations)

X1
X2

XN

... Y
If inputs are independent,

X Y Z gX,Z  = gX,Y •gY,Z

Y1
Y2

YN

...X
  

† 

gX,{Y1,K,YN } = gX,Y1 + gX,{Yn |Y1,K,Yn-1}
n=2

N
Â

† 

1
gX,Y

=
1

g Xn ,Yn
Â fi gX,Y £ min

n
{g Xn ,Y}



Non-cooperative populations
o The non-cooperative structure defines a baseline for

multi-output systems

o The outputs are conditionally independent, not
statistically independent

o The outputs contain only input-induced dependence

X

Y1

...

Y2

YN

    

† 

p(Y1,Y2,K,YN ;a ) = p(Y1 x)p(Y2 x)L p(YN x)pX (x;a ) dxÚ



Non-cooperative population theory
o Assume each system is not too noisy (gn ≥ gmin > 0)
o As the population size N increases, the population can

represent the information expressed by its input without
loss, regardless of the information representation

gX,Y(N)
1

0 N
1

† 

lim
N Æ•

gX,Y (N ) =1

  

† 

gX,Y (N ) ª1-
k
N

Continuous code
or

gX,Y (N ) ª1- k1e-k2N Discrete code



Cooperative populations
If the cooperation among systems involves output
feedback to a limited number of other systems, the
asymptotics of noncooperative systems apply as well.
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Informationally effective
cooperative structure
Informationally ineffective
cooperative structure

Population coding performance limits
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Distributed decision systems
What is the most effective way to integrate individual
decisions into a global decision?

Democratic

Hierarchical

X1 X2 X3 X4 X5 X6 X7 X8 X9
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Results: Hierarchical structure
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Results: Democratic structure
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Summary
o A theory of information processing must not depend on the

nature of the signals representing information
o The theory presented here uses information theoretic

distances, particularly the Kullback-Leibler distance, as
the primary tool

o Data Processing Theorem is a fundamental result that can
be widely applied

o Information processing structures have fundamental
properties regardless of…
h the information being processed
h the signals representing the information

o We can assess signal encoding and system processing,
hopefully leading to better designs that focus on the
information, not the signal
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